• Non ci sono risultati.

Given z T , the first row of L(z), compute the first row of L(z) 2 , L(z) 4 , L(z) 8 , . . . , L(z) 2k. Cost = one U T transform +kn a.o.+ one U transform.

N/A
N/A
Protected

Academic year: 2021

Condividi "Given z T , the first row of L(z), compute the first row of L(z) 2 , L(z) 4 , L(z) 8 , . . . , L(z) 2k. Cost = one U T transform +kn a.o.+ one U transform. "

Copied!
12
0
0

Testo completo

(1)

U n × n unitary, [U T e 1 ] i 6= 0 ∀ i,

L(z) = Ud(U T z)d(U T e 1 ) −1 U H , z ∈ C n ( e T 1 L(z) = z T ), L(x) = L(z) 2 ,

U T x = d(U T e 1 ) −1 d(U T z)U T z, x T = z T L(z) (Gianluca),

L = {L(z) : z ∈ C n } is a commutative matrix algebra, L(x)L(y) = L(L(x) T y ) = L(y)L(x) = L(L(y) T x).

Given z T , the first row of L(z), compute the first row of L(z) 2 , L(z) 4 , L(z) 8 , . . . , L(z) 2

k

. Cost = one U T transform +kn a.o.+ one U transform.

Given z, the first row of L(z), the eigenvalues λ of L(z) can be computed by performing a U T transform, and the eigenvalues of L(z) s are simply λ s .

Circulant, τ , η and µ matrix algebras are of type L.

Given A n × n and its first row, say [z 1 z 2 · · · z n −1 z n ], one can show that A ∈ L, L = τ, η, µ, iff

a i,j−1 + a i,j+1 = a i−1,j + a i+1,j , 1 ≤ i, j ≤ n, where, for s = 1, . . . , n,

a

s,0

= a

0,s

= a

s,n+1

= a

n+1,s

= 0, if L = τ,

a

s,0

= a

0,s

= a

1,n−s+1

, a

s,n+1

= a

n+1,s

= a

1,s

, if L = η, a

s,0

= a

0,s

= −a

1,n−s+1

, a

s,n+1

= a

n+1,s

= −a

1,s

, if L = µ.

Examples. Let us write the 4 × 4 τ, η, µ matrices with first row [0 1 0 1]:

0 1 0 1 1 0 2 0 0 2 0 1 1 0 1 0

 ,

0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0

 ,

0 1 0 1 1 0 3 0 0 3 0 1 1 0 1 0

 ,

Let us write the 5 × 5 τ, η, µ matrices with first row [0 1 0 0 1]:

0 1 0 0 1

1 0 1 1 0

0 1 1 1 0

0 1 1 0 1

1 0 0 1 0

 ,

0 1 0 0 1

1 0 1 0 0

0 1 0 1 0

0 0 1 0 1

1 0 0 1 0

 ,

0 1 0 0 1

1 0 1 2 0

0 1 2 1 0

0 2 1 0 1

1 0 0 1 0

 .

Stochastic by columns ∩ matrix algebras

3×3 stochastic by columns (symmetric, symmetric and persymmetric) matrices:

M=

a c e

b d f

1 − a − b 1 − c − d 1 − e − f

(M

S

=

a b 1 − a − b

b c 1 − b − c

1 − a − b 1 − b − c −1 + a + 2b + c

 , M

SP

=

a b 1 − a − b

b 1 − 2b b

1 − a − b b a

)

p M

S

(λ) = (1 − λ)[λ 2 − 2λ(a + b + c − 1) + 3ac − a − 3b 2 + 2b − c], eig = a + b + c − 1 ± √

a 2 + 4b 2 + c 2 + 2ab + 2bc − ac − a − 4b − c + 1 3 × 3 stochastic by columns circulant (symmetric) matrices:

C ∩M =

a 1 − a − b b

b a 1 − a − b

1 − a − b b a



C ∩M

S

=

a

1−a2 1−a2

1−a

2

a

1−a2

1−a

2 1−a

2

a



(2)

p C∩M (λ) = (1 − λ)[λ 2 − λ(3a − 1) + b 3 + a 3 − 3ab(1 − a − b) + (1 − a − b) 3 ]

= (1 − λ)[λ 2 − λ(3a − 1) + 3(a 2 + b 2 − a − b + ab) + 1]

b = 1−a−b ⇒ p C∩M

S

(λ) = (1−λ)[λ 2 −λ(3a−1)+( 3a − 1

2 ) 2 ] = (1−λ)(λ− 3a − 1 2 ) 2 3 × 3 stochastic by columns tau matrices:

τ ∩ M =

a 0 1 − a

0 1 0

1 − a 0 a

 , p

τ∩M

(λ) = (1 − λ)[(2a − 1 − λ)(1 − λ)]

3 × 3 stochastic by columns eta matrices:

η ∩ M =

a b 1 − a − b

b 1 − 2b b

1 − a − b b a

 = M

SP

! p

η∩M

(λ) = (1 − λ)[λ

2

. . . ]

3 × 3 stochastic by columns mu matrices:

µ ∩ M =

a 0 1 − a

0 1 0

1 − a 0 a

 , p

µ∩M

(λ) = (1 − λ)[(2a − 1 − λ)(1 − λ)]

4 × 4 stochastic by columns symmetric and persymmetric matrices:

M

SP

=

a b c 1 − a − b − c

b d 1 − b − c − d c

c 1 − b − c − d d b

1 − a − b − c c b a

4 × 4 stochastic by columns τ matrices:

M∩τ =

a b −b 1 − a

b a − b 1 − a + b −b

−b 1 − a + b a − b b

1 − a −b b a

, (M∩τ ≥ 0) =

a 0 0 1 − a

0 a 1 − a 0

0 1 − a a 0

1 − a 0 0 a

, λ = 1, 1, 2a−1, 2a−1

M∩η =

a b c 1 − a − b − c

b a 1 − b − c − a c

c 1 − b − c − a a b

1 − a − b − c c b a

, (M∩η ≥ 0) =

 λ =

M ∩ µ =

a

a−d2 d−a2

1 − a

a−d

2

d 1 − d

d−a2

d−a

2

1 − d d

a−d2

1 − a

d−a2 a−d2

a

, (M ∩ µ ≥ 0) =

 λ =

2 × 2 stochastic by columns matrices:

M =

 a b

1 − a 1 − b



, λ = 1, a − b 2 × 2 stochastic by columns circulant matrices:

C ∩ M =

 c 1 − c 1 − c c



, λ = 1, 2c − 1

(3)

Assuming a, b, c ∈ R, the Frobenius norm of A − X, A ∈ M, X varying in M ∩ C, is minimum for c = a +1−b 2 , i.e. when A and X have the eigenvalues different from 1 equal (a − b = 2c − 1).

Fixed A ∈ M, where M is the set of all non negative stochastic by columns n × n matrices, such that |λ 2 (A)| < 1, there exist X ∈ C ∩ M such that

2 (A)| ≤ |λ 2 (X)| < 1 ?

Note that the eigenvalues of X are easily computable.

6 × 6 stochastic by columns symmetric and persymmetric matrices:

M

SP

=

a b c d e 1 − a − b

−c − d − e

b f g h 1 − b − f

−g − h − e e

c g i 1 − c − g

−i − h − d h d

d h 1 − c − g

−i − h − d i g c

e 1 − b − f

−g − h − e h g f b

1 − a − b

−c − d − e e d c b a

6 × 6 stochastic by columns η matrices:

M∩η =

a b c d e 1 − a − b

−c − d − e

b a + c − e b e −2b − a

−c − e + 1 e

c b a −a − b − c

−d − e + 1 e d

d e −a − b − c

−d − e + 1 a b c

e −2b − a

−c − e + 1 e b a + c − e b

1 − a − b

−c − d − e e d c b a

• 3 × 3 singular stochastic by columns matrices:

a a a

b b b

1 − a − b 1 − a − b 1 − a − b

n

=

a a a

b b b

1 − a − b 1 − a − b 1 − a − b

a a c

b b d

1 − a − b 1 − a − b 1 − c − d

n

=?

• 3 × 3 singular stochastic by columns symmetric and persymmetric matrices:

A =

a 1 − 2a a

1 − 2a −1 + 4a 1 − 2a

a 1 − 2a a

 ∈ η ! λ = 0, 1, ∈ R

A has rank 1 iff a = 1 3 (in such case λ = 0, 1, 0). A ≥ 0 iff 1 4 ≤ a ≤ 1 2 . A is semi positive definite iff a ≥ 1 3 . A ∈ τ iff a = 1 2 (in such case λ = 1, 0, 1).

A

n

=

a

n

b

n

a

n

 ,

 a

n

b

n



=

 2a 1 − 2a

2(1 − 2a) 4a − 1

  a

n−1

b

n−1



(4)

EXAMPLE. Let A be the following n × n stochastic by columns matrix

A =

0 b

1

1 0 b

2

1 − b

1

0 1 − b

2

b

n−2

0 1

1 − b

n−2

0

, b

i

∈ [0, 1].

Note that the eigenvalues of A are real (even if A is not hermitian), and in the interval [−1, 1]. They are distinct if b i ∈ (0, 1). Obviously, 1 is eigenvalue.

Moreover, also −1 is eigenvalue (prove it!). The remaining eigenvalues are not known (for generic values of the b j ).

Let C be the space of n × n circulant matrices. Let us compute C A , the minimizer of kA − Xk F , X ∈ C, with the aim to compare its eigenvalues with those of A. Let {J 1 , J 2 , . . . , J n } be a basis of C. Then C A = P n

k=1 α k J k , where Bα = c, B rs = (J r , J s ), c r = (J r , A ), 1 ≤ r, s ≤ n. If J k = J 2 k−1 where

J 2 =

 0 1

. ..

1

1 0

then (J r , J s ) = nδ rs , (J 1 , A) = (J r , A ) = 0, r = 3, . . . , n − 1, and (J 2 , A) = 1 + P b j , (J n , A ) = n − 1 − P b j . Thus

C

A

=

p q

q p

q . . . . . . p

p q

, p = 1 + P b

j

n , q = n − 1 − P b

j

n = 1 − p.

The eigenvalues of C A can be easily computed. In fact, recalling that C

A

= F d(F C

TA

e

1

)d(F e

1

)

−1

F

H

, [F ]

ij

= 1

√ n ω

n(i−1)(j−1)

, 1 ≤ i, j ≤ n, ω

n

= e

in

,

first write the vector √

nF C A T e 1 :

√ nF

 0 p 0

· 0 q

= √ n(pF e

2

+qF e

n

) = √ n(pF +qF

H

)e

2

, F = F

H

Q, Q =

 1

1 . . . 1

 ,

and then observe that the eigenvalues of C A are its entries:

n i −1 + (1 − p)ω n i −1 = pω i n −1 + (1 − p)ω n n −i+1 , i = 1, . . . , n.

Note that 1 n ≤ p ≤ n−1 n , and that it is sufficient to study the eigenvalues of C A

for 1 2 ≤ p ≤ n −1 n .

(5)

The case p = n −1 n (b j = 1 ∀ j).

In this case the eigenvalues of A are obviously known, they are −1, 0 with algebraic multiplicity n − 2, and 1. The eigenvalues of C A are

n − 1

n ω

ni−1

+ 1

n ω

ni−1

, i = 1, . . . , n.

(draw them!). They are all inside the set {z : |z| ≤ 1}, except 1 (i = 1) and, for even n, −1 (i − 1 = n 2 ).

The case p = 1 2 (P b j + 1 = n 2 ).

In this case the eigenvalues of A are not known (?, perhaps are known if b j =

1

2 ∀ j, and in other particular cases). The eigenvalues of C A are <(ω n i −1 ) = cos 2π(i−1) n , i = 1, . . . , n. They are all inside the set [−1, 1], except 1 (i = 1) and, for even n, −1 (i − 1 = n 2 ). . . .

RESULT. Let A ∈ C n×n be a stochastic by columns (or by rows) n × n matrix.

So, 1 is eigenvalue of A. Let U be a unitary matrix such that U e i = √ 1 n ee i θ , for some i and θ (i = 1, θ = 0 if U = F ), and set L = {Ud(z)U H : z ∈ C n }.

Note that L is a n-dimensional subspace of C n×n , i.e. there exist J k ∈ L, k = 1, . . . , n, linearly independent such that L = Span {J k }. Let L A be the minimizer of kA − Xk F in L,

L A = U diag ((U H AU ) jj )U H = U d(U T z r A )d(U T v) −1 U H , L A = P n

k=1 α k J k , α = B −1 c, B rs = (J r , J s ), c r = (J r , A) where v is chosen such that (U T v) j 6= 0 ∀ j (v = e 1 if U = F ).

Then L A is stochastic by columns and by rows (SEE the second Theorem in the next pages). In particular, 1 is eigenvalues of L A . All eigenvalues of L A are particular points of the convex set { z z

HH

Az z : z ∈ C n }. So, when A is normal (hermitian) they are in the minimum polygon (real interval) containing the eigenvalues of A. When alternatively A ≥ 0 (?A k ≥ 0 for some k?) they are in the set {z : |z| ≤ 1} whenever L A ≥ 0, but even in the latter case they can be either inside or outside the minimum polygon containing the eigenvalues of A, SEE the above example (however, if A is also normal, they are inside).

[Question: there are matrices A simultaneously normal, non negative and stochas- tic by columns (or by rows) which are not real symmetric and not in C ? ] Proposition.

If A is a non negative n × n matrix, then its best approximation in C is also non negative. (Proof: We know that C A = P

k α k J k with J k = J 2 k−1 ≥ 0 and α k = n 1 (J k , A). If A is non negative then also α k ≥ 0, so C A ≥ 0).

Question: Given A non negative, is L A non negative for other spaces L ? Is τ A

non negative ? Recall that

τ = {Ud(z)U

H

: z ∈ C

n

}, U =

r 2

n + 1 sin ijπ

n + 1 , 1 ≤ i, j ≤ n.

Elements of a basis of τ are obtained by choosing J k ∈ τ such that e T 1 J k = e T k , k = 1, . . . , n. They are matrices made up of zeros and ones only. Moreover, for such J k , we have

τ

A

= X

k

α

k

J

k

, α = B

−1

c , B

−1

= 1

2n + 2 (3J

1

− J

3

), c

r

= (J

r

, A).

[·]. If A is non negative, then c ≥ 0, but B −1 c may have negative entries, but

perhaps τ A is yet non negative (investigate!).

(6)

THREE THEOREMS on s-stochastic matrix algebras L and on the best ap- proximation in L of A (each more general than the previous one):

First theorem

Set L = {Ud(x)U H : x ∈ C n } where U is a unitary matrix. Choose v such that [U T v] j 6= 0 ∀ j. Note that the choice v = e 1 works for L = C, τ, η, µ, . . . but not for all low complexity matrix spaces L [. . .].

Then L = {L(z) : z ∈ C n } where we have set L(z) = Ud(U T z)d(U T v) −1 U H . Note that v T L(z) = z T , and that x T L(z) = z T L(x), ∀ x, z ∈ C n . Moreover, L(v) = I.

Observe that if L(e) = we T for some w ∈ C n , then L(z) is z T w-stochastic by columns, i.e.

e T L(z) = z T L(e) = (z T w)e T

[we have observed this first for L = η where w = e, v = e 1 (see previous pages)].

When, in general, L(e) = we T ? Iff v T w = 1 and we T ∈ L. Assume w such that v T w = 1, so w is in particular non null. Then we T ∈ L iff

we T = U

 e T w

 U H = (e T w)(U e i )(U e i ) H , e T w 6= 0. (∗)

Since U e i 6= 0, the equation (*) times e j , with e j | (Ue i ) H e j 6= 0, implies w = αU e i α 6= 0, and, since (U T v) i 6= 0, v T times the equation (*) implies U e i = βe β 6= 0. Thus w = γe γ 6= 0, and, since v T w = 1, we have γ = v

T

1 e . So, if L(e) = we T , then v T e must be non zero and w must be equal to v

T

e e . Now, provided that v T e 6= 0, the matrix v ee

TT

e is in L iff

ee T v T e = U

e

T

e v

T

e

 U H = n

v T e (U e i )(U e i ) H . (∗∗) If U e i = 1 n ee i θ , then v T e 6= 0 and (**) holds. So, we have proved the following theorem:

Theorem.

If U e i = 1 n ee i θ , then L(e) = ee v

TT

e . It follows that, for any z ∈ C n , the matrix L(z) is z v

TT

e e -stochastic by columns, in particular the best approximation of A in L, L A = L(z A ) = U diag ((U H AU ) jj )U H , is z v

TAT

e e -stochastic by columns, i.e.

e T L A = z v

TAT

e e e T . Finally note that one of the eigenvalues of L A , (U H AU ) ii , is equal to 1 n e T Ae, and that z v

TAT

e e = n 1 e T Ae.

[For example, if L = C, η, . . . (where v can be chosen equal to e 1 ), then e T L(z) = z T L(e) = (z T e)e T = (P z i )e T , and e T L A = ( n 1 e T Ae)e T ].

In particular, if A is stochastic by columns (e T A = e T ) or by rows (Ae = e),

then L A is stochastic by columns.

(7)

Second theorem

Let U be a n × n unitary matrix, and set L = {Ud(z)U H : z ∈ C n }. Choose v ∈ C n such that (U T v) j 6= 0 ∀ j (v = e 1 if L = C, τ, η, µ, . . .; v ∈ R n whenever possible, f.i. if U ∈ R n ×n ). Then, if we set

L r (z) = U d(U T z)d(U T v) −1 U H (v T L r (z) = z T ), L c (z) = U d(U H v) −1 d(U H z)U H (L c (z)v = z),

L can be also represented as L = {L r (z) : z ∈ C n } = {L c (z) : z ∈ C n }. Note that x T L r (y) = y T L r (x), L c (y)x = L c (x)y, L r (v) = I, L c (v) = I.

Theorem.

If one of the columns of U has all entries equal each other, i.e. ∃ i and θ such that U e i = 1 n ee i θ , then

(1) L r (e) = ee e

TT

v , L c (e) = e ee

TT

v (⇒ ee T ∈ L) and therefore L r (z) is e z

TT

e v - stochastic by columns, and L c (z) is e z

TT

e v -stochastic by rows; in other words, X ∈ L ⇒ X is s X -stochastic by rows and by columns for some s X . [Note that v T e 6= 0 because (v T U ) i 6= 0 ((v T U ) j 6= 0 ∀ j)].

(2) Given A ∈ C n×n , the matrix L A = L r (z r A ) = L c (z c A ) = U diag ((U H AU ) jj )U H , defined as the minimizer on L of kA − Xk F , has (U H AU ) ii = n 1 e T Ae as eigenvalue, and is n 1 e T Ae -stochastic by rows and by columns, i.e. L A e =

1

n (e T Ae)e, e T L A = n 1 (e T Ae)e T .

(3) If A is stochastic by columns or by rows, then L A is stochastic by rows and by columns.

proof. (1): Note that M

j

:= U

 e

T

e

 U

H

∈ L, ∀ j, M

j

= (e

T

e )(U e

j

)(U e

j

)

T

. Moreover, by the assumption U e i = √ 1

n ee i θ , we have M i = ee T . So, ee T ∈ L and, obviously, L r (e) = ee v

TT

e (v T L r (e) = e T !), L c (e) = v ee

TT

e (L c (e)v = e!).

Thus, ∀ z ∈ C n we have e T L r (z) = z T L r (e) = z v

TT

e e e T , L c (z)e = L c (e)z = e e

TT

z v e.

(2): It is enough to observe that (U H AU ) ii = n 1 e T Ae and use the formula L A = U diag ((U H AU ) jj )U H . However, let us obtain the thesis from (1). As a consequence of (1), the matrix

L

A

= U d(U

T

z

rA

)d(U

T

v )

−1

U

H

= U d(U

H

v )

−1

d(U

H

z

cA

)U

H

is both e v

TT

z e

rA

-stochastic by columns and e v

TT

z e

cA

-stochastic by rows. Let us prove that e v

TT

z e

rA

= e v

TT

z e

cA

= n 1 e T Ae. Since U H e = √

ne −iθ e i , we have (z r A ) T e = v T U diag ((U H AU ) jj )U H e = √

ne −iθ v T U e i (U H AU ) ii

= v T e(U H AU ) ii = v T e(U e i ) H A(U e i ) = v T e 1 n e T Ae and, since e T U = √

ne i θ e T i , we have

e T z c A = e T U diag ((U H AU ) jj )U H v = √

ne i θ (U H AU ) ii e T i U H v

= e T v(U H AU ) ii = e T v 1 n e T Ae. 

Question: when L c (z) = L r (x) ? Iff U T x = d(u)U H z, u = d(U H v) −1 U T v

[u = e if U ∈ R n ×n (v ∈ R n ) or U = F (v = e 1 ); |u i | = 1 ∀ i].

(8)

Third Theorem

Let U, V be two n×n unitary matrices. Choose v, u ∈ C n such that (U T v) i 6= 0, (V T u) i 6= 0, ∀ i. Given z ∈ C n , set

L r (z) = U d(V T z)d(U T v) −1 V H , L c (z) = U d(V H u) −1 d(U H z)V H . Note that v T L r (z) = z T , L c (z)u = z.

Theorem.

If there exists i such that V e i = √ 1 n ee i θ , U e i = √ 1 n ee i ϕ , then V d(U T e)d(U T v) −1 V H =

ee

T

e

T

v , U d(V H u) −1 d(V H e)U H = e ee

TT

u , and therefore

e T L r (z) = z T V d(U T e)d(U T v) −1 V H = ( z e

TT

e v )e T , L c (z)e = U d(V H u) −1 d(V H e)U H z = e( e e

TT

z u ).

In other words, X ∈ L ⇒ X is s X -stochastic by rows and by columns for some

s X ∈ C. Since, moreover, (U H AV ) ii = n 1 e i (θ−ϕ) e T Ae , if L A = U d(V T z r A )d(U T v) −1 V H = U d(V H u) −1 d(U H z c A )V H = U diag ((U H AV ) jj )V H is the best approximation of

A in L = {Ud(z)V H : z ∈ C n }, then we have that

(z r A ) T e = v T U diag ((U H AV ) jj )V H e = 1 n (e T Ae)v T e, e T (z c A ) = e T U diag ((U H AV ) jj )V H u = n 1 (e T Ae)e T u, and therefore

e T L A = 1

n (e T Ae)e T , L A e = 1

n (e T Ae)e.

It follows that whenever A ∈ C n ×n is stochastic by rows (Ae = e) or stochas- tic by columns (e T A = e T ), its better approximation L A in L is stochastic simultaneously by rows and by columns.

proof. V e i = √ 1

n e i θ e  U e i = √ 1

n e i ϕ e  ⇒

V

eTe eTv

 V

H

= e

T

e e

T

v

V e

i

(V e

i

)

H

= ee

T

e

T

v

h U

eTe eTu

 U

H

= e

T

e e

T

u

U e

i

(U e

i

)

H

= ee

T

e

T

u

i .

U e i = 1 n e i ϕ e  V e i = 1 n e i θ e  ⇒ e T i U H = √ 1

n e −iϕ e T e T i V H = √ 1

n e −iθ e T  ⇒

e

T

i

(U

H

e ) =

1

n

e

−iϕ

e

T

e =

(UeHTvv)i

e

T

e , e

T

j

(U

H

e ) = e

Tj

U

H

e

−iϕ

√ nU e

i

= 0, j 6= i h e

T

i

(V

H

e ) =

1

n

e

−iθ

e

T

e =

(VeHTuu)i

e

T

e , e

T

j

(V

H

e ) = e

Tj

V

H

e

−iθ

√ nV e

i

= 0, j 6= i i

.

Thus we have

d(U H e)d(U H v) −1 =

e

T

e e

T

v

 d(V H e)d(V H u) −1 =

e

T

e e

T

u

 ,

and therefore V d(U T e)d(U T v) −1 V H = ee e

TT

v U d(V H u) −1 d(V H e)U H = e ee

TT

u .

The equalities V H e = e −iθ

ne i , e T U = e i ϕ

ne T i , let us easily obtain the

assertions on L A .

(9)

REMARK. L = {Ud(z)V H : z ∈ C n }, U, V unitary, L A = U diag ((U H AV ) jj )V H :

V e i = √ 1

n e i θ e ⇒ L A e = ((U e i ) H Ae)U e i , (U e i ) H L A = (U e

i

n )

H

Ae e T ; V e i = √ 1

n e i θ e, U e i = ke e

k e , Ae = e ⇒ L A e = e , e H L A = ke

n k

2

e T ;

U e i = √ 1

n e i ϕ e ⇒ e T L A = (e T AV e i )(V e i ) H , L A (V e i ) = e

T

AV e n

i

e;

U e i = 1 n e i ϕ e, V e i = ke e

k e , e T A = e H ⇒ e T L A = e H , L A e = ke

n k

2

e.

Exercise.

Given w ∈ C n , w 6= 0, set M = {X ∈ C n ×n : Xwe T = we T X }. Prove that (i) M is a matrix algebra ;

(ii) M = {X ∈ C n ×n : Xw = cw & e T X = ce T for some c ∈ C}, i.e. X ∈ M implies X is s X -stochastic by columns ;

(iii) if w = e, then M = {X ∈ C n ×n : Xe = ce & e T X = ce T for some c ∈ C}, i.e. X ∈ M implies X is s X -stochastic by rows and by columns.

→ Investigate low complexity spaces L of matrices commuting with we T , in

particular commutative spaces L including we T . We have seen examples in the

case w = e.

(10)

Let U be a n × n unitary matrix. Set L = {U(µ ◦ Z)U H : Z ∈ C n×n } where µ is a fixed matrix whose entries are 0 or 1 and ◦ is the entry by entry product.

For example

µ =

1 1 1 1 1

 , Z =

z 11 z 12 z 13

z 21 z 22 z 23

z 31 z 32 z 33

 , µ ◦ Z =

z 13

z 21 z 22 z 23

z 33

 .

Note that if µ = I, then L = {Ud(z)U H : z ∈ C n }.

The space of matrices L is a vector subspace of C n ×n , and is a matrix algebra (i.e. product of matrices from L are in L) if the matrix µ satisfies the condition

[µ] ij = 0 ⇒ [µ 2 ] ij = 0

[or [µ 2 ] ij 6= 0 ⇒ [µ] ij 6= 0; or µ 2 ≤ αµ for some α > 0 (the pattern of µ 2 is enclosed in the pattern of µ)]. Examples of µ satisfying µ 2 ≤ αµ:

µ = I, ee

T

,

 1 1

 ,

 1 1

 ,

 1 1 1 1

1

 ,

 1 1 1

 ,

1 1 1 1 1

 ,

 1 1 1 1 1 1

 ,

 1 1 1

1

 ,

 1

1

1 1

 ,

 1

1 1

 ,

 1 1 1

1 1

 ,

 1 1 1 1

 ,

1 1 1 1 1

 .

Given A ∈ C n ×n , and defined L A as the minimizer of kA − U(µ ◦ Z)U H k F , Z ∈ C n×n , we have

L A = U (µ ◦ (U H AU ))U H .

Observe that if µ has a triangular structure, then the eigenvalues of L A are µ jj (U H AU ) jj , j = 1, . . . , n, i.e. null or the same of U diag ((U H AU ) jj )U H .

In the particular case where U e 1 = 1 n e i θ e and µ 11 = 1, the matrix µ ◦ (U H AU ) can be written as follows

µ ◦ (U

H

AU) =

[

n1

e

T

Ae] · µ

1j

[

1

n

e

−iθ

e

T

A(U e

j

)] ·

· ·

µ

i1

[

1

n

e

iθ

(U e

i

)

H

Ae] · µ

ij

[(U e

i

)

H

A(U e

j

)] ·

· ·

 .

Theorem (stoch by rows).

Assume U e 1 = 1 n e i θ e and µ 11 = 1. If Ae = e, then L A e = e and

µ ◦ (U

H

AU ) =

1 · µ

1j

[

1n

e

−iθ

e

T

A(U e

j

)] ·

0 ·

· · µ

ij

[(U e

i

)

H

A(U e

j

)] ·

0 ·

 .

If moreover µ 1j = 0, j = 2, . . . , n, then

µ ◦ (U

H

AU) =

1 0 · 0

0 ·

· · µ

ij

[(U e

i

)

H

A(U e

j

)] ·

0 ·

, e

T

L

A

= e

T

.

(11)

(thus choose µ ≥ e 1 e T 1 + e 1 e T j for some j in order to have e T L A 6= e T ).

If alternatively A is quasi-stochastic by rows, Ae = e , with 0 ≤ e ≤ ≤ e, then L A e = e

T

n e

e whenever µ i1 = 0 ∀ i ≥ 2.

proof: investigate the first column in the equality L A U = U (µ ◦ (U H AU )):

L A e = 1

n (e T Ae)e +

n

X

i=1, i6=1

µ i1 ((U e i ) H Ae)U e i . 

Theorem (stoch by columns).

Assume U e 1 = √ 1

n e i θ e and µ 11 = 1. If e T A = e T , then e T L A = e T and

µ ◦ (U

H

AU) =

1 0 · 0

· ·

µ

i1

[

1

n

e

(U e

i

)

H

Ae] · µ

ij

[(U e

i

)

H

A(U e

j

)] ·

· ·

 .

If moreover µ i1 = 0, i = 2, . . . , n, then

µ ◦ (U

H

AU) =

1 0 · 0

0 ·

· · µ

ij

[(U e

i

)

H

A(U e

j

)] ·

0 ·

 , L

A

e = e.

(thus choose µ ≥ e 1 e T 1 + e i e T 1 for some i in order to have L A e 6= e).

If alternatively A is quasi-stochastic by columns, e T A = e T , with 0 ≤ e ≤ ≤ e, then e T L A = e

T

n e

e T whenever µ 1j = 0 ∀ j ≥ 2.

proof: investigate the first row in the equality U H L A = (µ ◦ (U H AU ))U H :

e T L A = 1

n (e T Ae)e T +

n

X

j =1, j6=1

µ 1j (e T A(U e j ))(U e j ) H . 

Note. If L A and its eigenvalues do not fit our requirements, then we could introduce a perturbation of L A , yet in L, in place of it, for example the matrix

M = L A + U (µ ◦ ( (U H AU ) ◦ ε ))U H , ε ∈ R n×n , |ε ij | small.

Note that

kA − Mk F ≤ kA − L A k F +

s X

i,j, µ

ij

=1

|ε ij | 2 |(U H AU ) ij | 2 .

But the Frobenius norm is the right norm?

(12)

Results on L A more general than the ones in REMARK, where L = {Ud(z)V H : z ∈ C n }, and the ones in Theorem stoch by columns, and Theorem stoch by rows, where L = {U(µ ◦ Z)U H : Z ∈ C n×n }:

Let U, V be n × n unitary matrices. Set L = {U(µ ◦ Z)V H : Z ∈ C n ×n } where µ is a fixed matrix whose entries are 0 or 1 and ◦ is the entry by entry product.

Note that if µ = I, then L = {Ud(z)V H : z ∈ C n }.

The space of matrices L is a vector subspace of C n×n . In general it is not a matrix algebra.

Given A ∈ C n ×n , and defined L A as the minimizer of kA − U(µ ◦ Z)V H k F , Z ∈ C n ×n , we have

L A = U (µ ◦ (U H AV ))V H .

Observe that if µ has a diagonal structure, then the eigenvalues of L A L H A are µ jj |(U H AV ) jj | 2 , j = 1, . . . , n.

Note that the equalities L A V = U (µ◦(U H AV )) and U H L A = (µ◦(U H AV ))V H imply, respectively,

L A (V e 1 ) = µ 11 (U H AV ) 11 U e 1 + P n

i =1, i6=1 µ i1 (U H AV ) i1 U e i , (U e 1 ) H L A = µ 11 (U H AV ) 11 (V e 1 ) H + P n

j=1, j6=1 µ 1j (U H AV ) 1j (V e j ) H . In the following two theorems e can be an arbitrary vector with complex entries. However, we think to use the stated results for e = e (stochastic case) or for e , 0 ≤ [e ≤ ] j ≤ 1 (quasi-stochastic case).

Theorem (stochastic by rows) V e 1 = √ 1

n e i θ e & µ 11 = 1 ⇒

L

A

e = ((U e

1

)

H

Ae)U e

1

+

n

X

i=1, i6=1

µ

i1

((U e

i

)

H

Ae)U e

i

.

Thus

(i) if Ae = e & U e 1 = ke e

k e , then L A e = e . If, moreover, µ 1j = 0

∀ j 6= 1, then e H L A = ke

n k

2

e T .

(ii) if Ae = e & U e 1 = e

n e , then L A e = e

T

n e

e whenever µ i1 = 0 ∀ i 6= 1.

Theorem (stochastic by columns) U e 1 = √ 1 n e i ϕ e & µ 11 = 1 ⇒

e

T

L

A

= (e

T

A(V e

1

))(V e

1

)

H

+

n

X

j=1, j6=1

µ

1j

(e

T

AV e

j

)(V e

j

)

H

.

Thus

(i) if e T A = e H & V e 1 = ke e

k e , then e T L A = e H . If, moreover, µ i1 = 0

∀ i 6= 1, then L A e = ke

n k

2

e.

(ii) if e T A = e H & V e 1 = √ e

n e, then e T L A = e

H

e

n e T whenever µ 1j = 0

∀ j 6= 1.

Riferimenti

Documenti correlati

For all the sheet, let Λ be a complex lattice, ζ Λ be the Riemann zeta function and σ Λ be the Riemann sigma

Il testo del compito deve essere consegnato insieme alla bella, mentre i fogli di brutta non devono essere consegnati.. Durante la prova non ` e consentito l’uso di libri,

Determinare le coordinate del baricentro dei seguenti corpi filiformi disposti lungo il sostegno delle curve indicate5. Risolvere gli esercizi 13-18 del capitolo 5 del libro

[r]

Se il candidato vuole condividere con la commissione un file in relazione alle proprie esperienze di PCTO, il file in questione deve essere inviato 2 giorni prima del

POZZO Castel Cerreto Trento Terni Acquedotto Calvenzano Bellini 2. Acqua naturale Acqua naturale Acqua naturale Acqua naturale Acqua naturale

b) con la sottoscrizione della presente determinazione il Responsabile del servizio ha esercitato il controllo di regolarità amministrativa verificando personalmente il

[r]