• Non ci sono risultati.

Bibliografia 1) AAVV, CO

N/A
N/A
Protected

Academic year: 2021

Condividi "Bibliografia 1) AAVV, CO"

Copied!
7
0
0

Testo completo

(1)

Bibliografia

1) AAVV, CO2 e biodiversità: Un approccio integrato a favore del clima e

del patrimonio naturale, Edizioni Ambiente, 2004.

2) AAVV, Soil Organic Matter, BTU Brandenburghisce Technische Unoversität Cottbus Lehrstuhl für Bodenschutz und Rekultivierung Ro/.ppt, 2004.

3) AAVV, Solid-state NMR spectroscopy principles and applications, Blackwell Science, 2002.

4) Baldock J.A, cap.2 di Handbook of Soil Science, (Malcom E. Sumner curatore),CRC Press LLC Florida, 2000.

5) Baldock J.A., Oades J.M., Nelson P.N., Skene T.M., Golchin A., Clarke P., Assessing the extent of decomposition of natural organic materials

using solid-state 13C NMR spectroscopy. Aust. J. Soil Res. 35, 1061–

1083, 1997.

6) Brown Theodore L., Making Truth Metaphor in Science, Board of Trustees of the University of Illinois, 2003.www.press.uillinois.edu

7) Buffle J., Les substances humiques et leur interactions avec les ions

mineraux. In Conference Proceedings de la Commission d’Hydrologie

Appliquée de l’A.G.H.T.M.L’universite d’Orsay, pp.3-10, 1977.

8) Burdon J., Are the traditional concepts of the structures of humic

substances realistic?, Soil Science vol.166: 752-769, 2001.

9) Celi Luisella, 2003. www.regione.vda.it

10) Certini Giacomo, Alberto Agnelli, Giuseppe Corti and Antonella Caperucci, Composition and mean residence time of molecular weight

fractions of organic matter extracted from two soils under different forest species, Biogeochemistry 00:1-18, 2004.

11) Clough and J. O. Skjemstad, Physical and chemical protection of soil

organic carbon in three agricultural soils with different contents of calcium carbonate, Australian Journal of Soil Research 38(5): 1005 –

1016, 2002.

(2)

12) Dai K’o H., Chris E. Johnson, Applicabilityof solid-state,13C CP/MAS NMR analysis in Spodosols: chemical removal of magnetic materials,

Geoderma 93: 289-310, 1999.

13) Dai K’o H., Chris E. Johnson, Driscoll C.T., Organic Matter chemistry

amd dinamics in clear-cut and un-managed hardwood forest ecosystems, Biogeochemistry 54: 51-83, 2001.

14) Del Rio J.C., A. Gutierrez, J. Romero, M.J. Martýnez, A.T. Martýnez,

Identification of residual lignin markers in eucalypt kraft pulps by Py– GC:MS, Journal of Analytical and Applied Pyrolysis 58–59: 425–439,

2001.

15) Ecological Society of America, 2000. www.esa.org

16) Evanylo Greg and Robert McGuinn, Agricultural Management Practices

And Soil Quality: Measuring, assessing, and comparing laboratory and field test kit indicators of soil quality attributes, Publication Number

452-400, posted March 2000.

17) Fabbri D., M. Mongardi, L. Montanari, G. C. Galletti, G. Chiavari, R. Scotti, Comparison between CP/MAS 13C-NMR and pyrolysis-GC/MS in the structural characterization of humins and humic acidsì of soil and sediments, Fresenius J Anal Chem 1998 362 : 299–306, 1998.

18) Fan Teresa W.-M., Higashi Richard M., Lane, Andrew N., Chemical

characterization of a chelator-treated soil humate by solution-state multinuclear two-dimensional NMR with FTIR and pyrolysis-GCMS,

Environmental Science & Technology. Vol. 34, no. 9, pp. 1636-1646, 2000.

19) Foglio Divulgativo di Pedologia, 2001. www.sito.regione.campania.it 20) Filgueira Roberto R., Yakov A. Pachepsky and Lidia L. Fourier,

TIME-MASS SCALING IN SOIL TEXTURE ANALYSIS, Soil Sci. Soc. Am. J.

67:1703-1706, 2003.

21) Gonçalves Cristiano N., Riccardo S. D. Dalmolin, Deborah P. Dick, Heike Knicker, Egon Klamt, Ingrid Kögel-Knabner, The effect of 10% HF treatment on the resolution of CPMAS 13C NMR spectra and on the quality of the organic matter in Ferralsols, Geoderma 116:373-392, 2003. 22) Hatcher P.G., Schnitzer M., Dennis L.W., Maciel G.E., Aromaticity of

humic substances in soils, Soil Sci. Soc. Am. J. 45: 1089–1094, 1981.

(3)

23) Haworth R. D., Chemical nature of humic acid, Soil science 11:71-79, 1971.

24) Hurst Jonathan, 2000. www.bol.ucla.edu

25) Kaschl Arno, Volker Römheld and yona Chen, Cadmium Binding by

Fractions Dissolved Organic Matter and Humic Substances from Municipal Solid Waste Compost, J. Environ. Qual. 31:1885-1892, 2002.

26) Keeler C. and G.E. Maciel, 13C NMR spectral editing of humic material,

Journal of Molecular Structure 550–551/297–305, 2000.

27) Keeler Camille and Gary E. Maciel, Quantitation in the Solid-State 13C NMR Analysis of Soil and Organic Soil Fractions, Anal. Chem. 75:

2421-2432, 2003.

28) Kögel-Knabner Ingrid, Analytical approaches for characterizing soil organic matter, Organic Geochemistry 31:609-625, 2000.

29) Kögel-Knabner Ingrid, 13C and 15N NMR spectroscopy as a tool in soil organic matter studies, Geoderma 80: 243-270, 1997.

30) Kohl S.D., Rice J.A., The binding of contaminants to humin: A mass

balance, Chemosphere Volume: 36, Issue: 2, pp. 251-261, 1998.

31) Kono Hiroyuki,Shunji Yunoki,Tamio Shikano,Masashi Fujiwara,Tomoki Erata and Mitsuo Takai, CP/MAS 13C NMR Study of Cellulose and Cellulose Derivatives. 1. Complete Assignment of the CP/MAS 13C NMR Spectrum of the Native Cellulose, JACS articles, 2002.

32) Hiroyuki Kono,Tomoki Erataand Mitsuo Takai, CP/MAS 13C NMR Study of Cellulose and Cellulose Derivatives. 2. Complete Assignment of 13C Resonance for the Ring Carbons of CelluloseTriacetate Polymorphs,

JACS articles, 2002.

33) Knicker H., Quantitative 15N-und13C-CPMAS-Festkörper und natütlichen Böden. Dissertation, Regensburg, 1993.

34) Krull Evelyn S., Jan O.Skjemstad, δ 13C and δ 15N profiles in 14C-dated Oxisol and Vertisols as a function of soil chemistry and mineralogy,

Geoderma 112:1-29, 2003.

35) IPCC Third Assessment Report, 2001. www.ipcc.ch

36) Laird D. A., D. A. Martens, and W. L. Kingery, Nature of Clay-Humic

Complexes in an Agricultural Soil: I. Chemical, Biochemical, and

(4)

Spectroscopic Analyses, SOIL SCI. SOC. AM. J., VOL. 65,

SEPTEMBER–OCTOBER 2001.

37) Levitt Malcom H, Spin dynamics Basics of Nuclear Magnetic

Resonance, Wiley, 2002.

38) Marcheggiani Stefania, Marcello Iaconelli, Annamaria D’Angelo e Laura Mancini, Salute degli ecosistemi fluviali: i clostridi solfito-riduttori come

indicatori dello stato dei sedimenti, ISSN 37:1123-3117 Rapporti

ISTISAN, 2004.

39) Marita Jane M., John Ralph, Ronald D. Hatfield, and Clint Chapple,

NMR characterization of lignins in Arabidopsis altered in the activity of ferulate 5-hydroxylase, Edited by Takayoshi Higuchi, Kyoto University,

Kyoto, Japan, 1999.

40) Massiot D., Fayon F., Capron M., King I., Le Calvè S., Alonso B., Durand J.-O., Bujoli B., Gan Z., Hoatson G., Magn. Reson. Chem. 40: 70-76, 2002.

41) Maunu Sirkka Liisa, Hanne Wikberg and Miia Hitunen, Advanced Solid

State NMR Techniques in the study of wood and pulp, Cost Action E41

Barcelona, 2005.

42) McConkey Brian, Baochang Liang, Wayne Lindwall, and Glenn Padbury,

The Soil Organic Carbon Story, Agriculture and Agri-Food Canada,

Semiarid Prairie Agricultural Research Centre, Swift Current, SK, S9H 3X2, 2000.

43) Mehring M., Principles of High Resolution NMR in Solids, Springer-Verlag Berlin Heidelberg New York, 1983.

44) Miltner Anja, Wolfgang Zech, Necmettin Çepel and Ünal Eler, Soil

organic matter composition in three humus profiles of the western Taurus, Turkey, as revealed by wet chemistry and CP/MAS 13C NMR spectroscopy, Z.Pfanzenernähr Bodenk, 159:257-262, 1996.

45) Navarra Antonio e Andrea Pinchera, Il Clima, Editori Laterza, 2000. 46) Pines A., J.J. Chang, R.G. Griffin, J. Chem. Phys. 61, 1021, 1974.

47) Poirier Natacha, Sylvie Derenne, Jean-NoeÈ l Rouzaud, Claude Largeau, Andre Mariotti, J  roà me Balesdent, Jocelyne Maquet,

Chemical structure and sources of the macromolecular, resistant, organic

(5)

fraction isolated from a forest soil (Lacade e, south-west France),

Organic Geochemistry 31:813±827, 2000.

48) Robinson J. S., Johnston C. T., Reddy K. R , COMBINED CHEMICAL

AND 31P-NMR SPECTROSCOPIC ANALYSIS OF PHOSPHORUS IN WETLAND ORGANIC SOILS, Soil Science163(9):705-713, 1998.

49) Rosenstock B., M.Simon, Consumption of Dissolved Amino Acids and

Carbohydrates by Limnetic Bacterioplankton According to Molecular Weight Fractions and Proportions Bound to Humic Matter, Microb Ecol

45:433-443, 2003.

50) Rovira Pere et V. Ramón Vallejo, Labile and recalcitrant pools of carbon

and nitrogen in organic matter decomposing at different dephts in soil: an acid hydrolisis approach, Geoderma 107 (2002) 109-141.

51) Salloum Myrna, Benntchefetz and Patrik G. Hatcher, Phenanthrene

Sorption by Aliphatic-Rich Natural Organic Matter, Environ.Sci. Technol.

36:1953-1958, 2002.

52) Sanchez Felipe G., cap. 29: Soil Organic Matter and Soil Productivity:

Searching for the Missing Link of The Productivity & Sustainability of Southern Forest Ecosystems in a Changing Environment, Mickler & Fox,

1998.

53) Sanesi G., Elementi di Pedologia, Calderini Edagricole, Bologna, 2000. 54) Schöneberger P.J., D.A. Wysocki, E.C. Benham, and W.D. Broderson

(eds.), Field Book for Describing and Sampling Soils. Version 2.0., Natural Resouce Conservation Service, National Siol Survey Center, Lincoln, NE, 2002.

55) Schöning Ingo and Kögel-Knabner Ingrid, Carbon sequestration in soils of a beech chronosequence, 17th WCSS Paper no.1213, 2002.

56) Schmidt Michael W.I., Heike Knicker, Ingrid Kögel-Knabner, Organic

matter accumulating in Aeh and Bh horizons of a Podozol-chemical characterization in primary organo-mineral associations, Organic

Geochemistry 31: 727-734, 2000.

57) Schmidt-Rohr and Hans Wolfgang Spiess, Multidimensional Solid-State

NMR and Polymers, ACADEMIC PRESS, 1994.

58) Schnitzer M., Soil organic matter—the next 75 years, Soil Sci. 145: 448– 454, 1991.

(6)

59) Paolo Sequi, Chimica del suolo, Patron Editore Bologna, 1989.

60) Serafinchon Ada, Soil Sampling and Testin, 2002. www.agric.gov.ab.ca

61) Smernik Ronald J., J. Malcom Oades, The use of spin counting for determining quantitationin soilid state 13C NMR spectra of natural pragnic matter 2. HF.treated soil fractions, Geoderma 96: 159-171, 2000.

62) Skjemstad J.O., P. Clarke, A. Golchin and J.M. Oades, cap 20:

Characterization of Soil Organic Matter by Solid-State 13C NMR Spectroscopy di Driven By Nature: Plant Litter Quality and Decomposition, pubblicato da G Cadisch and K E Giller, Department of

Biological Sciences, Wye College, University of London, UK, 1996.

63) Skjemstad J.O., P. Clarke, J.A. Taylor, j.M. Oades and R.H.Newman,

The Removal Magnetic Materials from Surface Soils. A solid state 13C CP/MAS n.m.r. Study, Aust. J. Sil Res., 32, 1215-29, 1994.

64) Skjemstad Jan O., Donald C. Reicosky, Alan R. Wilts and Janine A.

McGowan, Charcoal Carbon in U.S. Agricultural Soils, Soil Science Society of America Journal 66: 1249-1255, 2002.

65) Stevenson F.J., Humus Chemistry. Genesis , Composition, Reactions., Wiley-Interscience, New York, 1982.

66) Tarnocai Charles and Barbara Lacelle, Sensitivities to Climate Change

in Canada, Eastern Cereal and Oilseed Research Centre Agriculture and

Agri-Food Canada, 2003. www.adaptation.nrcan.gc.ca

67) Ussiri David A.N. and Chris E. Johnson, Chatacterization of organic matter in a northern hardwood forest soil by 13C NMR spectroscopy and chemical methods, Geoderma 111:123-149, 2003.

68) Veeken H. M., F. Adani, K. G. J. Nierop, P. A. de Jager and H. V. M.

Hamelers, Degradation of Biomacromolecules during High-Rate

Composting of Wheat Straw–Amended Feces, Journal of Environmental

Quality 30:1675-1684, (2001).

69) Weber Jerzy, 2000. www.humintech.com

70) Wu Xiaoling, Sean T. Burns and Kurt W. Zilm, Spectral editing in

CPMAS NMR. Generating Subspectra Based on proton Multiplicities.,

Journal of Magnetic Resonance, series A 111: 26-36, 1994.

71) Zhang T. Q., Mackenzie A. F., Sauriol F., NATURE OF SOIL ORGANIC

PHOSPHORUS AS AFFECTED BY LONG-TERM FERTILIZATION

(7)

UNDER CONTINUOUS CORN (ZEA MAYS L.): A 31P NMR STUDY,

Soil Science 164(9):662-670, 1999.

72) Zech W., L. Haumanier, G. Guggenberger, F. Gil-Sotres and S. Arai,

Changes in carbon species distribution of humic sustances with depth in mineral soils of various origin, pp. 445-450 di “Humic substances in the

Global enviroment and implications on Human Health” edited by N. Senesi and T.M. Milano, Elselver Science B.V., 1994.

Riferimenti

Documenti correlati

The novel results of this prospective study are as follows: 1) 1-year re-hospitalizations (most of which were due to worsening HF) occurred in 46.7% of patients, who were

The terms "Municipal solid waste" and "MSW treatment" are now enshrined in law, a number of rules came into force, regulating the activity in the field of

The basic parameters that affect municipal solid waste (MSW) biodrying are process temperature, moisture content, aeration efficiency and reactor design.. So far biodrying research

This study of the Mezzena mandible shows that the chin region is similar to that of other late Neanderthals which display a much more modern morphology with an incipient mental

1,2 A Cochrane ’s review published in 2013 concluded that palivi- zumab is effective in reducing the incidence of RSV-related hospitalizations (RSVH) for severe lower respiratory

Given that it is the first time these students take an atmospheric physics class, we deem appropriate to check the impression they get from this project about the study of

92 Department of Physics, The University of Michigan, Ann Arbor MI, United States of America 93 Department of Physics and Astronomy, Michigan State University, East Lansing MI,

Una realtà atroce, che nell’opera del pittore spagnolo riduceva le variazioni cromatiche al minimo — nero, bianco e grigio — , ma che, nella East Side Gallery, si colora delle