• Non ci sono risultati.

2 + p(1 − k) mod p2

N/A
N/A
Protected

Academic year: 2021

Condividi "2 + p(1 − k) mod p2"

Copied!
3
0
0

Testo completo

(1)

Problem 11118

(American Mathematical Monthly, Vol.111, December 2004) Proposed by V. Dimitrov (Bulgaria).

Let p be an odd prime, and let k be a positive integer. Prove that

k

X

j=0

k(p − 1) j(p − 1)



≡ 2 + p(1 − k) mod p2.

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

Let ω = e2πi/(p−1) then it is well known that

n r



p−1

:= X

j≡r mod (p−1)

n j



= 1

p− 1

p−2

X

s=0

ω−rs(1 + ωs)n.

In order to prove that

k(p − 1) 0



p−1

≡ 2 + p(1 − k) mod p2 we need the following preliminary results (the proofs are given later):

(a)k(p − 1) 0



p−1

= 2 + p(1 − k) mod p2 for 1 ≤ k ≤ p ;

(b)

p−2

X

r=0

(−1)r n

−r



p−1

=

p−2

X

r=0

(−1)rn r



p−1

= 0.

(c)p(p − 1) r



p−1

= (−1)r(p + 1) mod p2 for 1 ≤ r ≤ p − 2 ;

Finally, by (a), the proof can be completed by induction by showing that

n + p(p − 1) 0



p−1

≡n 0



p−1

mod p2.

(2)

n + p(p − 1) 0



p−1

= 1

p− 1

p−2

X

s=0

(1 + ωs)n+p(p−1)

= 1

p− 1

p−2

X

s=0

(1 + ωs)n

p(p−1)

X

t=0

p(p − 1) t

 ωst

=

p(p−1)

X

t=0

p(p − 1) t



· 1 p− 1

p−2

X

s=0

ωst(1 + ωs)n

=

p(p−1)

X

t=0

p(p − 1) t



· n

−t



p−1

=

p−2

X

r=0

p(p − 1) r



p−1

·  n

−r



p−1

≡ n 0



p−1

+ (p + 1)

p−2

X

r=0

(−1)r n

−r



p−1

mod p2 (by (a) and (c))

≡ n 0



p−1

mod p2 (by (b)).

Proof of (a). Since (p − 1)! = −1 mod p then, for any 1 ≤ j ≤ p there is an integer q such that (j(p − 1))! = (jp − j) · · · (jp − (p − 1)) · (j − 1)p · ((j − 2)p + p − 1) · · · 1 = (−1 + qp)pj−1. Hence there are integers q1, q2, q3, q such that

k(p − 1) j(p − 1)



= (−1 + q1p)pk−1

(−1 + q2p)pj−1· (−1 + q3p)pk−j−1 = (−1 + qp)p ≡ −p mod p2. Therefore

k(p − 1) 0



p−1

= 2 +

k−1

X

j=1

k(p − 1) j(p − 1)



≡ 2 +

k−1

X

j=1

(−p) ≡ 2 + p(1 − k) mod p2.

Proof of (b). Since p − 1 even then

p−2

X

r=0

(−1)rn r



p−1

=

p−2

X

r=0

(−1)r

⌊n/(p−1)⌋

X

q=0

 n

(p − 1)q + r



=

⌊n/(p−1)⌋

X

q=0 p−2

X

r=0

(−1)(p−1)q+r

 n

(p − 1)q + r



=

n

X

j=0

(−1)jn j



= 0.

Proof of (c). The case r = 0 follows from (a). Assume that 1 ≤ r ≤ p − 2. Since

p(p − 1) pr



≡p − 1 r



mod p2 and p(p − 1) j



= 0 mod p if p 6 |j then

p(p − 1) r



p−1

=

p−1

X

q=0

 p(p − 1) q(p − 1) + r



=p(p − 1) pr



+ par≡p − 1 r



+ par mod p2

where aris the following integer

ar

p−1

X

q=0,q6=r

p− 1 q(p − 1) + r

 p(p − 1) − 1 q(p − 1) + r − 1

 .

(3)

By Lucas’ Theorem

ar

r−1

X

q=0

−1 r− q

p − 2 q

 p− 1 r− 1 − q

 +

p−1

X

q=r+1

−1 r− q

p − 2 q− 1

 p− 1 p+ r − 1 − q



mod p

Since

p − 1 j



≡ (−1)j ,p − 2 j



≡ (−1)j(j + 1) ,

p−1

X

q=1

1

q ≡ 0 mod p then

ar ≡ (−1)r

r−1

X

q=0

q+ 1 r− q +

p−1

X

q=r+1

q r− q

!

≡ (−1)r

r−1

X

q=0

1 r− q+

p−1

X

q=0q6=r

q r− q

≡ (−1)r

r

X

q=1

1 q+

p−1

X

q=0q6=r

q− r r− q+ r

p−1

X

q=0q6=r

1 r− q

≡ (−1)r

r

X

q=1

1 q + 1

!

mod p

Therefore

p(p − 1) r



p−1

≡p − 1 r



+ p (−1)r

r

X

q=1

1 q+ 1

!!

mod p

mod p2.



Riferimenti