• Non ci sono risultati.

L’utilizzo della strumentazione e del protocollo clinico di valutazione sono risultati di semplice esecuzione e applicabili alla totalità dei pazienti inclusi nello studio. Tra pazienti acuti e alla dimissione sono presenti differenze significative, giustificando come il trattamento riabilitativo giochi un ruolo chiave nel recupero dell’equilibrio da seduto. Tali miglioramenti non solo sono apprezzabili come aumento di punteggio alle scale validate per la misurazione del controllo del tronco e dell’autonomia, ma sono risultati anche oggettivamente quantificabili con i parametri cinematici registrati dai sensori inerziali indossabili.

Dai risultati preliminari ottenuti possiamo quindi affermare che i sensori inerziali possono essere un metodo semplice, ma soprattutto oggettivo, per valutare e quantificare il controllo di tronco dei pazienti con paraplegia. Tale strumentazione permette di identificare quali siano le strategie sfruttate dai pazienti per mantenere l’equilibrio durante la postura statica e il movimento volontario, e quali siano i fattori che mettono a maggior rischio di caduta i pazienti.

Lo studio dovrà essere completato con il follow up a 6 mesi e a 18 mesi dalla dimissione. Questo dovrebbe consentirci di meglio identificare le differenze nelle strategie e nei compensi tra paziente acuto e cronico.

In ogni caso i parametri cinematici rilevati dai sensori e le analisi statistiche effettuate sugli stessi, già consentono di affermare che, con una tecnologia semplice e affidabile possiamo valutare oggettivamente e in maniera riproducibile il controllo del tronco, in più evidenziando caratteristiche che né l’occhio clinico né la sensibilità delle scale utilizzate validate possono rilevare.

I task motori della scala TCT-SCI sono ben rappresentativi del controllo del tronco nella persona con lesione midollare e quindi, avendo rilevato grande accordo fra le scale TCT-SCI e SCIM-mobilità, della sua autonomia.

Soprattutto è stata dimostrata una correlazione statisticamente significativa fra i task della TCT-SCI e i parametri rilevati con la sensoristica.

Essendosi dimostrati affidabili in questo ambito, i sensori inerziali indossabili aprono una serie di possibili sviluppi e utilizzi futuri.

73

Ad esempio potrebbero essere selezionati i test più significativi della TCT-SCI (ad esempio i Test 1, Test 5 e Test 8) e in pochi minuti con i dati rilevati dai sensori elaborare, attraverso apposito software in comunicazione wireless con i sensori, una misurazione e un report sul controllo del tronco raggiunto dal paziente. Questo risulterebbe molto utile in un contesto di follow up ambulatoriale dopo la domiciliazione, dove spesso per mancanza di tempo non vengono applicate le scale nella loro completezza, e in più i sensori potrebbero fornire una valutazione puntuale e oggettiva, più snella ma più sensibile ai cambiamenti del paziente, siano essi in senso migliorativo che peggiorativo. Non bisogna infatti dimenticare che nel paraplegico completo, il controllo del tronco è prioritario e fondamentale nell’indipendenza della persona.

Ulteriori sviluppi si potrebbero avere stratificando i pazienti per livello neurologico di lesione midollare dorsale, al fine di verificare come cambia il controllo del tronco e identificando le differenti metodiche adottabili per migliorarlo a seconda della localizzazione della lesione.

Al fine di uniformare maggiormente i pazienti, nello studio non sono stati inclusi pazienti affetti da tetraplegia. La procedura dovrà essere perfezionata al fine di renderla fruibile anche ai pazienti con limitate performance posturali. O ancora, sarebbe possibile sviluppare una batteria di valutazioni con la sensoristica anche sulle lesioni incomplete e sui pazienti deambulanti.

In futuro potranno essere inserite nel protocollo di studio anche valutazioni intermedie nel corso del trattamento riabilitativo ad intervalli regolari al fine di verificare la velocità di riadattamento del tronco, capire dove il miglioramento inizia ad essere significativo, confrontare diversi modelli riabilitativi, identificare quando e con che metodiche il paziente raggiunga il massimo miglioramento auspicabile dal suo livello lesionale e, infine, indagare la capacità prognostica di tale sistema di valutazione, nel predire l’outcome funzionale e il potenziale recupero della postura eretta o del cammino.

74

BIBLIOGRAFIA

1

NSCISC Annual Statistical Report 2017: www.nscisc.uab.udu

2

Aidinoff E, Front L, Itzkovich M, Bluvshtein V, Gelernter I, Hart J, Biering- Sørensen F, Weeks C, Laramee MT, Craven C, Hitzig SL, Glaser E, Zeilig G, Aito S, Scivoletto G, Mecci M, Chadwick RJ, El Masry WS, Osman A, Glass CA, Soni BM, Gardner BP, Savic G, Bergström EM, Silva P, Catz A. Expected spinal cord independence measure, third version, scores for various neurological levels after complete spinal cord lesions. Spinal Cord. 2011; 49(8):893-6.

3

Furlan JC, Noonan V, Singh A, Fehlings MG. Assessment of disability in patients with acute traumatic spinal cord injury: a systematic review of the literature.J Neurotrauma. 2011; 28(8):1413-30.

4

Kirshblum SC, Priebe MM, Ho CH, Scelza WM, Chiodo AE, Wuermser LA. Spinal cord injury medicine. 3. Rehabilitation phase after acute spinal cord injury. Arch Phys Med Rehabil. 2007; 88(3 Suppl 1):S62-70.

5

De Abreu DC, Takara K, Metring NL, Reis JG, Cliquet A Jr. Interference of different types of seats on postural control system during a forward-reaching task in individuals with paraplegia. Int J Rehabil Res. 2012; 35(3):208-13.

6

Minkel JL. Seating and mobility considerations for people with spinal cord injury. Phys Ther. 2000; 80(7):701-9.

7

Rehabilitation Practices, in SCIRE guidelines (Spinal Cord Injury Rehabilitation Evidence): www.scireproject.com

8

Boswell-Ruys CL1, Sturnieks DL, Harvey LA, Sherrington C, Middleton JW, Lord SR. Validity and reliability of assessment tools for measuring unsupported sitting in people with a spinal cord injury. Arch Phys Med Rehabil. 2009; 90(9):1571-7.

9

Larson CA, Tezak WD, Malley MS, Thornton W. Assessment of postural muscle strength in sitting: reliability of measures obtained with hand-held dynamometry in individuals with spinal cord injury. J Neurol Phys Ther. 2010; 34(1):24-31.

10

Jørgensen V, Elfving B, Opheim A. Assessment of unsupported sitting in patients with spinal cord injury. Spinal Cord. 2011; 49(7):838-43.

11

Disability assessment tools, in SCIRE guidelines (Spinal Cord Injury Rehabilitation Evidence): www.scireproject.com

75

12

Wirth B, van Hedel HJ, Kometer B, Dietz V, Curt A Changes in activity after a complete spinal cord injury as measured by the Spinal Cord Independence Measure II (SCIM II). Neurorehabil Neural Repair. 2008; 22(3):279-87.

13

Atkinson D, Hale J, Feltz M, & Graves D. Scale Structure of the Thoracic- Lumbar control scale for use in Spinal Cord Injury Research. Abstract presented at ASIA Annual Scientific Meeting, Dallas, TX, August 2009.

14

Pastre CB, Lobo AM, Oberg TD, Pithon KR, Yoneyama SM, Lima NMFV. Validation of the Brazilian version in Portuguese of the Thoracic-Lumbar Control Scale for spinal cord injury. Spinal Cord. 2011; 49:1198–1202.

15

Quinzaños J, Villa AR, Flores AA, Pérez R. Proposal and validation of a clinical trunk control test in individuals with spinal cord injury. Spinal Cord. 2014; 52(6):449-54.

16

Anastasi G. et al. Trattato di Anatomia Umana, Vol. Terzo (4a edizione), 2008, Edi Ermes

17

Scivoletto G., Di Lucente L., Fuoco U., Di Donna V., Laurenza L., Macellari V., Giacomozzi C., Molinari M. Riabilitazione e valutazione dei pazienti mielolesi: l’esperienza della Fondazione S. Lucia di Roma. Disponibile on line: www.iss.it (15 luglio, 2016).

18

Bonavita J., Menarini M. e Pillastrini P. La riabilitazione nelle mielolesioni. III Edizione. Milano: Elsevier Masson, 2004

19

Ferro S., Cecconi L., Bonavita J., Pagliacci M.C., Biggeri A., Franceschini M. Incidence of traumatic spinal cord injury in Italy during 2013-2014: a population-based study. Spinal Cord 2017; 1-5

20

Citterio A., Franceschini M., Spizzichino L., Reggio A., Rossi B., Stampacchia G.: Non traumatic spinal cord injury: An Italian survey. Arch Phys Med Rehabil. 2004 Sep;85(9):1483-7.

21

Maynard F. Jr, Bracken M, Creasey G et all, International Standards for neuroloical and functional classification of spinal cord injury, Spinal Cord 1997; 35: 266-274

22

Jackson A.B., Groomes T.E. Incidence of respiratory complication following spinal cord injury, Arch Phys Med Rehab 1994; 75:270-5.

23

Gonzales F., Chang J.Y., Banovac K., Messina D., Martinez Arizala A., Kelley R.E. Autoregulation of cereblal blood flow in patients with orthostatic hypotension after SCI. Paraplegia, 1991; 29:1-7.

76

24

CHEST Antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians (ACCP) – Evidence Based Clinical Practice Guideline 2012

25

National Institute for Health and Clinical Excellence NHS: Venous thromboembolism: reducing the risk – NICE – clinical guideline, gen 2010

26

“Deep Venous Thrombosis and Thromboembolism in Patient With Cervical Spinal Cord Injuries” Neurosurgery72: 244-254, 2013 Chapter 21 of Guidelines for the Management of Acute Cervical Spine and Spinal Cord Injuries Section on Disorders of the Spine and Peripheral Nerve of the American Association of Neurological Surgeons (AANS) and the Congress of Neurological Surgeons (CNS) 2001 and revision 2013

27

Kandel et all. Principi di Neuroscienze. 2003. Pag. 804-820.

28

Lyalka VF, Zelenin PV, Karayannidou A, Orlovsky GN, Grillner S, Deliagina TG. Impairment and recovery of postural control in rabbits with spinal cord lesions. J Neurophysiol 2005; 94: 677–690

29

Nelson AL1, Groer S, Palacios P, Mitchell D, Sabharwal S, Kirby RL, Gavin- Dreschnack D, Powell-Cope G. Wheelchair-related falls in veterans with spinal cord injury residing in the community: a prospective cohort study. Arch Phys Med Rehabil. 2010 Aug;91(8):1166-73.

30

Janssen-Potten Y, Seelen H, Drukker J, Reulen J. Chair configuration and balance control in persons with spinal cord injury. Arch Phys Med Rehabil 2000; 81: 401–408

31

Edgerton VR, de Leon RD, Tillakaratne NJ, Recktenwald MR, Hodson JA, Roy RR. Retraining the injured spinal cord. J Physiol 2001; 533: 15–22.

32

Thrasher A, Sin V, Masani K, Vette A, Craven C, Popovic M. Responses of the trunk to multidirectional perturbations during usupported sitting in normal adults. J Appl Biomech 2010; 26 pp 332–340.

33

Kirshblum SC, Priebe MM, Ho CH, Scelza WM, Chiodo AE, Wuermser LA. Spinal cord injury medicine. 3. Rehabilitation phase after acute spinal cord injury. Arch Phys Med Rehabil. 2007; 88(3 Suppl 1):S62-70.

34

De Abreu DC, Takara K, Metring NL, Reis JG, Cliquet A Jr. Interference of different types of seats on postural control system during a forward-reaching task in individuals with paraplegia. Int J Rehabil Res. 2012; 35(3):208-13.

77

35

Sprigle S, Wootten M, Sawacha Z, Thielman G. Relationships among cushion type, backrest height, seated posture, and reach of wheelchair users with spinal cord injury. J Spinal Cord Med. 2003; 26(3):236-43.

36

Minkel JL. Seating and mobility considerations for people with spinal cord injury. Phys Ther. 2000; 80(7):701-9.

37

Karataş GK, Tosun AK, Kanatl U: Center-of-pressure displacement during postural changes in relation to pressure ulcers in spinal cord-injured patients. Am J Phys Med Rehabil. 2008; 87(3):177-82.

38

Janssen-Potten Y, Seelen H, Drukker J, Reulen J. Chair configuration and balance control in persons with spinal cord injury. Arch Phys Med Rehabil 2000; 81: 401–408.

39

Vernon W (ed.). Spinal Cord Medicine: Principles and Practice. Demos Medical Publishing: New York. 2003, 3–13.

40

Janssen-Potten Y, Seelen H, Drukker J, Huson T. The effect of seat tilting on pelvic position, balance control, and compensatory postural muscle use in paraplegic subjects. Arch Phys Med Rehabil 2001; 82: 1393–1402.

41

Minkel JL. Seating and mobility considerations for people with spinal cord injury. Phys Ther. 2000 Jul;80(7):701-9.

42

Hobson DA1, Tooms RE. Seated lumbar/pelvic alignment. A comparison between spinal cord-injured and noninjured groups. Spine (Phila Pa1976). 1992 Mar;17(3):293-8.

43

Andersson BJ, Ortengren R, Nachemson AL, Elfström G, Broman H. The sitting posture: an electromyographic and discometric study. Orthop Clin North Am. 1975 Jan;6(1):105-20.

44

Gauthier C, Gagnon D, Grangeon M, Jacquemin G, Nadeau S, Masani K, Popovic MR. Comparison of multidirectional seated postural stability between individuals with spinal cord injury and able-bodied individuals. J Rehabil Med. 2013 Jan;45(1):47-54.

45

Seelen, HA, Potten YJ, Huson A, Spaans F, and Reulen JP. Impaired balance control in paraplegic subjects. J Electromyogr Kinesiol. 1997; 7: 149–160

46

Grigorenko A, Bjerkefors A, Rosdahl H, Hultling C, Alm M, Thostensson A. Sitting balance and effects of kayak training in paraplegics. J Rehab Med 2004; 36: 110–116.

78

47

Janssen-Potten Y, Seelen H, Drukker J, Spaans F, Drost MR. The effect of footrests on sitting balance in paraplegic subjects. Arch Phys Med Rehabil 2002; 83: 642–648.

48

Desroches G1, Gagnon D, Nadeau S, Popovic MR. Effects of sensori motor trunk impairments on trunk and upper limb joint kinematics and kinetics during sitting pivot transfers in individuals with a spinal cord injury. ClinBiomech (Bristol, Avon). 2013 Jan;28(1):1-9

49

Larson CA, Tezak WD, Malley MS, Thornton W. Assessment of postural muscle strength in sitting: reliability of measures obtained with hand-held dynamometry in individuals with spinal cord injury. J Neurol Phys Ther. 2010 Mar;34(1):24-31

50

Franchignoni FP, Tesio L, Ricupero C. Trunk control test as an early predictor of stroke rehabilitation outcome. Stroke 1997; 28: 1382–1385.

51

Wirz M, Müller R, Bastiaenen C. Falls in persons with spinal cord injury: validity and reliability of the Berg Balance Scale. Neurorehabil Neural Repair 2010; 24: 70–77.

52

Lemay JF, Nadeau S Standing balance assessment in ASIA D paraplegic and tetraplegic participants: concurrent validity of the Berg Balance Scale. Spinal Cord. 2010 Mar;48(3):245-50

53

Aissaoui R, Bourbonnais D, Béliveau V, Diallo B, Willet L, Dansereau J. A new quantitative method to assess dynamic stability of seat cushion during seated reaching tasks. RESNA 2008; 99: 272–274.

54

Lynch S, Leahy P, Barker S. Reliability of measurements obtained with a modified functional reach test in subjects with spinal cord injury. Phys Ther 1998; 78: 128–133.

55

Sprigle S, Maurer C, Holowka M. Development of valid and reliable measures of postural stability. J Spinal Cord Med 2007; 30: 40–49.

56

Boswell-Ruys CL, Sturnieks DL, Harvey LA, Sherrington C, Middleton JW, Lord SR. Validity and reliability of assessment tools for measuring unsupported sitting in people with a spinal cord injury. Arch Phys Med Rehabil 2009; 90: 1571–1577.

57

Catz A, Itzkovich M. Spinal cord independence measure: comprehensive ability rating scale for the spinal cord lesion patient. JRRD 2007; 44: 65–68.

79

58

Reft J, Hasan Z.Trajectories of target reaching arm movements in individuals with spinal cord injury: effect of external trunk support. Spinal Cord. 2002; 40(4):186-91.

59

Jørgensen V, Elfving B, Opheim A.Assessment of unsupported sitting in patients with spinal cord injury. Spinal Cord. 2011; 49(7):838-43.

60

Atkinson D, Hale J, Feltz M, & Graves D. Scale Structure of the Thoracic- Lumbar control scale for use in Spinal Cord Injury Research. Abstract presented at ASIA Annual Scientific Meeting, Dallas, TX, August 2009.

61

Pastre CB, Lobo AM, Oberg TD, Pithon KR, Yoneyama SM, Lima NMFV. Validation of the Brazilian version in Portuguese of the Thoracic-Lumbar Control Scale for spinal cord injury. Spinal Cord. 2011; 49:1198–1202.

62

Quinzaños J, Villa AR, Flores AA, Pérez R. Proposal and validation of a clinical trunk control test in individuals with spinal cord injury. Spinal Cord 2014 Apr 8

63

Springle S, Wootten M, Sawacha Z, Theilan G. Relationships among cushion type, backrest height, seated posture, and reach of wheelchair users with spinal cord injury. J Spinal Cord Med 2003; 26: 236–243.

64

Van Acht V1, Bongers E, Lambert N, Verberne R. Miniature wireless inertial sensor for measuring human motions Conf Proc IEEE Eng Med Biol Soc.2007:6279-82.

65

Strohrmann C1, Labruyère R, Gerber CN, van Hedel HJ, Arnrich B, Tröster G Monitoring motor capacity changes of children during rehabilitation using body-worn sensors. J Neuroeng Rehabil. 2013 Jul 30;10:83.

66

Nam Y, Park JW.Child activity recognition based on cooperative fusion model of a triaxial accelerometer and a barometric pressure sensor. IEEE J Biomed Health Inform. 2013 Mar;17(2):420-6.

67

Galán-Mercant A, Cuesta-Vargas AI1. Differences in trunk accelerometry between frail and non-frail elderly persons in functional tasks. BMC Res Notes. 2014 Feb 21;7:100. doi: 10.1186/1756-0500-7-100.

68

Millor N, Lecumberri P, Gómez M, Martínez-Ramírez A, Izquierdo M. An evaluation of the 30-s chair stand test in older adults: frailty detection based on kinematic parameters from a single inertial unit. J Neuroeng Rehabil. 2013 Aug 1;10:86. doi: 10.1186/1743-0003-10-86.

80

69

Mancini M, Carlson-Kuhta P, Zampieri C, Nutt JG, Chiari L, Horak FB.Postural sway as a marker of progression in Parkinson's disease: a pilot longitudinal study. Gait Posture. 2012 Jul;36(3):471-6.

70

Palmerini L1, Mellone S, Avanzolini G, Valzania F, Chiari LQuantification of motor impairment in Parkinson's disease using an instrumented timed p and go test. IEEE Trans Neural Syst Rehabil Eng. 2013 Jul;21(4):664-73.

71

Najafi B1, Armstrong DG, Mohler J.Novel wearable technology for assessing spontaneous daily physical activity and risk of falling in older adults with diabetes. J Diabetes Sci Technol. 2013 Sep 1;7(5):1147-60

72

Parnandi A1, Wade E, Mataric M Motor function assessment using wearable inertial sensors. Conf Proc IEEE Eng Med Biol Soc. 2010;2010:86-9.

73

Zhou H1, Hu H, Harris N Application of wearable inertial sensors in stroke rehabilitation. Conf Proc IEEE Eng Med Biol Soc. 2005;7:6825-8.

74

Redfield MT1, Cagle JC, Hafner BJ, Sanders JE. Classifying prosthetic use via accelerometry in persons with transtibial amputations J Rehabil Res Dev. 2013;50(9):1201-12.

75

Quinzaños J, Villa AR, Flores AA, Pérez R. Proposal and validation of a clinical trunk control test in individuals with spinal cord injury. Spinal Cord. 2014; 52(6):449-54.