• Non ci sono risultati.

Show that ∞ X n=1 arctan(sinh n

N/A
N/A
Protected

Academic year: 2021

Condividi "Show that ∞ X n=1 arctan(sinh n"

Copied!
1
0
0

Testo completo

(1)

Problem 11956

(American Mathematical Monthly, Vol.124, January 2017) Proposed by H. Ohtsuka (Japan).

Show that

X

n=1

arctan(sinh n) · arctan sinh 1 cosh n



converges, and find the sum.

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

Solution. For non-negative real numbers a, b, we have that arctan sinh a

cosh b



= arctan ea−e−a eb+ e−b



= arctan e(b−a)−e(b+a) 1 + e2b



= arctan x − y 1 + xy



= arctan(x) − arctan(y)

= arctan(e(b−a)) − arctan(e(b+a)).

Then

arctan sinh 1 cosh n



= arctan(e−n+1) − arctan(e−n−1), and

arctan(sinh n) = arctan sinh n cosh 0



= arctan(en) − arctan(e−n) = π

2 −2 arctan(e−n) where we used the identity arctan(x) + arctan(1/x) = π/2 for x > 0. Hence

N

X

n=1

arctan(sinh n) · arctan sinh 1 cosh n



2SN −2TN. where

SN =

N

X

n=1

arctan(e−n+1) − arctan(e−n−1)

=

N −1

X

n=0

arctan(e−n) −

N+1

X

n=2

arctan(e−n)

= arctan(1) + arctan(1/e) − arctan(e−N) − arctan(e−N −1) → π

4 + arctan(1/e), and

TN =

N

X

n=1

arctan(e−n) arctan(e−n+1) − arctan(e−n−1)

=

N −1

X

n=0

arctan(e−n) arctan(e−n−1) −

N

X

n=1

arctan(e−n) arctan(e−n−1)

= arctan(1) arctan(1/e) − arctan(e−N) arctan(e−N −1) → π

4arctan(1/e).

Therefore the desired series is convergent and

X

n=1

arctan(sinh n) · arctan sinh 1 cosh n



=π 2

4 + arctan(1/e)

−2π

4 arctan(1/e)

= π2 8 .



Riferimenti

Documenti correlati

[r]

The circle with radius r A is externally tangent to the incircle and internally tangent to sides AB and AC

[r]

(American Mathematical Monthly, Vol.120, May 2013) Proposed by Proposed by Pal Peter

[r]

[r]

(American Mathematical Monthly, Vol.118, January 2011) Proposed by Cezar Lupu (Romania) and Tudorel Lupu (Romania). Let f be a twice-differentiable real-valued function with

[r]