• Non ci sono risultati.

Prove that ∞ X n=1 ln(n + 1) n2 = −ζ′(2

N/A
N/A
Protected

Academic year: 2021

Condividi "Prove that ∞ X n=1 ln(n + 1) n2 = −ζ′(2"

Copied!
1
0
0

Testo completo

(1)

Problem 11793

(American Mathematical Monthly, Vol.121, August-September 2014) Proposed by I. Mez¨o (China).

Prove that

X

n=1

ln(n + 1)

n2 = −ζ(2) +

X

n=3

(−1)n+1ζ(n) n − 2.

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

It is well known that for x ∈ (−1, 1],

Ψ(x + 1) + γ =

X

n=1

 1 n− 1

x + n



=

X

n=2

(−1)nxn−1ζ(n),

where Ψ(x) := Γ(x)/Γ(x) is the logarithmic derivative of the Gamma function.

Hence,

X

k=1

1 n2(x + n)=

X

n=1

 1 n− 1

x + n

 1 x2 −1

x

X

n=1

1 k2 =

X

n=3

(−1)nxn−3ζ(n).

By integrating over [0, 1], we get

X

n=1

ln(n + 1) n2 +

X

n=1

ln(n) n2 =

X

n=3

(−1)n ζ(n) n − 2 which is equivalent to the required identity because

ζ(x) = d dx

X

n=1

1 nx

!

= −

X

n=1

ln(n) nx and therefore

X

n=1

ln(n)

n2 = −ζ(2).



Riferimenti

Documenti correlati

[r]

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma,

[r]

The circle with radius r A is externally tangent to the incircle and internally tangent to sides AB and AC

[r]

[r]

Let ζ be the Riemann

[r]