Matematica Discreta Lezione del giorno 20 marzo 2012
Testo completo
Documenti correlati
Il primo caso (in ordine di difficoltà) era il caso n=6: si trattava (se possibile) di costruire un piano con n 2 +n+1=6 2 +6+1=43 punti, e con 43 rette (ognuna contenente
Dato un grafo qualunque (non necessariamente un grafo associato ad una mappa geografica), se V è l’insieme dei vertici del grafo e se C è un insieme astratto, una colorazione del
L’algoritmo precedente si può allora raffinare come segue: fissati i vertici x=x i , y=y j , si calcolano solo le potenze della matrice di adiacenza M con esponente 1,2,....,r-1
L’ipotesi che il grafo sia semplice implica che il contorno di una faccia ha almeno 3 archi (un contorno con 2 soli archi implica che i 2 archi uniscono la stessa coppia di
- sappiamo che k é il numero dei vertici, e la somma degli elementi numerici di ogni riga è il grado del vertice corrispondente; inoltre il numero r degli archi potrà essere
Dato un grafo non orientato, esso è detto grafo planare se esiste almeno una sua rappresentazione planare in cui gli archi si intersecano solo in punti del piano che sono vertici
Per n=1 la tesi del Teorema è vera perché (per costruzione della matrice di adiacenza) il numero degli archi (e quindi dei cammini di lunghezza 1) con estremi i vertici v,w
Definizione: Se A,B sono insiemi infiniti, diremo che A è equipotente a B (o anche che A,B hanno la stessa cardinalità) se esiste una funzione biunivoca f: A B (scriveremo