• Non ci sono risultati.

The AMS Experiment

N/A
N/A
Protected

Academic year: 2021

Condividi "The AMS Experiment"

Copied!
87
0
0

Testo completo

(1)

The AMS Experiment

S. Ting

15 April 2015

1

(2)

1

Roberto BATTISTON, ASI, Trento Kfir BLUM, IAS, Princeton

John ELLIS, King’s College, London, CERN Jonathan FENG, UC Irvine

Masaki FUKUSHIMA, Tokyo William GERSTENMAIER, NASA Francis HALZEN, Wisconsin

Werner HOFMANN, MPI Heidelberg Gordon KANE, Michigan

Peter F. MICHELSON, Stanford Igor V. MOSKALENKO, Stanford Angela OLINTO, Chicago

Piergiorgio PICOZZA, INFN, Tor Vergata Vladimir S. PTUSKIN, IZMIRAN, Moscow Lisa RANDALL, Harvard

Michael SALAMON, DOE

Subir SARKAR, Oxford, Niels Bohr Inst.

Eun-Suk SEO, Maryland Tracy SLATYER, MIT

Edward C. STONE, Caltech Alan A. WATSON, Leeds

Yue-Liang WU, UCAS/ITP, CAS Fabio ZWIRNER, Padua, CERN

Welcome

to the AMS Days at CEN

Supported by: CERN, University of Geneva

2

(3)

A. Neutral cosmic rays (light rays and neutrinos): have been measured for many years (Hubble, COBE, EGRET, WMAP, Planck, Fermi-LAT and Super Kamiokande, IceCube, HESS, …).

Fundamental discoveries have been made.

There are two kinds of cosmic rays traveling through space

B. Charged cosmic rays: Following the pioneering experiments with balloons and satellites (ACE/CRIS, ATIC, BESS, CREAM, HEAT, PAMELA, …), using a magnetic spectrometer (AMS) on ISS is a unique way to provide precision long term (10-20 years) measurements of

primordial high energy charged cosmic rays.

AMS

Fundamental Science on the ISS

3

A+B. Physics of extreme high energy cosmic rays: Auger, TA, HESS-CTA, IceCube, JEM-EUSO

….

(4)

4

(5)

Proton and Helium spectra

H/He ratio

p

He

Pamela Results

O. Adriani et al.,

PRL 102 (2009) 051101 Nature 458 (2009) 607 PRL 105 (2010) 121101 Astropart. Phys. 34 (2010) 1

Communication from Professor Piergiorgio Picozza

5 PRL 105 (2010) 121101

Science, 332 (2011), 6025 PRL 111 (2013) 081102 Phys. Rep. (2014)

TOF(S1)

TOF(S3)

CALORIMETER

NEUTRON DETECTOR ANTICOINCIDENCE

ANTICOINCIDENCE

ANTICOINCIDENCE

S4

SPECTROMETER TOF(S2)

1. 3m

(6)

p/p

p flux [GeVm2 s sr]- 1 F(e+ )/(F(e+ )+ F(e- )) e+ flux x E3 (s-1 sr-1 m-2 GeV2 )

6

Pamela Results

(7)

6

5m x 4m x 3m 7.5 tons

300,000 electronic channels

650 processors

7

(8)

Tracker 1

2

7-8 3-4

9 5-6

TRD

Identify e

+

, e

-

Silicon Tracker Z, P

ECAL E of e

+

, e

-

RICH Z, E TOF Z, E

Particles and nuclei are defined

by their charge (Z) and energy (E ~ P)

Z and P

are measured independently by the Tracker, RICH, TOF and ECAL

AMS: A TeV precision, multipurpose spectrometer

Magnet

±Z

8

(9)

TRD

ECAL

a) Minimal material in the TRD and Tracker, so that the detector itself does not become a source of background nor of large angle scattering

b) Repetitive measurements of momentum , to ensure that particles which had large angle scattering are not confused with the signal.

c) e± detectors are separated by magnetic field, so that secondary particles from TRD do not enter into ECAL.

AMS goals: He/He = 1/10 10 , e + /p > 1/10 6 & Spectra to 1%

Magnet e + /p > 1/10 2

e + /p = 1/10 4

9

(10)

USA

MIT - CAMBRIDGE

NASA GODDARD SPACE FLIGHT CENTER NASA JOHNSON SPACE CENTER

UNIV. OF HAWAII

UNIV. OF MARYLAND - DEPT OF PHYSICS YALE UNIVERSITY - NEW HAVEN

MEXICO UNAM

FINLAND UNIV. OF TURKU

FRANCE

LUPM MONTPELLIER LAPP ANNECY LPSC GRENOBLE

GERMANY RWTH-I.

KIT - KARLSRUHE

ITALY ASI

IROE FLORENCE

INFN & UNIV. OF BOLOGNA INFN & UNIV. OF MILANO-BICOCCA INFN & UNIV. OF PERUGIA

INFN & UNIV. OF PISA INFN & UNIV. OF ROMA INFN & UNIV. OF TRENTO NETHERLANDS

ESA-ESTEC NIKHEF

RUSSIA ITEP

KURCHATOV INST.

SPAIN CIEMAT - MADRID

I.A.C. CANARIAS.

SWITZERLAND ETH-ZURICH UNIV. OF GENEVA

CHINA CALT (Beijing) IEE (Beijing) IHEP (Beijing) NLAA (Beijing) SJTU (Shanghai) SEU (Nanjing) SYSU (Guangzhou) SDU (Jinan)

KOREA EWHA KYUNGPOOK NAT.UNIV.

PORTUGAL LAB. OF INSTRUM. LISBON

ACAD. SINICA (Taipei) CSIST (Taipei) NCU (Chung Li) TAIWAN TURKEY

METU, ANKARA

10

AMS is a U.S. DOE sponsored international collaboration

CERN provided assembly, testing and the Control Center

Strong support from R. Heuer, S. Lettow, S. Bertolucci, S. Myers, A. Siemko

, …

(11)

11

DOE and NASA support

Former NASA Administrator Dan Goldin has supported AMS from the beginning.

Professors Jim Siegrist and Mike Salamon from DOE strongly support AMS.

Mr. William Gerstenmaier has visited AMS more than 10 times, at CERN, ESTEC, KSC.

AMS has received strong support from the NASA-JSC team of Trent Martin, Ken Bollweg, Tim Urban, Phil Mott, Craig Clark and many others.

11 11

(12)

12

Professors R. Battiston S.C. Lee S. Schael

(13)

5,248 straw tubes selected from 9,000, 2 m length centered to 100mm.

K. Luebelsmeyer, S. Schael

Transition Radiation Detector (TRD)

Identifies Positrons, Electrons by transition radiation and Nuclei by dE/dx

Completion of the TRD a 10 year effort

13

(14)

TRD performance on the Space Station

14

One of 20 layers

radiator

e ± p

electron proton

TRD classifier = -Log10(Pe)-2 TRD likelihood = -Log10(Pe)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

TRD estimator = -ln(P

e

/(P

e

+P

p

))

10

-1

10

-2

10

-3

10

-4

10

-5

10

-6

10

-7

Pr ob a bi li ty

Normalized probability Protons

Electrons

Measurement with 1 of the 20 TRD Layers !

Transition Radiation

ISS Data

1/N dn/2 ADC

10-2

10-3

10-4

10-5

Amplitude [ADC]

0 200 400 600 800 1000 1200 1400

(15)

Proton rejec tion at 90% e

+

ef ficiency

Rigidity (GV)

• ISS data

TRD performance on the Space Station

70%

80%

90%

ε

e

15

(16)

16

Xe storage: 49kg CO 2 Storage: 5kg

 Lifetime: 5000g / 0.44g/d = 11364d = 31y

TRD Lifetime on the ISS

(17)

Time of Flight System

Measures Velocity and Charge of particles

x103

Velocity [Rigidity>20GV]

Event s

Velocity [Rigidity>20GV]

Event s

Plane 4

3, 4 H He

Li Be B C N O F Ne

Na Mg Al Si

Cl Ar K Ca Sc Ti V

P S Cr Fe

Ni Mn

Zn

Bologna

Prof. A. Contin, G. Laurenti, F. Palmonari

17 Professors A. Zichichi and V. Bindi

Z = 2

s = 80ps Z = 6

s = 48ps

(18)

Veto System rejects random cosmic rays

Measured veto efficiency better than 0.99999

18

(19)

Inner tracker alignment stability monitored with IR Lasers.

The Outer Tracker is continuously aligned with cosmic rays in a 2 minute window

1

5 6 3 4

7 8 9 2

ECAL Laser rays

Tracker

9 planes, 200,000 channels

The coordinate resolution is 10 mm.

19

(20)

Perugia (R. Battiston, G. Ambrosi, B. Bertucci, …) and Geneva (M.Pohl, …) groups

Tracker

20

(21)

Alignment accuracy of the 9 Tracker layers over 40 months

21

(22)

22

Measurement of Nuclear Charge (Z 2 ) and its Velocity to 1/1000

Particle

AMS Ring Imaging CHerenkov (RICH)

Θ

Intensity ⇒ Z

2

V

Aerogel NaF

22

Z = 13 (Al)

P = 9.148 TeV/c Z = 20 (Ca)

P = 2.382 TeV/c

Z = 26 (Fe)

P = 0.795 TeV/c

(23)

23

10,880

photosensors

(24)

50,000 fibers, f =1mm, distributed uniformly inside 600 kg of lead which provides a precision, 3-D, 17X

0

measurement

of the directions and energies of e

±

to TeV

Calorimeter (ECAL)

Prof. F. Cervelli, M. Incagli

,

24 LAPP

(

S. Rosier, J.P. Vialle,..), IHEP (H. S. Chen, …)

(25)

Calorimeter (ECAL): Test beams at CERN

25 Boosted Decision Tree (BDT):

3D shower shape

protons

ε

e = 90% electrons

Data: 83–100 GeV

ECAL estimator

Fraction of events

Energy(GeV) E beam (GeV)

Electron/Proton Separation on ISS

Energy res oluti on (% ) DQ

68

(

o

)

(26)

Proton rejection: 1. ECAL 3-D Shower Shape of e ±

2. P from the Tracker = E from ECAL

Rigidity (GV)

26

Tracker

1

2

7-8 3-4

9 5-6

Tracker: P

ECAL: E

Data from ISS

(27)

Extensive tests and calibration at CERN

AMS 27 km

7 km

19 January 2010

θ

Φ

27

(28)

Particle Momentum (GeV/c) Positions Purpose

Protons 400 + 180 1,650

Full Tracker alignment, TOF calibration, ECAL uniformity

Electrons 100, 120, 180, 290 7 each TRD, ECAL performance study Positrons 10, 20, 60, 80, 120, 180 7 each TRD, ECAL performance study Pions 20, 60, 80, 100, 120, 180 7 each TRD performance to 1.2 TeV

AMS in SPS Test Beam, 2010

28

(29)

Academia Sinica, Acad. S.C. Lee CSIST, General Hao Jinchi

To get one board working on orbit, we needed to make ~10 boards In total: 464 boards on orbit of 70 different types.

A.Lebedev X.Cai V.Koutsenko

M.Capell A.Kounine

MIT team

29

Electronics

(30)

May 16, 2011

May 16, 2011

30

CERN Director General

visits KSC, April 4, 2011

(31)

AMS Operations

White Sands, NM TDRS Satellites

A. Lebedev M. Capell

V. Koutsenko X. Cai

24 hours x 365 days x 10-20 years

A. Rozhkov

J. Burger

ISS Astronaut with AMS Laptop

31

POCC at CERN

24/7, 365d/y

(32)

Example: ECAL Temperature changes from -10

o

C to 30

o

C over 9 months

0oC 10o 20o 30o

1.7.11 1.9.11 1.11.11 1.1.12 1.3.12

-10o 1.5.11

ECAL

Large temperature variations

Thermal Operations

AMS has no control of the Space Station orientation

32

32

SDU (Prof. Cheng Lin) has made major

contributions to the thermal operations

(33)

In 4 years on ISS,

AMS has collected >60 billion cosmic rays.

To match the statistics,

systematic errors studies have become important.

33

(34)

AMS is a very precise particle physics detector.

The data was analysed by at least two independent AMS international teams

M. Incagli

S. Schael V. Choutko A. Kounine J. Berdugo

S. Rosier-Lees B. Bertucci

S. Haino, A. Oliva P. Zuccon Z. Weng

M. Duranti M. Capell H. Gast I. Gebauer J. Casaus L. Derome

M. Pohl

34

M. Heil

(35)

IN2P3 – LYON

FZJ – Juelich

INFN MILANO BICOCCA CNAF – INFN BOLOGNA ASDC – ROME

CIEMAT – MADRID

AMS@CERN – GENEVA

NLAA – BEIJING SEU – NANJING

ACAD. SINICA – TAIPEI

AMS Data Analysis

Conducted at the Science Operations Center at CERN and in the regional centers around the world.

35

(36)

The isotropic proton flux Φ

i

for the i

th

rigidity bin (R

i

, R

i

+ΔR

i

) is

N

i

is the number of events, 300 million proton events have been selected;

A

i

is the effective acceptance;

ε

i

is the trigger efficiency;

T

i

is the collection time (which depends on the geomagnetic cutoff).

To match the statistics, extensive systematic errors study has been made .

36

To be presented by V. Choutko (MIT)

(37)

Systematic errors on the Proton Flux:

1) σ

trig.

:trigger efficiency 2) σ

acc.

:

a. the acceptance and event selection b. background contamination

c. geomagnetic cutoff 3) σ

unf.

a. unfolding

b. the rigidity resolution function

4) σ

scale.

: the absolute rigidity scale

37

(38)

300 million events

AMS proton flux

AMS-02

38

(39)

39

AMS proton flux

(40)

Solid curve fit of Eq. Φ to the data.

(Fit to data above 45 GV: χ

2

/d.f.= 25 /26) Dashed curve uses the same fit

values but with Δ set to zero.

Φ Φ Φ

40

AMS proton flux fit with two power laws:

R , R with a characteristic transition rigidity R 0

and smoothness s

(41)

41

AMS proton spectral index variation:

Model independent measurement of spectral index

Spec tr al Inde x   = d log (Φ)/ d log (R)

(42)

2011

2012

2013

2011-2013

Spectral index of the proton flux for 2011 to 2013

(43)

Measuring electrons and positrons

TRD

(transition radiation) to identify e

±

ECAL

(shower shape) to separate e

±

from protons ECAL measures E Tracker measures p

e ± : E=p proton: E<p

43

Probability

proton electron

proton electron

proton electron

TRD estimator

ISS data:83-100 GeV

E/p

Boosted Decision Tree, BDT:

ECAL BDT ISS data:83-100 GeV

ε

e=90%

Normalized entitiesFraction of events ISS data:83-100 GeV

Physics of 11 million e + , e - events

(44)

Collision of “ordinary” Cosmic Rays produce e+, p..

Collisions of Dark Matter (neutralinos, ) will produce additional e+, p, …

The Origin of Dark Matter

~ 90% of Matter in the Universe is not visible and is called Dark Matter

Donato et al., PRL 102, 071301 (2009)

Antiprotons:  +   p + … m= 1 TeV Positrons:  +   e

+

+ …

m=800 GeV

I. Cholis et al., JCAP 0912 (2009) 007 m=400 GeV

e± energy [GeV]

e + /(e + + e - )

To be presented by A.Kounine (MIT)

To identify the Dark Matter signal we need 1. Measurement of e

+

, e

and p.

2. Precise knowledge of the cosmic ray fluxes (p, He, C, …) 3. Propagation and Acceleration (Li, B/C, …)

44

(45)

45

11 million e + , e - events AMS-02

Po sit ron Frac tion

(46)

Verification of Positron Fraction with two independent samples

Positron fraction analysis with TRD Only

Good agreement between two independent samples

46

TRD

e

-

ECAL

Outside ECAL vs inside ECAL

Po sitr on fra ctio n

(47)

47

Positron Fraction from AMS

(48)

The energy beyond which it ceases to increase.

48

Energy [GeV]

11 million e + , e - events

(49)

49

200 400 600 800 1000

0 0.05 0.1 0.15

0.2

e ± energy [GeV]

Positron fracti on

Pulsars

Collision of cosmic rays

m = 700 GeV

275±32 GeV

Current status

The expected rate at which it falls

beyond the turning point.

(50)

50

e ± energy [GeV]

Positron fracti on

Pulsars

Collision of cosmic rays

m = 700 GeV

275±32 GeV

In 10 years from now

The expected rate at which it falls

beyond the turning point.

(51)

N is the number of electron or positron events A eff is the effective acceptance

ε trig is the trigger efficiency T is the exposure time

Measurement of the flux of electrons and positrons

to be presented by Professor S. Schael (RWTH-Aachen)

51

(52)

Electron flux

(before AMS)

52

(53)

Electron Flux

53

(54)

Electron Flux

54

(55)

See O. Adriani et al., PRL 111 (2013) 081102

30 25 20 15 10 5

Positron flux

(before AMS)

55

(56)

Positron Flux

56

(57)

Positron Flux

57

(58)

1. The electron flux and the positron flux are different in their magnitude and energy dependence.

2. Both spectra cannot be described by single power laws.

3. The spectral indices of electrons and positrons are different.

4. Both change their behavior at ~30GeV.

5. The rise in the positron fraction from 20 GeV is due to an excess of positrons, not the loss of electrons (the positron flux is harder).

Observations:

The Electron Flux and the Positron Flux

58

spectral index = d log (Φ)/ d log (E)

(59)

The (e + + e - ) flux before AMS

59

(60)

Combined (e + + e - ) Flux: event selection

TRD:

identifies electron

Tracker and Magnet:

ECAL: identifies electron and measures its energy

bending view

Independent of charge sign measurement  no charge confusion High selection efficiency : 70% @ TeV

Small systematics on acceptance: 2% @ TeV

To be presented by Professor Bruna Bertucci (INFN-Perugia)

60

(61)

Energy (GeV)

1 10 10 2 10 3

) -1 s r s e c ] 2 [ m 2 ( G e V F ´ 3 E

0 50 100 150 200 250 300 350

400

AMS-02

ATIC

BETS 97&98 PPB-BETS 04 Fermi-LAT HEAT H.E.S.S.

H.E.S.S. (LE)

AMS Results: (e + + e - ) flux

Energy Range: 0.5 GeV to 1 TeV

61

(62)

= d log (Φ)/ d log (E)

Spe ctral Index

62

(63)

γ=−3.170 ± 0.008 (stat + syst.) ± 0.008 (energy scale) E > 30 GeV

Φ(e + +e ) = C E

The flux is consistent with a single power law above 30 GeV.

63

(64)

64

TRD

ECAL

RICH

MAGNET AC C

Tracker

2 3-4 5-6 7-8

Antiproton event:

R = −423 GV

Antiproton/proton ratio

9

1

To be presented by

A. Kounine (MIT)

(65)

65

AMS p/p results

(66)

66

AMS p/p results

(67)

AMS p/p results and modeling

67

(68)

Collision of “ordinary” Cosmic Rays produce e+, p..

Collisions of Dark Matter (neutralinos, ) will produce additional e+, p, …

The Origin of Dark Matter

e± energy [GeV]

To identify the Dark Matter signal we need 1. Measurement of e+, e−, and p-bar.

2. Precise knowledge of the cosmic ray fluxes (p, He, C, …) 3. Propagation and Acceleration (Li, B/C, …)

AMS p/p results and modeling

11 million e+, e- events

68

(69)

c c

p, p, e - , e + , g

p, p, e - , e + , g

Annihilation

Sc at tering

Production

LHC

LUX

DARKSIDE XENON 100 CDMS II

AMS, Fermi-LAT, HESS, …

Three independent methods to search for Dark Matter

,...

,

, 

   e

p

p p

  

...

69

(70)

e

e

p, p, e - , e + , g

p, p, e - , e + , g

Annihilation

Sc at tering

Production

BNL, FNAL, LHC …CP, J, Υ, t, Z, W, h 0

SLA C part on s, electrowea k

SPEAR, DORIS, PEP, PETRA, LEP, … Ψ, τ

Physics of electrons and protons

, ,

,

,

ep p e e e

p p

e

e   

...

70

(71)

Measurement of Nuclei with AMS

AMS: Multiple Independent Measurements of the Charge (|Z|)

Carbon (Z=6)

ΔZ (cu) 0.30

0.12

0.32 0.30 0.33 0.16

0.16

Tracker

1

2

7-8 3-4

9 5-6

71

1. Tracker Plane 1

6. RICH

4. Tracker Planes 2-8

7. Tracker Plane 9 2. TRD

3. Upper TOF (1 counter)

5. Lower TOF (1 counter)

(72)

H He

Li Be B C

N O

F Ne Na

Mg

Al Si

Cl Ar K Ca Sc V Cr P S

Fe

Ni

Ti

Mn

Co

AMS Nuclei Measurement on ISS

72

To be presented by V. Choutko, L. Derome, S. Haino, M. Heil, A. Oliva

(73)

73

AMS Helium Flux

To be presented by S. Haino (Academia Sinica, Taiwan)

50 million events

(74)

74

AMS Helium Flux

(75)

75

Fit to data with Δγ=0

AMS Helium Flux

Solid curve fit of Eq. Φ to the data.

(Fit to data above 45 GV: χ

2

/d.f.= 20.5 /27) Dashed curve uses the same fit

values but with Δ set to zero.

(76)

Model Independent

Spectral Indices Comparison

76

= d log (Φ)/ d log (R)

(77)

proton/He flux ratio

77

16-04-2015 AMS days - He flux

Single power law fit (R > 25 GV)

Φ p He = C R γ

77

(78)

78 AMS

Orth et al (1978) Juliusson et al (1974)

AMS Lithium flux – current status

To be presented by L. Derome (LPSC, Grenoble)

(79)

Slope changes at about the same rigidity as for protons and helium

79

Lithium flux with two power law fit

(80)

Rigidity (GV)

10 10

2

10

3

B o ro n -t o -C a rb o n

0.03 0.04 0.05 0.06 0.1 0.2 0.3

0.4 B/C Ratio

Exposure time of 40 months 7M Carbons, 2M Borons

Kinetic Energy (GeV/n)

1 10 10 2

B o ro n -t o -C a rb o n R a ti o

0.03 0.04 0.05 0.06 0.1 0.2 0.3 0.4

Orth et al. (1972)

Dwyer & Meyer (1973-1975) Simon et al. (1974-1976) HEAO3-C2 (1980)

Webber et al. (1981) CRN-Spacelab2 (1985) Buckley et al. (1991) AMS-01 (1998)

ATIC-02 (2003) CREAM-I (2004) TRACER (2006) PAMELA (2014) AMS-02

To be presented by A. Oliva (CIEMAT)

80

(81)

Kinetic Energy (GeV/n)

1 10 10

2

10

3

B o ro n -t o -C a rb o n R a ti o

0.02 0.03 0.04 0.05 0.1 0.2 0.3 0.4

AMS-02

PAMELA (2014) TRACER (2006) CREAM-I (2004) ATIC-02 (2003) AMS-01 (1998) Buckley et al. (1991) CRN-Spacelab2 (1985) Webber et al. (1981) HEAO3-C2 (1980)

Simon et al. (1974-1976) Dwyer & Meyer (1973-1975) Orth et al. (1972)

B/C Ratio converted in Kinetic Energy

Cowsik et al. (2014)

Fit to positron fraction by secondary production model

81

(82)

In the past hundred years, measurements of charged cosmic rays by balloons and satellites have typically

contained ~30% uncertainty.

AMS is providing cosmic ray information with ~1% uncertainty.

The improvement in accuracy will provide new insights.

The Space Station has become a unique platform for precision physics research.

82

(83)

Collision of “ordinary” Cosmic Rays produce e+, p..

Collisions of Dark Matter (neutralinos, ) will produce additional e+, p, …

The Origin of Dark Matter

e± energy [GeV]

To identify the Dark Matter signal we need 1. Measurement of e+, e−, and p-bar.

2. Precise knowledge of the cosmic ray fluxes (p, He, C, …) 3. Propagation and Acceleration (Li, B/C, …)

AMS p/p results and modeling

11 million e+, e- events

83

(84)

The Electron Flux and the Positron Flux

spectral index = d log (Φ)/ d log (E)

γ=−3.170 ± 0.008 (stat + syst.) ± 0.008 (energy scale) E > 30 GeV

Φ(e

+

+e

) = C E

Energy [GeV]

84

(85)

85

AMS proton flux

AMS Helium Flux

Lithium flux

Rigidity (GV)

10 102 103

Boron-to-Carbon

0.03 0.04 0.05 0.06 0.1 0.2 0.3

0.4

B/C Ratio

Exposure time of 40 months 7M Carbons, 2M Borons

Kinetic Energy (GeV/n)

1 10 10

2

B o ro n -t o -C a rb o n R a ti o

0.03 0.04 0.05 0.06 0.1 0.2 0.3 0.4

Orth et al. (1972)

Dwyer & Meyer (1973-1975) Simon et al. (1974-1976) HEAO3-C2 (1980) Webber et al. (1981) CRN-Spacelab2 (1985) Buckley et al. (1991) AMS-01 (1998) ATIC-02 (2003) CREAM-I (2004) TRACER (2006) PAMELA (2014) AMS-02

Boron -to -Ca rbon

Rigidity [GV]

(86)

86

The latest AMS measurements of the positron fraction, the

antiproton/proton ratio, the behavior of the fluxes of

electrons, positrons, protons, helium, and other nuclei

provide precise and unexpected information. The accuracy

and characteristics of the data, simultaneously from many

different types of cosmic rays, require a comprehensive

model to ascertain if their origin is from dark matter,

astrophysical sources, acceleration mechanisms or a

combination.

(87)

AMS Days at CERN

The Future of Cosmic Ray Physics and Latest Results

CERN, Main Auditorium, April 15-17, 2015

Wednesday, 15 April 2015

Thursday, 16 April 2015

Friday, 17 April 2015

08:00 T. Slatyer, CTP, MIT

Scrutinizing Possible Dark Matter Signatures with AMS, Fermi, and Planck 08:30 J. R. Ellis, King’s College, London, CERN Super-symmetric Dark Matter

09:30 A. Oliva, CIEMAT

AMS Results on Light Nuclei - B/C 09:45 L. Derome, LPSC, Grenoble AMS Results on Light Nuclei - Li 10:00 M. Heil, MIT

AMS Results on Light Nuclei - C/He 10:15 Break

10:30 Y. L. Wu, UCAS/ITP, CAS

Implications of AMS02 Experiment 11:15 A. Olinto, Chicago

The Highest Energy Cosmic Particles 12:15 M. Fukushima, Tokyo

Recent Results on Ultra-High Energy Cosmic Rays from the Telescope Array 12:45 Lunch

13:30 E.-S. Seo, Maryland

Cosmic Ray Energetics and Mass:

From Balloons to the ISS 14:30 W. Hofmann, MPI Heidelberg Latest Results from HESS and the Progress of CTA

15:30 G. Kane, Michigan

Are there currently well-motivated and phenomenologically allowed dark matter candidates (besides axions)

16:30 Break

16:45 M. Salamon, DOE

The Cosmic Frontier at DOE 17:15 R. Battiston, ASI, Trento What next in fundamental and particle physics in space ?

17:45 S. Ting, MIT, CERN Summary

08:30 B. Bertucci, Perugia

The (e plus e+) Spectrum from AMS 09:00 V. Choutko, MIT

The Proton Spectrum from AMS 09:30 S. Haino, Academia Sinica, Taiwan The Helium Spectrum from AMS 10:00 Break

10:15 L. Randall, Harvard

Indirect Detection: Enhanced Density Models and Antideuteron Searches

11:15 S. Sarkar, Oxford, Niels Bohr Inst.

Background to Dark Matter Searches from Galactic Cosmic Rays

12:15 Lunch

14:00 P. Picozza, INFN, Rome Tor Vergata The JEM-EUSO Program

15:00 F. Halzen, Wisconsin Latest Results from Ice Cube 16:00 Break

16:15 A. Watson, Leeds

Latest Results from the Pierre Auger Observatory and Future Prospects in particle physics and high energy astrophysics with cosmic rays 17:15 P. Michelson, Stanford Latest Results from Fermi-LAT 18:15 Break

18:30 E. C. Stone, Caltech

Public Lecture: The Odyssey of Voyager 08:30 R. Heuer, CERN

Welcome

09:00 S. Ting, CERN, MIT

Introduction to the AMS Experiment 10:00 A. Kounine, MIT

Latest AMS Results: The Positron Fraction and the p-bar/p ratio

11:00 Break

11:15 S. Schael, RWTH-Aachen

The e Spectrum and e+ Spectrum from AMS 11:45 Lunch

13:00 F. Zwirner, Padova, CERN

New Physics, Dark Matter and the LHC 14:00 J. L. Feng, UC Irvine

Complementarity of Indirect Dark Matter Detection 15:00 I. V. Moskalenko, Stanford

Cosmic Rays in the Milky Way and Other Galaxies 16:00 Break

16:15 K. Blum, IAS, Princeton

It's about time: interpreting AMS antimatter data in terms of cosmic ray propagation 17:00 V. S. Ptuskin, IZMIRAN

Acceleration and Transport of Galactic Cosmic R 18:00 Break

18:15 W. Gerstenmaier, NASA

Public Lecture: Human Space Exploration

AMS

Contact: Ms. Laurence Barrin

<laurence.barrin@cern.ch>

08:30-12:00 Chairman: R Heuer

16:15 - 18:15 Chairman: H. Schopper

08:30-12:45 Chairman: F. Linde 14:00-18:15 Chairman: Y.F. Wang

08:00-10:15 Chairman: A. Yamamoto 13:30-17:45 Chairman: J. Trümper

10:30-12:45 Chairman: F. Gianotti

18:15 S. Ting

13:00 - 16:15 Chairman: F. Ferroni

18:15 R. Heuer

Riferimenti

Documenti correlati

Sappiamo che lo studio di questo oggetto ha creato tre filoni di studio nell’ambito della didattica della matematica: una corrente psicologica che assume come

1 del 2014; dalla lettura della pronuncia della Corte e dei sui obiter sembra infatti percorribile la strada di liste bloccate con candidati agevolmente conoscibili dagli

Si tratta di cogliere queste potenzialità nel rapporto fra dignità e solidarietà; in quello fra diritti fondamentali e doveri di solidarietà; in quello della sequenza non

La critica e la teoria della letteratura contemporanee a Tolstoj si erano concentrate principalmente sui contenuti della sua opera, giudicandoli o spiegandoli in

Moreover, the long PAMELA life gives the possibility to study the variation of the proton, electron and positron spectra during the last solar minimum.. The time dependence of

Per ricavare dalle funzioni di correlazione della carica topologica misurate su reticolo il loro limite continuo ci sono diversi metodi [13]: le costanti di rinormalizzazione

I nostri obiettivi sono: cogliere la posizione dell’Italia in termini di omicidi di donne, omicidi familiari e IPH(Intimate Partner Homicide) rispetto agli altri paesi; offrire una

Since the event selection did not distinguish between them and since the events are binned according to their rigidity, a given value for the isotopic composition of boron must