• Non ci sono risultati.

5.7 Misure di Vapocromismo

5.7.2 Apparato sperimentale per l’individuazione della sensibilità dei disposit

L’apparato di misura per l’individuazione delle sensibilità dei dispostivi polimerici era derivante dalla scatola già prese in esame in precedenza con la differenza che i due piani venivano posti ad una distanza di 5 cm. In questo modo era possibile avere una scatola a volume noto 20*20*5 cm in cui veniva introdotta una quantità nota di cloroformio che veniva vaporizzata utilizzando un contenitore preriscaldato.

107

6 Bibliografia

1. Urban, M. W., Handbook of stimuli-responsive materials. Wiley Online Library: 2011; Vol. 69469.

2. Ciardelli, F.; Ruggeri, G.; Pucci, A., Dye-containing polymers: methods for preparation of mechanochromic materials. Chemical Society Reviews 2013, 42 (3), 857-870.

3. Sperling, L. H., Introduction to physical polymer science. John Wiley & Sons: 2005.

4. Mei, J.; Leung, N. L. C.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Z., Aggregation-Induced Emission: Together We Shine, United We Soar! Chemical Reviews 2015, 115 (21), 11718- 11940.

5. Kwok, R. T.; Leung, C. W.; Lam, J. W.; Tang, B. Z., Biosensing by luminogens with aggregation-induced emission characteristics. Chemical Society Reviews 2015, 44 (13), 4228- 4238.

6. Tang, B. Z.; Qin, A., Aggregation-Induced Emission: Fundamentals. Wiley: 2013.

7. Mei, J.; Hong, Y.; Lam, J. W.; Qin, A.; Tang, Y.; Tang, B. Z., Aggregation‐Induced Emission: The Whole Is More Brilliant than the Parts. Advanced Materials 2014, 26 (31), 5429-5479. 8. Zhu, D.; Haidekker, M. A.; Lee, J.-S.; Won, Y.-Y.; Lee, J. C.-M., Application of molecular

rotors to the determination of the molecular weight dependence of viscosity in polymer melts.

Macromolecules 2007, 40 (21), 7730-7732.

9. Minei, P.; Pucci, A., Fluorescent vapochromism in synthetic polymers. Polymer International 2016, n/a-n/a.

10. Minei, P.; Koenig, M.; Battisti, A.; Ahmad, M.; Barone, V.; Torres, T.; Guldi, D. M.; Brancato, G.; Bottari, G.; Pucci, A., Reversible vapochromic response of polymer films doped with a highly emissive molecular rotor. Journal of Materials Chemistry C 2014, 2 (43), 9224-9232. 11. Minei, P.; Ahmad, M.; Barone, V.; Brancato, G.; Passaglia, E.; Bottari, G.; Pucci, A.,

Vapochromic behavior of polycarbonate films doped with a luminescent molecular rotor.

Polymers for Advanced Technologies 2015.

12. Riva, C. R., Diritto penale dell'ambiente: Parte generale: Principi, beni e tecniche di tutela;

Parte speciale: Reati contenuti nel d. lgs. n. 152/2006 e nel codice penale. G Giappichelli

Editore: 2016.

13. Goldstein, A. H.; Galbally, I. E., Known and unexplored organic constituents in the earth's atmosphere. ACS Publications: 2007.

14. Jablonski, A., Efficiency of anti-Stokes fluorescence in dyes. Nature 1933, 131 (839-840), 21. 15. Valeur, B.; Berberan-Santos, M. N., Molecular fluorescence: principles and applications. John

Wiley & Sons: 2012.

16. Lakowicz, J. R., Principles of Fluorescence Spectroscopy. Springer US: 2007.

17. Heisenberg, W., The physical principles of the quantum theory. Courier Corporation: 1949. 18. Kasha, M., Characterization of electronic transitions in complex molecules. Discussions of the

Faraday Society 1950, 9 (0), 14-19.

19. Htun, T., A Negative Deviation from Stern–Volmer Equation in Fluorescence Quenching.

108

20. Atsbeha, T.; Mohammed, A. M.; Redi-Abshiro, M., Excitation Wavelength Dependence of Dual Fluorescence of DMABN in Polar Solvents. Journal of Fluorescence 2010, 20 (6), 1241-1248. 21. Manhart, J.; Kunzelmann, K. H.; Chen, H. Y.; Hickel, R., Mechanical properties of new composite restorative materials. Journal of biomedical materials research 2000, 53 (4), 353- 361.

22. Crenshaw, B. R.; Kunzelman, J.; Sing, C. E.; Ander, C.; Weder, C., Threshold temperature sensors with tunable properties. Macromolecular Chemistry and Physics 2007, 208 (6), 572- 580.

23. Ma, C.; Zhang, X.; Yang, L.; Li, Y.; Liu, H.; Yang, Y.; Xie, G.; Ou, Y.-C.; Wei, Y., Alkyl length dependent mechanofluorochromism of AIE-based phenothiazinyl fluorophenyl acrylonitrile derivatives. Dyes and Pigments 2017, 136, 85-91.

24. Wang, H.; Zhao, E.; Lam, J. W.; Tang, B. Z., AIE luminogens: emission brightened by aggregation. Materials Today 2015.

25. Grabowski, Z. R.; Rotkiewicz, K.; Rettig, W., Structural changes accompanying intramolecular electron transfer: focus on twisted intramolecular charge-transfer states and structures. Chemical

reviews 2003, 103 (10), 3899-4032.

26. Rettig, W., Photophysical and photochemical switches based on twisted intramolecular charge transfer (TICT) states. Applied Physics B 1988, 45 (3), 145-149.

27. Grabowski, Z. R.; Rotkiewicz, K.; Siemiarczuk, A., Dual fluorescence of donor-acceptor molecules and the twisted intramolecular charge transfer (TICT) states. Journal of

Luminescence 1979, 18, 420-424.

28. Grabowski, Z. R.; Dobkowski, J., Twisted intramolecular charge transfer (TICT) excited states: energy and molecular structure. Pure and Applied Chemistry 1983, 55 (2), 245-252.

29. Martini, G. Preparazione di film di poli(stirene) contenenti rotori molecolari fluorescenti sensibili a vapori di solventi organici. Tesi di laurea magistrale, Università di Pisa, Pisa, 2013. 30. Haidekker, M. A.; Nipper, M.; Mustafic, A.; Lichlyter, D.; Dakanali, M.; Theodorakis, E. A.,

Dyes with segmental mobility: molecular rotors. In Advanced Fluorescence Reporters in

Chemistry and Biology I, Springer: 2010; pp 267-308.

31. Demeter, A.; Druzhinin, S.; George, M.; Haselbach, E.; Roulin, J.-L.; Zachariasse, K. A., Dual fluorescence and fast intramolecular charge transfer with 4-(diisopropylamino) benzonitrile in alkane solvents. Chemical Physics Letters 2000, 323 (3), 351-360.

32. Hawe, A.; Sutter, M.; Jiskoot, W., Extrinsic fluorescent dyes as tools for protein characterization. Pharmaceutical research 2008, 25 (7), 1487-1499.

33. Zachariasse, K. A.; Von Der Haar, T.; Hebecker, A.; Leinhos, U.; Kuhnle, W., Intramolecular charge transfer in aminobenzonitriles: requirements for dual fluorescence. Pure and applied

chemistry 1993, 65 (8), 1745-1750.

34. Allen, B. D.; Benniston, A. C.; Harriman, A.; Rostron, S. A.; Yu, C., The photophysical properties of a julolidene-based molecular rotor. Physical Chemistry Chemical Physics 2005, 7 (16), 3035-3040.

35. Yan, Z.-Q.; Yang, Z.-Y.; Wang, H.; Li, A.-W.; Wang, L.-P.; Yang, H.; Gao, B.-R., Study of aggregation induced emission of cyano-substituted oligo (p-phenylenevinylene) by femtosecond time resolved fluorescence. Spectrochimica Acta Part A: Molecular and

109

36. Kumbhar, H. S.; Deshpande, S. S.; Shankarling, G. S., Aggregation induced emission (AIE) active carbazole styryl fluorescent molecular rotor as viscosity sensor. ChemistrySelect 2016, 1 (9), 2058-2064.

37. Sutharsan, J.; Lichlyter, D.; Wright, N. E.; Dakanali, M.; Haidekker, M. A.; Theodorakis, E. A., Molecular rotors: synthesis and evaluation as viscosity sensors. Tetrahedron 2010, 66 (14), 2582-2588.

38. Zhou, F.; Shao, J.; Yang, Y.; Zhao, J.; Guo, H.; Li, X.; Ji, S.; Zhang, Z., Molecular Rotors as Fluorescent Viscosity Sensors: Molecular Design, Polarity Sensitivity, Dipole Moments Changes, Screening Solvents, and Deactivation Channel of the Excited States. European

Journal of Organic Chemistry 2011, 2011 (25), 4773-4787.

39. Haidekker, M. A.; Theodorakis, E. A., Environment-sensitive behavior of fluorescent molecular rotors. Journal of biological engineering 2010, 4 (1), 1.

40. Wu, G.; Kong, F.; Li, J.; Chen, W.; Fang, X.; Zhang, C.; Chen, Q.; Zhang, X.; Dai, S., Influence of different acceptor groups in julolidine-based organic dye-sensitized solar cells. Dyes and

Pigments 2013, 99 (3), 653-660.

41. Haidekker, M. A.; Theodorakis, E. A., Molecular rotors-fluorescent biosensors for viscosity and flow. Organic & Biomolecular Chemistry 2007, 5 (11), 1669-1678.

42. Akers, W. J.; Haidekker, M. A., Precision assessment of biofluid viscosity measurements using molecular rotors. Journal of biomechanical engineering 2005, 127 (3), 450-454.

43. Loutfy, R. O., Effect of polystyrene molecular weight on the fluorescence of molecular rotors.

Macromolecules 1983, 16 (4), 678-680.

44. Sawada, S.; Iio, T.; Hayashi, Y.; Takahashi, S., Fluorescent rotors and their applications to the study of GF transformation of Actin. Analytical biochemistry 1992, 204 (1), 110-117.

45. Bhattacharyya, A.; Bhattacharya, K.; Bhattacharyya, B.; Roy, S., A study of aggregation of 9- (dicyano-vinyl) julolidine. Indian journal of biochemistry & biophysics 1995, 32 (6), 442-446. 46. Martini, G.; Martinelli, E.; Ruggeri, G.; Galli, G.; Pucci, A., Julolidine fluorescent molecular

rotors as vapour sensing probes in polystyrene films. Dyes and Pigments 2015, 113, 47-54. 47. Caron, T.; Guillemot, M.; Montméat, P.; Veignal, F.; Perraut, F.; Prené, P.; Serein-Spirau, F.,

Ultra trace detection of explosives in air: Development of a portable fluorescent detector.

Talanta 2010, 81 (1–2), 543-548.

48. Haidekker, M. A.; Brady, T. P.; Lichlyter, D.; Theodorakis, E. A., Effects of solvent polarity and solvent viscosity on the fluorescent properties of molecular rotors and related probes.

Bioorganic chemistry 2005, 33 (6), 415-425.

49. Maron, S. H.; Krieger, I. M.; Sisko, A. W., A capillary viscometer with continuously varying pressure head. Journal of Applied Physics 1954, 25 (8), 971-976.

50. Schiller, L., The Engler Viscometer and the Theory of Laminar Flow at the Entrance of a Tube.

Journal of Rheology (1929-1932) 1932, 3 (2), 212-216.

51. Green, H., High-Speed Rotational Viscometer of Wide Range. Confirmation of theReiner Equation of Flow. Industrial & Engineering Chemistry Analytical Edition 1942, 14 (7), 576- 585.

52. Barnes, H. A.; Hutton, J. F.; Walters, K., An introduction to rheology. Elsevier: 1989; Vol. 3. 53. Shinitzky, M.; Barenholz, Y., Fluidity parameters of lipid regions determined by fluorescence

polarization. Biochimica et Biophysica Acta (BBA)-Reviews on Biomembranes 1978, 515 (4), 367-394.

110

54. Renkin, E. M.; Pappenheimer, J. R., Wasserdurchlässigkeit und Permeabilität der Capillarwände. In Ergebnisse der physiologie biologischen chemie und experimentellen

pharmakologie, Springer Berlin Heidelberg: Berlin, Heidelberg, 1957; pp 59-126.

55. Paczkowski, J.; Neckers, D., Twisted intramolecular charge-transfer phenomenon as a quantitative probe of polymerization kinetics. Macromolecules 1991, 24 (10), 3013-3016. 56. Bosch, P.; Catalina, F.; Corrales, T.; Peinado, C., Fluorescent probes for sensing processes in

polymers. Chemistry–A European Journal 2005, 11 (15), 4314-4325.

57. Thomas, J., Plasma viscosity as a routine laboratory test. Journal of Clinical Pathology 1978,

31 (3), 293-294.

58. Pucci, A.; Bizzarri, R.; Ruggeri, G., Polymer composites with smart optical properties. Soft

Matter 2011, 7 (8), 3689-3700.

59. Ciardelli, F.; Bertoldo, M.; Bronco, S.; Pucci, A.; Ruggeri, G.; Signori, F., The unique optical behaviour of bio‐related materials with organic chromophores. Polymer International 2013, 62 (1), 22-32.

60. Hu, R.; Leung, N. L.; Tang, B. Z., AIE macromolecules: syntheses, structures and functionalities. Chemical Society Reviews 2014, 43 (13), 4494-4562.

61. Janzen, M. C.; Ponder, J. B.; Bailey, D. P.; Ingison, C. K.; Suslick, K. S., Colorimetric sensor arrays for volatile organic compounds. Analytical chemistry 2006, 78 (11), 3591-3600.

62. Adgate, J. L.; Goldstein, B. D.; McKenzie, L. M., Potential Public Health Hazards, Exposures and Health Effects from Unconventional Natural Gas Development. Environmental Science &

Technology 2014, 48 (15), 8307-8320.

63. Salinas, Y.; Martinez-Manez, R.; Marcos, M. D.; Sancenon, F.; Costero, A. M.; Parra, M.; Gil, S., Optical chemosensors and reagents to detect explosives. Chemical Society Reviews 2012, 41 (3), 1261-1296.

64. Kieser, B.; Dieterle, F.; Gauglitz, G., Discrimination of methanol and ethanol vapors by the use of a single optical sensor with a microporous sensitive layer. Analytical chemistry 2002, 74 (18), 4781-4787.

65. Pucci, A.; Iasilli, G.; Minei, P.; Ruggeri, G.; Martini, F., Vapochromic features of new luminogens based on julolidine-containing styrene copolymers. Faraday Discussions 2016. 66. George, S. C.; Thomas, S., Transport phenomena through polymeric systems. Progress in

Polymer Science 2001, 26 (6), 985-1017.

67. Nielsen, T. B.; Hansen, C. M., Significance of surface resistance in absorption by polymers.

Industrial & engineering chemistry research 2005, 44 (11), 3959-3965.

68. Park, G. S.; Crank, J., Diffusion in polymers. 1968.

69. Batchinski, A., Untersuchunten uber die innere Reibungder Slussigkeiten. Z. Phys. Chem.,

Stoechiom. Verwandtschaftsl 1913, 84, 643.

70. Bueche, F., Segmental Mobility of Polymers Near Their Glass Temperature. The Journal of

Chemical Physics 1953, 21 (10), 1850-1855.

71. Fujita, H.; Kishimoto, A.; Matsumoto, K., Concentration and temperature dependence of diffusion coefficients for systems polymethyl acrylate and n-alkyl acetates. Transactions of the

111

72. Williams, M. L.; Landel, R. F.; Ferry, J. D., The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-forming Liquids. Journal of the

American Chemical Society 1955, 77 (14), 3701-3707.

73. Berens, A. R.; Hopfenberg, H. B., Diffusion of organic vapors at low concentrations in glassy PVC, polystyrene, and PMMA. Journal of Membrane Science 1982, 10 (2), 283-303.

74. Barrer, R.; Skirrow, G., Transport and equilibrium phenomena in gas–elastomer systems. I. Kinetic phenomena. Journal of Polymer Science 1948, 3 (4), 549-563.

75. Barrer, R.; Rideal, E. K., Permeation, diffusion and solution of gases in organic polymers.

Transactions of the Faraday Society 1939, 35, 628-643.

76. Choy, C.; Leung, W.; Ma, T., Sorption and diffusion of toluene in highly oriented polypropylene. Journal of Polymer Science: Polymer Physics Edition 1984, 22 (4), 707-719. 77. Yasuda, H.; Stannett, V., Permeation, solution, and diffusion of water in some high polymers.

Journal of Polymer Science 1962, 57 (165), 907-923.

78. Yi-Yan, N.; Felder, R. M.; Koros, W. J., Selective permeation of hydrocarbon gases in poly(tetrafluoroethylene) and poly(fluoroethylene–propylene) copolymer. Journal of Applied

Polymer Science 1980, 25 (8), 1755-1774.

79. Duda, J., Molecular diffusion in polymeric systems. Pure and applied chemistry 1985, 57 (11), 1681-1690.

80. Miller-Chou, B. A.; Koenig, J. L., A review of polymer dissolution. Progress in Polymer

Science 2003, 28 (8), 1223-1270.

81. Narasimhan, B.; Peppas, N. A., The physics of polymer dissolution: Modeling approaches and experimental behavior. In Polymer Analysis Polymer Physics, Springer Berlin Heidelberg: Berlin, Heidelberg, 1997; pp 157-207.

82. Flory, P. J., Thermodynamics of high polymer solutions. The Journal of Chemical Physics 1941,

9 (8), 660-660.

83. Huggins, M. L., Solutions of long chain compounds. The Journal of chemical physics 1941, 9 (5), 440-440.

84. Mark, J. E., Physical Properties of Polymers Handbook. Springer New York: 2007. 85. Flory, P. J., Principles of Polymer Chemistry. Cornell University Press: 1953.

86. Smith, P. A.; Yu, T.-Y., Preparation and properties of some substituted julolidines. The Journal

of Organic Chemistry 1952, 17 (9), 1281-1290.

87. Smith, M. B.; March, J., March's advanced organic chemistry: reactions, mechanisms, and

structure. John Wiley & Sons: 2007.

88. Kauffman, J. M.; Imbesi, S. J.; Aziz, M. A., Synthesis of julolidine derivatives. Organic

Preparations and Procedures International 2001, 33 (6), 603-613.

89. Zhang, X.; Zhang, X.; Yang, B.; Liu, M.; Liu, W.; Chen, Y.; Wei, Y., Polymerizable aggregation-induced emission dye-based fluorescent nanoparticles for cell imaging applications. Polymer Chemistry 2014, 5 (2), 356-360.

90. Lindholm, P. Cross-coupling reactions of organoborons with organic halides. University of Jyväskylä, Tampere, 2011.

91. Ishiyama, T.; Murata, M.; Miyaura, N., Palladium (0)-catalyzed cross-coupling reaction of alkoxydiboron with haloarenes: a direct procedure for arylboronic esters. The Journal of

112

92. Knoevenagel, E., Condensation von Malonsäure mit aromatischen Aldehyden durch Ammoniak und Amine. Berichte der deutschen chemischen Gesellschaft 1898, 31 (3), 2596-2619.

93. Tillmann, H.; Hörhold, H. H., Synthesis, optical and redox properties of novel segmented cyano- PPV derivatives. Synthetic Metals 1999, 101 (1–3), 138-139.

94. Brouwer, A. M., Standards for photoluminescence quantum yield measurements in solution (IUPAC Technical Report). Pure and Applied Chemistry 2011, 83 (12), 2213-2228.

95. Safarzadeh-Amiri, A., Solvent and temperature effects on the decay dynamics of [pn, n- (dialkylamino) benzylidene] malononitriles. Chemical physics letters 1986, 129 (3), 225-230. 96. Vogel, M.; Rettig, W., Excited state dynamics of triphenylmethane‐dyes used for investigation

of microviscosity effects. Berichte der Bunsengesellschaft für physikalische Chemie 1987, 91 (11), 1241-1247.

97. Jouyban, A.; Soltanpour, S.; Chan, H.-K., A simple relationship between dielectric constant of mixed solvents with solvent composition and temperature. International journal of

pharmaceutics 2004, 269 (2), 353-360.

98. Reis, J. C. R.; Lampreia, I. M. S.; Santos, Â. F. S.; Moita, M. L. C. J.; Douhéret, G., Refractive Index of Liquid Mixtures: Theory and Experiment. ChemPhysChem 2010, 11 (17), 3722-3733. 99. Perry, R. H.; Green, D. W., Perry's chemical engineers' handbook. McGraw-Hill Professional:

1999.

100. Howell, S.; Dakanali, M.; Theodorakis, E. A.; Haidekker, M. A., Intrinsic and extrinsic temperature-dependency of viscosity-sensitive fluorescent molecular rotors. Journal of

fluorescence 2012, 22 (1), 457-465.

101. Altomare, A.; Ciardelli, F.; Gallot, B.; Mader, M.; Solaro, R.; Tirelli, N., Synthesis and polymerization of amphiphilic methacrylates containing permanent dipole azobenzene chromophores. Journal of Polymer Science Part A: Polymer Chemistry 2001, 39 (17), 2957- 2977.

102. Iasilli, G.; Martini, F.; Minei, P.; Ruggeri, G.; Pucci, A., Vapochromic features of new luminogens based on julolidine-containing styrene copolymers. Faraday Discussions 2017. 103. Kubista, M.; Sjöback, R.; Eriksson, S.; Albinsson, B., Experimental correction for the inner-

filter effect in fluorescence spectra. Analyst 1994, 119 (3), 417-419.

104. Streeter, D.; Boyer, R., Solution Viscosity and Partial Specific Volume of Polystyrene. Effect of Solvent Type and Concentration. Industrial & Engineering Chemistry 1951, 43 (8), 1790- 1797.

105. Tant, M. R.; Hill, A. J., Structure and properties of glassy polymers. American Chemical Society; Distributed by Oxford University Press: 1998.

106. Spencer, R.; Williams, J., Concentrated solution viscosity of polystyrene. Journal of Colloid

Science 1947, 2 (1), 117-129.

107. Lide, D. R., CRC Handbook of Chemistry and Physics, 85th Edition. Taylor & Francis: 2004. 108. Zhang, Y.; Zuniga, C.; Deshayes, G.; Leroy, J.; Barlow, S.; Marder, S. R.; Kim, S.-j.; Kippelen,

B. Polymerizable ambipolar hosts for phosphorescent guest emitters. US 2012/0172556 A1, 2010.

109. Cai, G.; Bozhkova, N.; Odingo, J.; Berova, N.; Nakanishi, K., Circular dichroism exciton chirality method. New red-shifted chromophores for hydroxyl groups. Journal of the American

113

110. Demas, J.; Crosby, G. A., Measurement of photoluminescence quantum yields-Review. Journal

114

7 Ringraziamenti