Documenti correlati
liste di adiacenza: una lista di tutti i nodi e, per ciascuno di essi, una lista dei nodi
Soluzione : dalle matrici di adiacenza si vede che il vertice corrispondente alla settima colonna (o riga) in G’ ha grado 4, mentre G non ha vertici di grado 4. Ciò implica che G e
Per il Teorema di Eulero esiste nel nuovo grafo un cammino ciclico Euleriano che percorre tutti gli archi (del nuovo grafo) ognuno 1 sola volta.. 4) si costruisce tale
Costruiamo un nuovo grafo ottenuto dal precedente aggiungendo un arco che colleghi i vertici v,w: otteniamo un grafo in cui esiste un cammino ciclico Euleriano, e possiamo applicare
Costruiamo un nuovo grafo ottenuto dal precedente aggiungendo un arco che colleghi i vertici v,w: otteniamo un grafo in cui esiste un cammino ciclico Euleriano, e possiamo applicare
Se tutti i vertici del grafo hanno grado pari, per il Teorema di Eulero (essendo il grafo connesso) esiste nel grafo un cammino ciclico Euleriano, che percorre tutti gli archi del
4) per il Teorema di Eulero esiste nel nuovo grafo un cammino ciclico Euleriano che percorre tutti gli archi (del nuovo grafo) ognuno 1 sola volta; si costruisce tale cammino
Verificare se in ogni componente (considerata come grafo a sé stante) esiste un cammino Euleriano (specificando, in caso di esistenza, se ciclico o non