• Non ci sono risultati.

Show that forn ≥ 1, n X k=1 6n + 1 6k − 2  B6k−2= −6n + 1 6 , whereBn denotes thenth Bernoulli number

N/A
N/A
Protected

Academic year: 2021

Condividi "Show that forn ≥ 1, n X k=1 6n + 1 6k − 2  B6k−2= −6n + 1 6 , whereBn denotes thenth Bernoulli number"

Copied!
1
0
0

Testo completo

(1)

Problem 11791

(American Mathematical Monthly, Vol.121, August-September 2014) Proposed by M. ˘Stofka (Slovakia).

Show that forn ≥ 1,

n

X

k=1

6n + 1 6k − 2



B6k−2= −6n + 1 6 , whereBn denotes thenth Bernoulli number.

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

The generating function of the Bernoulli numbers is f (z) = z

ez−1 =

X

n=0

Bnzn n! . Let ω = e2πi/3, and let F (z) := f (z) + ω2f (ωz) + ωf (ω2z). Then

F (z) =

X

n=0

Bnzn

n! 1 + ωn+2+ ω2n+1 = 3

X

n=0

B3n+1z3n+1 (3n + 1)! = −3z

2 + 3

X

n=1

B6n−2z6n−2 (6n − 2)! , where in the last step we used the fact that B1= −1/2 and Bn = 0 for any odd integer n > 1.

On the other hand, letting

g(z) := ez+ eωz+ eω2z= 3

X

n=0

z3n (3n)! = 3

X

n=0

z6n (6n)! + 3

X

n=0

z6n+3 (6n + 3)!, we get

F (z) = z

 1

ez−1+ 1

eω2z−1+ 1 eωz−1



=z(3 + ez−2ez+ eωz−2eωz+ eω2z−2eω2z) ez−ez+ eωz−eωz+ eω2z−eω2z

=z(3 − 2g(z) + g(−z)) g(z) − g(−z) =

−3

X

n=1

z6n+1 (6n)! −9

X

n=0

z6n+4 (6n + 3)!

6

X

n=0

z6n+3 (6n + 3)!

.

Therefore, we obtain the following identity 6

X

n=0

z6n+3

(6n + 3)!· −3z 2 + 3

X

n=1

B6n−2z6n−2 (6n − 2)!

!

= −3

X

n=1

z6n+1 (6n)! −9

X

n=0

z6n+4 (6n + 3)!, that is

X

n=0

z6n+3 (6n + 3)!·

X

n=1

B6n−2z6n−2 (6n − 2)! = −1

6

X

n=1

(6n + 1)z6n+1 (6n + 1)! , and after extracting the coefficient of z6n+1/(6n + 1)!, we finally have

n

X

k=1

6n + 1 6k − 2



B6k−2= −6n + 1 6 .



Riferimenti