• Non ci sono risultati.

Prove |AK|2+ |BL|2+ |CM |2+ |DN |2≥ 16R4 R2+ |OP |2

N/A
N/A
Protected

Academic year: 2021

Condividi "Prove |AK|2+ |BL|2+ |CM |2+ |DN |2≥ 16R4 R2+ |OP |2"

Copied!
1
0
0

Testo completo

(1)

Problem 12056

(American Mathematical Monthly, Vol.125, August-September 2018)

Proposed by L. Giugiuc (Romania), Kadir Altintas (Turkey), and F. Stanescu (Romania).

Let ABCD be a rectangle inscribed in a circle S of radius R, and let P be a point inside S. The lines AP , BP , CP , and DP intersect S a second time at K, L, M , and N , respectively. Prove

|AK|2+ |BL|2+ |CM |2+ |DN |2≥ 16R4 R2+ |OP |2.

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

Solution. It suffices to show that

|AK|2

(2R)2 +|CM |2

(2R)2 ≥ 2R2

R2+ |OP |2 and |BL|2

(2R)2 +|DN |2

(2R)2 ≥ 2R2 R2+ |OP |2. We prove only the first inequality since the second one follows by analogous arguments.

Let Q be the orthogonal projection of P onto the diameter AC then the right triangles △AKC and

△AQP are similar and therefore

|AK|

2R =|AQ|

|AP |. In a similar way,

|CM |

2R = |CQ|

|CP |.

Moreover, by the Apollonius’s theorem applied to the triangle △AP C with respect to the median OP:

|AP |2+ |CP |2= 2(R2+ |OP |2).

Thus the desired inequality becomes

|AQ|2

|AP |2 +|CQ|2

|CP |2 ≥ (2R)2

|AP |2+ |CP |2, which holds because by Cauchy-Schwarz inequality

|AP |2+ |CP |2 · |AQ|2

|AP |2 +|CQ|2

|CP |2



≥ (|AQ| + |CQ|)2= (2R)2.



Riferimenti

Documenti correlati

As with other tendons in the body, the direction in which the Achilles tendon approaches its inser- tion site is kept relatively constant in different positions of the foot and

Si parla invece di rilassamento quando il materiale è sottoposto ad una deformazione costante e lo sforzo che si oppone a tale deformazione tende a diminuire nel tempo.. Creep

in 29] propose a logic programming language without negation as failure based on the idea of dening a priority relation on the rules of a program, whose semantics is given in terms

[r]

[r]

[r]

[r]

We compute the cartesian equation of M.. See Test 3 of the