• Non ci sono risultati.

Prove Tn′(1/z) Tn(1/z

N/A
N/A
Protected

Academic year: 2021

Condividi "Prove Tn′(1/z) Tn(1/z"

Copied!
1
0
0

Testo completo

(1)

Problem 12171

(American Mathematical Monthly, Vol.127, March 2020) Proposed by U. Abel and V. Kushnirevych (Germany).

LetTn be the n-th Chebyshev polynomial, defined by Tn(cos(θ)) = cos(nθ). Prove Tn(1/z)

Tn(1/z) = nz

√1 − z2 + O(z2n+1) asz → 0.

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

Solution. Let θ = it, then cos(it) = cosh(t) and we have that Tn(cosh(t)) = cosh(nt). It follows that Tn(cosh(t))

Tn(cosh(t)) = n tanh(nt) sinh(t) . In order to show the power series identity

Tn(1/z)

Tn(1/z)− nz

√1 − z2 = O(z2n+1), it suffices to show that

lim

z→0+

1 z2n+1

 Tn(1/z)

Tn(1/z)− nz

√1 − z2



exists and it is finite. As z → 0+, t := arccosh(1/z) → +∞, 1−zz 2 = sinh(t) and

lim

z→0+

1 z2n+1

 Tn(1/z)

Tn(1/z) − nz

√1 − z2



= lim

t→+∞

n cosh2n+1(t)(tanh(nt) − 1) sinh(t)

= 1 22n lim

t→+∞

n(et+ e−t)2n+1(−2e−nt) (et− e−t)(ent+ e−nt)

= − n 22n−1 lim

t→+∞

(1 + e−2t)2n (1 − e−2t)(1 + e−2nt)

= − n 22n−1

and the proof is complete. 

Riferimenti

Documenti correlati