• Non ci sono risultati.

Kim, “Microma- chined piezoelectric membrane acoustic device,” Sensors and Actuators A: Physical, vol

N/A
N/A
Protected

Academic year: 2021

Condividi "Kim, “Microma- chined piezoelectric membrane acoustic device,” Sensors and Actuators A: Physical, vol"

Copied!
9
0
0

Testo completo

(1)

Bibliography

[1] S. C. Ko, Y. C. Kim, S. S. Lee, S. H. Choi, and S. R. Kim, “Microma- chined piezoelectric membrane acoustic device,” Sensors and Actuators A:

Physical, vol. 103, no. 1–2, pp. 130–134, 1 2003.

[2] Y. C. Chen and Y. T. Cheng, “A low-power milliwatt electromagnetic microspeaker using a PDMS membrane for hearing aids application,” Mi- cro Electro Mechanical Systems (MEMS), 2011 IEEE 24th International Conference on, pp. 1213–1216, 23-27 Jan. 2011.

[3] J. J. Neumann Jr. and K. J. Gabriel, “CMOS-MEMS membrane for audio- frequency acoustic actuation,” Sensors and Actuators A: Physical, vol. 95, no. 2–3, pp. 175–182, 1 2002.

[4] E.-H. Yang and D. V. Wiberg, “A wafer-scale membrane transfer process for the fabrication of optical quality, large continuous membranes,” Micro- electromechanical Systems, Journal of, vol. 12, no. 6, pp. 804–815, Dec.

2003.

[5] P.-Y. Lin, H.-T. Hsieh, and G.-D. J. Su, “Design and fabrication of a large- stroke MEMS deformable mirror for wavefront control,” Journal of Optics, vol. 13, no. 5, 2011.

[6] X. Yang, C. Grosjean, and Y.-C. Tai, “A Low Power MEMS Sili- cone/Parylene Valve,” in Solid-State Sensor and Actuator Workshop, June 1998.

(2)

[7] O. Tabata, R. Asahi, H. Funabashi, K. Shimaoka, and S. Sugiyama,

“Anisotropic etching of silicon in TMAH solutions,” Sensors and Actu- ators A: Physical, vol. 34, no. 1, pp. 51–57, 7 1992.

[8] A. Merlos, M. Acero, M. Bao, J. Bausells, and J. Estevea, “A study of the undercutting characteristics in the TMAH-IPA system,” Journal of Micromechanics and Microengineering, vol. 2, no. 3, 1992.

[9] H. K. Trieu and W. Mokwa, “A generalized model describing corner un- dercutting by the experimental analysis of TMAH/IPA,” Journal of Mi- cromechanics and Microengineering, vol. 8, no. 2, 1998.

[10] K. Biswas, S. Das, D. K. Maurya, S. Kal, and S. K. Lahiri, “Bulk microma- chining of silicon in TMAH-based etchants for aluminum passivation and smooth surface,” Microelectronics Journal, vol. 37, no. 4, pp. 321–327, 4 2006.

[11] K. Biswas and S. Kal, “Etch characteristics of KOH, TMAH and dual doped TMAH for bulk micromachining of silicon,” Microelectronics Jour- nal, vol. 37, no. 6, pp. 519–525, 6 2006.

[12] G. Yan, P. C. H. Chan, I.-M. Hsing, R. K. Sharma, J. K. O. Sin, and Y. Wang, “An improved TMAH Si-etching solution without attacking ex- posed aluminum,” Sensors and Actuators A: Physical, vol. 89, no. 1–2, pp.

135–141, 3 2001.

[13] S. Brida, A. Faes, V. Guarnieri, F. Giacomozzi, B. Margesin, M. Paran- jape, G. U. Pignatel, and M. Zen, “Microstructures etched in doped TMAH solutions,” Microelectronic Engineering, vol. 53, no. 1–4, pp. 547–551, 6 2000.

[14] D. Resnik, D. Vrtacnik, U. Aljancic, and S. Amon, “Effective roughness reduction of {100} and {311} planes in anisotropic etching of {100} silicon in 5% TMAH,” Journal of Micromechanics and Microengineering, vol. 13, no. 1, 2003.

[15] C. R. Tellier and A. R. Charbonnieras, “Characterization of the anisotropic chemical attack of (hhl) silicon plates in a TMAH 25 wt.% solution: mi-

(3)

cromachining and adequacy of the dissolution slowness surface,” Sensors and Actuators A: Physical, vol. 105, no. 1, pp. 62–75, 6 2003.

[16] D. Resnik, D. Vrtacnik, U. Aljancic, and S. Amon, “Wet etching of silicon structures bounded by (311) sidewalls,” Microelectronic Engineering, vol.

51–52, no. 0, pp. 555–566, 5 2000.

[17] K. Sato, M. Shikida, T. Yamashiro, K. Asaumi, Y. Iriye, and M. Ya- mamoto, “Anisotropic etching rates of single-crystal silicon for TMAH water solution as a function of crystallographic orientation,” Sensors and Actuators A: Physical, vol. 73, no. 1–2, pp. 131–137, 3 1999.

[18] D. Paci, F. Pieri, P. Toscano, and A. Nannini, “A CMOS-compatible, magnetically actuated resonator for mass sensing applications.” Sensors and Actuators B, vol. 129, pp. 10–17, 2008.

[19] E. Steinsland, T. Finstad, and A. Hanneborg, “Etch rates of (100), (111) and (110) single-crystal silicon in TMAH measured in situ by laser re- flectance interferometry,” Sensors and Actuators A: Physical, vol. 86, no.

1–2, pp. 73–80, 10 2000.

[20] A. Grayson, R. Shawgo, A. Johnson, N. Flynn, Y. Li, M. Cima, and R. Langer, “A BioMEMS review: MEMS technology for physiologically integrated devices,” Proceedings of the IEEE, vol. 92, no. 1, pp. 6 – 21, jan 2004.

[21] A. Boisen and T. Thundat, “Design & fabrication of cantilever array biosensors,” Materials Today, vol. 12, no. 9, pp. 32 – 38, 2009.

[22] I. Giouroudi, J. Kosel, and C. Scheffer, “BioMEMS in Diagnostics: A Review and Recent Developments,” Recent Patents on Engineering, vol. 2, no. 2, pp. 114–121, 2008.

[23] G. Sauerbrey, “Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung,” Zeitschrift für Physik A Hadrons and Nuclei, vol. 155, pp. 206–222, 1959, 10.1007/BF01337937.

[24] J. Verd, A. Uranga, G. Abadal, J. Teva, F. Torres, J. Lopez, E. Perez- Murano, J. Esteve, and N. Barniol, “Monolithic CMOS MEMS oscillator

(4)

circuit for sensing in the attogram range,” Electron Device Letters, IEEE, vol. 29, no. 2, pp. 146–148, 2008.

[25] E. Bayraktar, D. Eroglu, A. Ciftlik, and H. Kulah, “A mems based gravi- metric resonator for mass sensing applications,” in Micro Electro Mechan- ical Systems (MEMS), 2011 IEEE 24th International Conference on, jan.

2011, pp. 817 –820.

[26] S. Lenci, F. Pieri, L. Haspeslagh, J. De Coster, S. Decoutere, A. Maestre Caro, S. Armini, and A. Witvrouw, “Stiction-free poly-sige resonators for monolithic integration of biosensors with cmos,” in Solid- State Sensors, Actuators and Microsystems Conference (TRANSDUC- ERS), 2011 16th International, june 2011, pp. 2136 –2139.

[27] J. Teva, G. Abadala, F. Torresa, J. Verda, F. Pérez-Murano, and N. Barniola, “A femtogram resolution mass sensor platform, based on SOI electrostatically driven resonant cantilever. Part I: Electromechanical model and parameter extraction.” Ultramicroscopy, vol. 106, pp. 800–807, 2006.

[28] C. Zuniga, M. Rinaldi, S. M. Khamis, A. T. Johnson, and G. Piazza,

“Nanoenabled microelectromechanical sensor for volatile organic chemical detection,” Applied Physics Letters, vol. 94, no. 22, p. 223122, 2009.

[29] X. Lu, Z. Xu, X. Yan, S. Li, W. Ren, and Z. Cheng, “Piezoelectric biosen- sor platform based on ZnO micro membrane,” Current Applied Physics, vol. 11, no. 3, Supplement, pp. S285–S287, 5 2011.

[30] G. Y. Kang, G. Y. Han, J. Y. Kang, I.-H. Cho, H.-H. Park, S.-H. Paek, and T. S. Kim, “Label-free protein assay with site-directly immobilized antibody using self-actuating PZT cantilever,” Sensors and Actuators B:

Chemical, vol. 117, no. 2, pp. 332–338, 10 2006.

[31] Y. Lee, G. Lim, and W. Moon, “A self-excited micro cantilever biosensor actuated by PZT using the mass micro balancing technique,” Sensors and Actuators A: Physical, vol. 130–131, no. 0, pp. 105–110, 8 2006.

(5)

[32] E. Timurdogan, B. E. Alaca, I. H. Kavakli, and H. Urey, “MEMS biosen- sor for detection of Hepatitis A and C viruses in serum,” Biosensors and Bioelectronics, vol. 28, no. 1, pp. 189 – 194, 2011.

[33] P. Ortiz, N. Keegan, J. Spoors, J. Hedley, A. Harris, J. Burdess, R. Bur- nett, M. Biehl, W. Haberer, T. Velten, M. Solomon, A. Campitelli, and C. McNeil, “A Cancer Diagnostics Biosensor System Based on Micro- and Nano-technologies,” in Nano-Net, ser. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineer- ing. Springer Berlin Heidelberg, 2009, vol. 20, pp. 169–177.

[34] M. Tang, A. Cagliani, and Z. J. Davis, “Pulse mode readout of MEMS bulk disk resonator based mass sensor,” Sensors and Actuators A: Physical, vol.

168, no. 1, pp. 39 – 45, 2011.

[35] A. Hajjam, J. C. Wilson, and S. Pourkamali, “Individual Air-Borne Particle Mass Measurement Using High-Frequency Micromechanical Res- onators,” Sensors Journal, IEEE, vol. 11, no. 11, pp. 2883 –2890, nov.

2011.

[36] H. Sone, H. Okano, and S. Hosaka, “Picogram Mass Sensor Using Piezore- sistive Cantilever for Biosensor.” Jpn. J. Appl. Phys., vol. 43, pp. 4663–

4666, 2004.

[37] Y. Li, C. Vancura, K.-U. Kirstein, J. Lichtenberg, and A. Hierlemann,

“Monolithic resonant-cantilever-based cmos microsystem for biochemical sensing,” Circuits and Systems I: Regular Papers, IEEE Transactions on, vol. 55, no. 9, pp. 2551 –2560, oct. 2008.

[38] V. Tsouti, S. Chatzandroulis, D. Goustouridis, P. Normand, and D. Tsoukalas, “Design and fabrication of a Si micromechanical capacitive array for DNA sensing,” Microelectronic Engineering, vol. 85, no. 5–6, pp.

1359–1361, May–June 2008.

[39] A. Bongrain, E. Scorsone, L. Rousseau, G. Lissorgues, and P. Bergonzo,

“Realisation and characterisation of mass-based diamond micro- transducers working in dynamic mode,” Sensors and Actuators B: Chem- ical, vol. 154, no. 2, pp. 142 – 149, 2011, EUROSENSORS XXIII.

(6)

[40] K. Jensen, K. Kim, and A. Zettl, “An atomic-resolution nanomechanical mass sensor,” Nat Nano, vol. 3, no. 9, pp. 533–537, 09 2008.

[41] W. Van Spengen, R. Puers, and I. De Wolf, “On the physics of stiction and its impact on the reliability of microstructures,” Journal of Adhesion Science and Technology, vol. 17, no. 4, pp. 563–582, 2003.

[42] R. Maboudian and T. Howe, “Critical review: adhesion in surface mi- cromechanical structures.” J. Vac. Sci. Technol. B., vol. 15, pp. 1–20, 1997.

[43] S. Lenci, L. Tedeschi, C. Domenici, C. Lande, A. Nannini, G. Pennelli, F. Pieri, and S. Severi, “Protein patterning on polycrystalline silicon–

germanium via standard UV lithography for bioMEMS applications.” Ma- terials Science and Engineering C, 2010.

[44] H. A. C. Tilmans, “Equivalent circuit representation of electromechanical transducers: I. Lumped-parameter systems,” Journal of Micromechanics and Microengineering, vol. 6, no. 1, 1996.

[45] A. Janshoff, H. Galla, and C. Steinem, “Piezoelectric Mass-Sensing Devices as Biosensors - An Alternative to Optical Biosensors?” Angew. Chem. Int., vol. 39, pp. 4004–4032, 2000.

[46] A. Nannini, D. Paci, F. Pieri, and P. Toscano, “A CMOS-compatible bulk technology for the fabrication of magnetically actuated microbalances for chemical sensing,” Sensors and Actuators B: Chemical, vol. 118, no. 1–2, pp. 343–348, 10 2006.

[47] H. Jansen, H. Gardeniers, M. de Boer, M. Elwenspoek, and J. Fluitman, “A survey on the reactive ion etching of silicon in microtechnology,” Journal of Micromechanics and Microengineering, vol. 6, no. 1, 1996.

[48] S. Mohan, M. del Mar Hershenson, S. Boyd, and T. Lee, “Simple accu- rate expressions for planar spiral inductances,” Solid-State Circuits, IEEE Journal of, vol. 34, no. 10, pp. 1419 –1424, oct 1999.

(7)

[49] E. Espinosa, R. Ionescu, S. Zampolli, I. Elmi, G. C. Cardinali, E. Abad, R. Leghrib, J. L. Ramírez, X. Vilanova, and E. Llobet, “Drop-coated sens- ing layers on ultra low power hotplates for an RFID flexible tag microlab,”

Sensors and Actuators B: Chemical, vol. 144, no. 2, pp. 462–466, 2 2010.

[50] P. Ivanov, J. Laconte, J. Raskin, M. Stankova, E. Sotter, E. Llobet, X. Vi- lanova, D. Flandre, and X. Correig, “SOI-CMOS compatible low-power gas sensor using sputtered and drop-coated metal-oxide active layers,” Mi- crosystem Technologies, vol. 12, no. 1, pp. 160–168, 2005-12-01.

[51] S. Cho, S. C. Ko, S.-C. Ha, Y. S. Kim, Y. J. Kim, Y. Yang, H.-B. Pyo, and C. A. Choi, “Monolithic electronic nose system fabricated by post CMOS micromachining,” in Sensors, 2005 IEEE, 30 2005-nov. 3 2005, p. 4 pp.

[52] S. Lenci, L. Tedeschi, F. Pieri, and C. Domenici, “UV lithography-based protein patterning on silicon: Towards the integration of bioactive surfaces and CMOS electronics,” Applied Surface Science, vol. 257, no. 20, pp.

8413–8419, 8 2011.

[53] L. Tedeschi, L. Citti, and C. Domenici, “An integrated approach for the design and synthesis of oligonucleotide probes and their interfacing to a QCM-based RNA biosensor,” Biosensors and Bioelectronics, vol. 20, no. 11, pp. 2376–2385, 5 2005.

[54] J. Kim, P. Seidler, C. Fill, and S. Wan, “Investigations of the effect of curing conditions on the structure and stability of amino-functionalized organic films on silicon substrates by Fourier transform infrared spec- troscopy, ellipsometry, and fluorescence microscopy.” Surf. Sci., vol. 602, pp. 3323–3330, 2008.

[55] S. Diegoli, P. Mendes, E. Baguley, S. Leigh, P. Iqbal, Y. G. Diaz, S. Be- gum, K. Critchley, G. Hammond, S. Evans, D. Attwood, I. Jones, and J. Preece, “pH-Dependent gold nanoparticle self-organization on function- alized Si/SiO2 surfaces.” Journal of Experimental Nanoscience, vol. 3, pp.

333–353, 2006.

(8)

[56] W. Shen, L. Mathison, V. Petrenko, and B. Chin, “A pulse system for spectrum analysis of magnetoelastic biosensors.” Appl. Phys. Lett., vol. 96, p. 163502, 2010.

[57] A. Pegg, “Mammalian O6-alkylguanine-DNA alkyltransferase: regulation and importance in response to alkylating carcinogenic and therapeutic agents,” Cancer research, vol. 50, no. 19, 10 1990.

[58] L. Tedeschi, A. Mercatanti, C. Domenici, and L. Citti, “Design, prepara- tion and testing of suitable probe-receptors for RNA biosensing,” Bioelec- trochemistry, vol. 67, no. 2, pp. 171–179, 10 2005.

[59] A. Arnau, “A Review of Interface Electronic Systems for AT-cut Quartz Crystal Microbalance Applications in Liquids,” Sensors, vol. 8, no. 1, pp.

370–411, 2008.

[60] A. O. Niedermayer, E. K. Reichel, and B. Jakoby, “Yet another precision impedance analyzer (YAPIA)—Readout electronics for resonating sen- sors,” Sensors and Actuators A: Physical, vol. 156, no. 1, pp. 245–250, 11 2009.

[61] M. Zhang, N. Llaser, H. Mathias, and A. Dupret, “High precision measure- ment of quality factor for MEMS resonators,” Procedia Chemistry, vol. 1, no. 1, pp. 827–830, 9 2009.

[62] S. Bedair and G. Fedder, “CMOS MEMS oscillator for gas chemical detec- tion,” in Sensors, 2004. Proceedings of IEEE. IEEE, 2005, pp. 955–958.

[63] J. K. Sell, A. O. Niedermayer, and B. Jakoby, “A digital pll circuit for resonator sensors,” Sensors and Actuators A: Physical, vol. 172, no. 1, pp.

69–74, 12 2011.

[64] V. Ferrari, D. Marioli, and A. Taroni, “Improving the accuracy and oper- ating range of quartz microbalance sensors by a purposely designed oscil- lator circuit,” Instrumentation and Measurement, IEEE Transactions on, vol. 50, no. 5, pp. 1119 –1122, oct 2001.

[65] R. Hogervorst, J. Tero, R. Eschauzier, and J. Huijsing, “A compact power- efficient 3 V CMOS rail-to-rail input/output operational amplifier for VLSI

(9)

1505–1513, Dec. 1994.

Riferimenti

Documenti correlati

The BUCKy analysis, which was run with individuals as the terminals instead of populations as in the other species trees (e.g., [44]), showed monophyly in the Population Tree,

Comparto Il Porto , blocco A-A, pianta piano primo, sezione e fronte a mare, copia eliografica, 18 giugno 1962 (csac)... Comparto Il Porto , blocco A-A, pianta piano

The analysis made detecting PSMA in PBS+BSA strongly highlights the great advantages of a detection system based on micropillars array: additionally to the

ordine pubblico e sicurezza di competenza statale così come i rapporti con le confessioni religiose), sia su più sfumati principî europei e internazionali in materia di

où le docteur l’exhorte à ne plus vivre dans le passé mais « à fréquenter le futur », ce qui achèvera le processus interne chez Pereira, le poussant à publier son

Qui emerge con tutta la propria forza – proprio grazie al “Vico di Dorfles” – la vera cifra teoretica della metafora, la quale dimostra come la poesia e l’arte in generale,

Nonostante manchi una letteratura specifica e la sua trattazione venga assimilata agli altri documenti testuali, anche nell’ambito della

High-pressure/temperature extraction (HPTE) in stirred reactor is one of the emerging technologies investigated and compared in this study with conventional