• Non ci sono risultati.

3.1 An overview on SDR . . . . 63

N/A
N/A
Protected

Academic year: 2021

Condividi "3.1 An overview on SDR . . . . 63"

Copied!
7
0
0

Testo completo

(1)

Contents

List of Figures v

List of Tables vii

3 The Software Defined Radio (SDR) 61

3.1 An overview on SDR . . . . 63

3.1.1 History . . . . 63

3.1.2 Definition . . . . 65

3.1.3 Levels . . . . 67

3.1.4 Benefits . . . . 68

3.1.5 Waveform portability . . . . 68

3.1.6 Security . . . . 69

3.1.7 Interoperability testing . . . . 69

3.2 SDR hardware architecture . . . . 70

3.3 The GNU Radio project and the USRP/USRP2 peripheral . . . . 71

3.3.1 USRP1 . . . . 73

3.3.2 USRP2 . . . . 73

3.3.3 The FPGA . . . . 75

2 Next generation aeronautical communications: AeroMACS 21 2.1 AeroMACS technology potentiality for ATS/AOC communications . . . . 23

2.1.1 Future communications for next-generation air transportation . . . . . 23

2.2 Propagation channel model in airport environment . . . . 28

2.3 Specific of AeroMACS (IEEE 802.16e-based) Physical Layer . . . . 32

2.3.1 OFDMA symbol description, symbol parameters and transmitted signal 33 2.3.2 OFDMA basic terms definition . . . . 36

2.3.3 Frame structure . . . . 38

2.3.4 Map message fields and IEs . . . . 44

2.3.5 OFDMA subcarriers allocation . . . . 48

(2)

ii CONTENTS

2.3.6 Symbol structure for PUSC . . . . 50

2.3.7 DL subchannels subcarriers allocation in PUSC . . . . 51

2.3.8 Channel coding . . . . 53

3 Realization of AeroMACS modulator functions 61 3.1 Channel coding chain . . . . 63

3.1.1 Randomizer . . . . 68

3.1.2 Encoding . . . . 69

3.1.3 Bit-interleaver . . . . 70

3.1.4 Repetition . . . . 71

3.2 OFDM digital modulator . . . . 72

3.2.1 Mapper . . . . 72

3.2.2 OFDM modulation . . . . 74

3.2.3 IFFT block . . . . 76

3.2.4 Cyclic Prefix insertion . . . . 78

3.2.5 Available bitrate . . . . 79

3.3 OFDMA DL subframe construction . . . . 80

3.3.1 Subcarriers allocation . . . . 81

3.3.2 Reference signal insertion . . . . 84

3.3.3 DL subframe structure . . . . 85

4 Realization of AeroMACS demodulator functions 89 4.1 Synchronization algorithms . . . . 91

4.1.1 Training symbol detection . . . . 91

4.1.2 Timing estimation . . . . 97

4.1.3 Fractional frequency offset estimation . . . 100

4.1.4 Integer frequency offset estimation and preamble identification . . . . 102

4.1.5 Timing recovery . . . 105

4.2 OFDMA DL subframe interpretation . . . 106

4.3 OFDM demodulation . . . 111

4.4 Channel decoding . . . 118

4.4.1 Derepeater . . . 119

4.4.2 Bit deinterleaver . . . 119

4.4.3 Viterbi decoder . . . 120

4.4.4 Derandomizer . . . 127

(3)

CONTENTS iii

5 Optimizations and performances 129

5.1 Real-time target achievement through Memory Acceleration technique . . . . 131

5.1.1 Viterbi decoding algorithm . . . 131

5.1.2 OFDM timing and frequency offset correction . . . 143

5.2 HW and SW resources and computational results . . . 146

(4)
(5)

List of Figures

3.1 Wireless Innovation Forum Generalized Functional Architecture . . . . 66

3.2 Ideal Software Radio block scheme . . . . 67

3.3 USRP1 motherboard . . . . 74

3.4 USRP2 Ettus Research peripheral . . . . 74

3.5 Simple USRP block diagram . . . . 75

3.6 USRP Digital Down Converter block scheme . . . . 76

3.7 USRP Digital Up Converter block scheme . . . . 77

2.1 Example of typical airport infrastructure . . . . 23

2.2 Notional AeroMACS network configuration and potential applications . . . . 25

2.3 Munich Airport . . . . 28

2.4 Tapped Delay Line . . . . 30

2.5 Power Delay Profiles . . . . 32

2.6 OFDM symbol time structure . . . . 34

2.7 OFDM frequency description . . . . 35

2.8 OFDMA data region . . . . 37

2.9 mapping OFDMA slots to subchannels and symbols in the DL (in PUSC mode) 38 2.10 OFDMA frame (with only mandatory zone) in TDD mode . . . . 39

2.11 Illustration of OFDMA TDD frame with multiple zones . . . . 40

2.12 FCH subchannel allocation . . . . 43

2.13 Example of DL renumbering the allocated subchannels for segment 1 in PUSC 43 2.14 DL trasmission basic structure . . . . 48

2.15 Basic structure of DL preamble, 2048-FFT . . . . 49

2.16 Cluster structure . . . . 51

2.17 Channel Coding chain . . . . 53

2.18 PRBS generator for data randomization . . . . 53

2.19 Convolutional encoder of rate 1/2 . . . . 55

2.20 PRBS generator for pilot modulation . . . . 58

(6)

vi LIST OF FIGURES

3.1 Channel Coding chain . . . . 63

3.2 Gray mapped supported modulations . . . . 73

3.3 OFDM signal components . . . . 74

3.4 OFDM signal Power Spectrum . . . . 75

3.5 Virtual carriers insertion effect on OFDM spectrum . . . . 75

3.6 Prefix Cycle in OFDM symbols . . . . 78

3.7 Pilot subcarriers indexing in AeroMACS clusters . . . . 81

3.8 Physical renumbering of data subcarriers . . . . 83

3.9 OFDMA single-user frame structure . . . . 86

4.1 M (d) metric evaluation for N = 1024 and N

g

= 128 . . . . 96

4.2 γ(d) metric evaluation for N

g

= 128 and SN R = 5dB . . . . 98

4.3 PDF of the timing estimation for N

g

= 128, M

B

= 8 and SN R = 5dB . . . . 99

4.4 OFDM demodulation scheme . . . 111

4.5 Channel estimation within a single cluster . . . 116

4.6 channel decoding chain . . . 118

4.7 Example of block extraction with repetition factor R = 4 . . . 119

4.8 buffer (or path variable) of a single state . . . 125

4.9 Buffer situation at the end of a FEC block decoding, without tailbiting technique127 4.10 Buffer situation after the tailbiting technique has been processed . . . 127

5.1 Viterbi MA logical scheme . . . 133

5.2 Behavior of trellis transition . . . 134

(7)

List of Tables

2.1 Example of potential AeroMACS services and applications . . . . 26

2.2 Munich Airport – Area arrangement considered for the statistical evaluation. 29 2.3 OFDMA DL Frame Prefix format . . . . 40

2.3 OFDMA DL Frame Prefix format . . . . 41

2.4 Subchannel index of the six subchannel groups . . . . 42

2.5 OFDMA PHY Synchronization Field . . . . 45

2.6 OFDMA frame duration codes . . . . 45

2.7 OFDMA DL-MAP IE format . . . . 46

2.8 Preamble modulation series per segment and IDcell for the 512-FFT mode . . 50

2.9 512-FFT OFDMA downlink carrier allocations on PUSC zone . . . . 50

2.10 Slots concatenation rule . . . . 54

2.11 Encoding slot concatenation for different allocations and modulations . . . . . 55

2.12 Convolutional code with puncturing configuration . . . . 56

2.13 Useful data payload for a FEC Block . . . . 56

3.1 Useful values for bit rate computation . . . . 80

3.2 Slots allocation in the OFDMA DL subframe . . . . 87

5.1 MA Viterbi decoder performance . . . 147

Riferimenti

Documenti correlati

condizioni area inserzione ……….. posiz.il/ultima

Cutaneo stomia placca n°………. [ ] cateterismo intermittente,

There are four categories that can use the facilitated procedure of notification: children who have not acquired Swedish citizenship automatically, and whose father was Swedish

A person who has lost his or her Swedish citizenship and has thereafter continuously been a citizen of a Nordic country may recover Swedish citizenship by notification if he or

Since 1992, foreigners who want to acquire Swiss citizenship no longer have to give up previous nationality (cf. Before 1992, all foreigners who wanted to become Swiss following

Fourth, following Teubner’s theory, the paper states that more democracy can be promoted in the European Union by guaranteeing the right for divergence of the different actors in

In the assessment, the Code was recognized as a “valuable instrument” in the fight against disinformation but with significant shortcomings that should be

• Che cosa succede alla tensione quando colleghi in serie più limoni. • Quali somiglianze ci sono tra il tuo generatore e la pila di