• Non ci sono risultati.

1 p p X k=1 (k2+ k) −1 p p X k=1 rp(k2+ k

N/A
N/A
Protected

Academic year: 2021

Condividi "1 p p X k=1 (k2+ k) −1 p p X k=1 rp(k2+ k"

Copied!
2
0
0

Testo completo

(1)

Problem 11728

(American Mathematical Monthly, Vol.120, October 2013) Proposed by Walter Blumberg (USA).

Letp be a prime congruent to 7 modulo 8. Prove that

p

X

k=1

 k2+ k p



= 2p2+ 3p + 7

6 .

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

Let rn(m) be the remainder of the division of m by n then, since m = n⌊m/n⌋ + rn(m), it follows that

p

X

k=1

 k2+ k p



= 1 p

p

X

k=1

(k2+ k) −1 p

p

X

k=1

rp(k2+ k) = p2+ 3p + 2

3 −1

p

p−1

X

k=1

rp(k2+ k)

Note that rp(k2+ k) = j for some j ∈ {1, . . . , p − 1} iff k2+ k = j (mod p), that is iff ∆ = 1 + 4j is a square modulo p iff

4j+1 p

= 1 where

· p

is the Legendre symbol. Therefore the number of k ∈ {1, . . . , p − 1} such that rp(k2+ k) = j is4j+1

p

+ 1

(it gives 0 or 2) and

p−1

X

k=1

rp(k2+ k) =

p−1

X

j=1

j 4j + 1 p

 + 1



=

p−1

X

j=1

j 4j + 1 p



+p2− p 2 .

Hence,

p

X

k=1

 k2+ k p



=p2+ 3p + 2

3 −1

p

p−1

X

j=1

j 4j + 1 p



−p − 1

2 =2p2+ 3p + 7

6 −1

p

p−1

X

j=0

j 4j + 1 p

 ,

so suffices to show that

S1=

p−1

X

j=0

j 4j + 1 p



= 0.

Let

A =

p−1

X

j=0

j j p



, B =

p−1

X

j=0

 j p

 ,

Ui=

p−1

X

j=0

j 2j + i p

 , Vi=

p−1

X

j=0

 2j + i p



for i = 0, 1,

Si=

p−1

X

j=0

j 4j + i p

 , Ti=

p−1

X

j=0

 4j + i p



for i = 0, 1, 2, 3.

SincePp−1 j=0

aj+b p

= 0 when p be a prime not dividing a, it follows that B = Vi= Ti= 0 because p does not divide 2 and 4. Moreover p ≡ 7 (mod 8) yields

 −1 p



= (−1)(p−1)/2= −1 and  2 p



= (−1)⌊(p+1)/4⌋= 1.

(2)

Now, U0= S0= A and

2p−1

X

r=0

r r p



=

1

X

i=0 p−1

X

j=0

(2j + i) 2j + i p



= 2U0+ 2U1+ V1= 2A + 2U1,

2p−1

X

r=0

r r p



=

1

X

i=0 p−1

X

r=0

(ip + r) ip + r p



= A + pB + A = 2A,

which imply that S2= U1= 0. Moreover

4p−1

X

r=0

r r p



=

3

X

i=0 p−1

X

j=0

(4j + i) 4j + i p



= 4S0+ 4S1+ 4S2+ 4S3+ T1+ T2+ T3= 4A + 4S1+ 4S3,

4p−1

X

r=0

r r p



=

3

X

i=0 p−1

X

r=0

(ip + r) ip + r p



= A + pB + A + 2pB + A + 3pB + A = 4A,

which imply that S1+ S3= 0. Finally

S1=

p−1

X

j=1

j 4j + 1 p



=

p−1

X

j=1

(p − j) 4(p − j) + 1 p



= −p

p−1

X

j=1

 4j − 1 p

 +

p−1

X

j=1

j 4j − 1 p



= −(p − 1)

p−2

X

j=0

 4j + 3 p

 +

p−2

X

j=0

j 4j + 3 p



= (p − 1) −1 p



− (p − 1)T3− (p − 1) −1 p



+ S3= S3

and we obtain that S1= S3= 0. 

Riferimenti