• Non ci sono risultati.

Applied Functional Analysis and Machine Learning

N/A
N/A
Protected

Academic year: 2022

Condividi "Applied Functional Analysis and Machine Learning"

Copied!
1
0
0

Testo completo

(1)

Applied Functional Analysis and Machine Learning

Prof. Gianluigi Pillonetto

1

1Dept. of Information Engineering, University of Padova Email: [email protected]

Timetable: 28 hrs (2 two-hours lectures per week): Classes on Tuesday and Thursday, 10:30 - 12:30. First lecture on Tuesday October 13th, 2015. Sala Riunioni 318 DEI/G 3-rd oor, via Gradenigo 6).

Course requirements: The classical theory of functions of real variable: limits and continuity, differentiation and Riemann integration, infinite series and uniform convergence. The arith- metic of complex numbers and the basic properties of the complex exponential function. Some elementary set theory. A bit of linear algebra. All the necessary material can be found in W.

Rudin’s book Principles of Mathematical Analysis (3rd ed., McGraw-Hill, 1976). A summary of the relevant facts will be given in the first lecture.

Examination and grading: Homework assignments and final test.

Aim: The course is intended to give a survey of the basic aspects of functional analysis, machine learning, regularization theory and inverse problems.

Course contents:

1. Review of some notions on metric spaces and Lebesgue integration: Metric spaces. Open sets, closed sets, neighborhoods. Convergence, Cauchy sequences, completeness. Com- pletion of metric spaces. Review of the Lebesgue integration theory. Lebesgue spaces.

2. Banach and Hilbert spaces: Normed spaces and Banach spaces. Finite dimensional normed spaces and subspaces. Compactness and finite dimension. Bounded linear op- erators. Linear functionals. The finite dimensional case. Normed spaces of operators and the dual space. Weak topologies. Inner product spaces and Hilbert spaces. Orthog- onal complements and direct sums. Orthonormal sets and sequences. Representation of functionals on Hilbert spaces. Hilbert adjoint operator. Self-adjoint operators, unitary operators.

3. Compact linear operators on normed spaces and their spectrum: Spectral properties of bounded linear operators. Compact linear operators on normed spaces. Spectral properties of compact linear operators. Spectral properties of bounded self-adjoint operators, positive operators, operators defined by a kernel. Mercer Kernels and Mercer’s theorem.

4. Reproducing kernel Hilbert spaces, inverse problems and regularization theory: Repre- senter theorem. Reproducing Kernel Hilbert Spaces (RKHS): definition and basic proper- ties. Examples of RKHS. Function estimation problems in RKHS. Tikhonov regulariza- tion. Basic concepts of convex analysis. Primal and dual formulation of loss functions.

Regularization networks. Support vector regression and classification. Support vector classification.

References:

[1] W. Rudin. Real and Complex Analysis, McGraw Hill, 2006.

[2] E. Kreyszig, Introductory Functional Analysis with Applications, John Wiley and Sons, 1978.

[3] G. Wahba. Spline models for observational data. SIAM, 1990.

[4] C.E. Rasmussen and C.K.I. Williams. Gaussian Processes for Machine Learning. The MIT Press, 2006.

[5] R.T. Rockafellar. Convex analysis. Princeton University Press, 1996.

DEI-7

Riferimenti

Documenti correlati

Un sistema di Machine Learning (apprendimento automatico) durante la fase di training apprende a partire da esempi (in modo più o meno supervisionato).. Successivamente è in grado

• The network consists of an input layer of source neurons, at least one middle or hidden layer of computational neurons, and an output layer of computational neurons. • The

Gli aspetti della motivazione sono il lavoro a piccoli gruppi, la scelta del testo e del compito da svolgere, il luogo in cui avvengono gli interventi, l’utilizzo dei dizionari e

In ogni caso, per effettuare l'immatricolazione, è necessario compilare il FORIM, modulo di immatricolazione che è possibile scaricare dal Portale ALICE al

16 Giugno 1976, Norme Tecniche delle opere in cemento armato normale e precompresso e per le strutture metalliche – Gazzetta ufficiale della Repubblica Italiana n.. –

A RF model applied to triage data (vital signs, chief complaint, and active medical history) demonstrated equivalent or improved identification of clinical patient outcomes (need

The industrial internet of things Machine learning Manufacturers must learn to behave more like tech firms Nov 21st 2015 |