Problem 12110
(American Mathematical Monthly, Vol.126, April 2019) Proposed by P. J. Rodriguez de Rivera and A. Plaza (Spain).
Letαk = (k +√
k2+ 4)/2. Evaluate
k→∞lim
∞
Y
n=1
1 − k
αnk + αk
.
Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.
Solution. We have that
α2k =k2+ k2+ 4 + 2k√ k2+ 4
4 = kαk+ 1.
Therefore
1 − k
αnk+ αk = αnk+1+ α2k− kαk αnk+1+ α2k
= αnk+1+ 1 αnk+1+ α2k
=1 + α−k(n+1)
1 + α−(n−1)k
.
Finally, since αk> 1 for k > 0, and limk→∞α−k1= 0, we may conclude that
k→∞lim
∞
Y
n=1
1 − k
αnk + αk
= lim
k→∞ lim
N →∞
N
Y
n=1
1 + α−(n+1)k
1 + α−k(n−1)
= lim
k→∞ lim
N →∞
(1 + α−Nk )(1 + α−(N +1)k ) (1 + α0k)(1 + α−1k )
= lim
k→∞
1
2(1 + α−1k )= 1 2.