• Non ci sono risultati.

Therefore 1 − k αnk+ αk = αnk+1+ α2k− kαk αnk+1+ α2k = αnk+1+ 1 αnk+1+ α2k =1 + α−k(n+1) 1 + α−(n−1)k

N/A
N/A
Protected

Academic year: 2021

Condividi "Therefore 1 − k αnk+ αk = αnk+1+ α2k− kαk αnk+1+ α2k = αnk+1+ 1 αnk+1+ α2k =1 + α−k(n+1) 1 + α−(n−1)k "

Copied!
1
0
0

Testo completo

(1)

Problem 12110

(American Mathematical Monthly, Vol.126, April 2019) Proposed by P. J. Rodriguez de Rivera and A. Plaza (Spain).

Letαk = (k +√

k2+ 4)/2. Evaluate

k→∞lim

Y

n=1



1 − k

αnk + αk

 .

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

Solution. We have that

α2k =k2+ k2+ 4 + 2k√ k2+ 4

4 = kαk+ 1.

Therefore

1 − k

αnk+ αk = αnk+1+ α2k− kαk αnk+1+ α2k

= αnk+1+ 1 αnk+1+ α2k

=1 + αk(n+1)

1 + α−(n−1)k

.

Finally, since αk> 1 for k > 0, and limk→∞αk1= 0, we may conclude that

k→∞lim

Y

n=1



1 − k

αnk + αk



= lim

k→∞ lim

N →∞

N

Y

n=1

1 + α−(n+1)k

1 + αk(n−1)

= lim

k→∞ lim

N →∞

(1 + α−Nk )(1 + α−(N +1)k ) (1 + α0k)(1 + α−1k )

= lim

k→∞

1

2(1 + α−1k )= 1 2.



Riferimenti