• Non ci sono risultati.

Farmaci modulatori dei processi di fu sione e fissione

3.Farmacologia mitocondriale

3.1. Mitocondrio: potenziale target di una fu tura terapia farmacologica per la SLA.

3.1.4. Farmaci modulatori dei processi di fu sione e fissione

Alcuni composti sperimentali, quali l’inibitore di DRP1 MDIVI-1 e l’idra- zone M1 che si ritiene promuova la fusione mitocondriale agendo su MNF o OPA1, sono in grado di interferire con i processi di fissione-fu- sione, ma il potenziale terapeutico di questi composti deve comunque essere ancora verificato. Tuttavia, i cosiddetti peptidi di Szeto-Schiller (SS) sono stati utilizzati per correggere i difetti dell’ultrastruttura mito- condriale in varie condizioni, quali l’atrofia muscolare, l’insufficienza car- diaca, l’ischemia-riperfusione ed il diabete. I peptidi SS sono tripeptidi in grado di penetrare nella cellula e di accumularsi nei mitocondri dove legano la cardiolipina, un componente lipidico della membrana mitocon- driale interna con attività di modulazione della catena respiratoria e di strutturazione delle creste. Inoltre, la cardiolipina modula l’attività di OPA1, ed è possibile che questo possa spiegare almeno in parte gli effetti dei peptidi SS sulla struttura delle creste.125

69

4.Conclusioni

Benché negli ultimi 20 anni si sia assistito ad un impressionante au- mento delle nostre conoscenze sui meccanismi genetici e biochimici alla base della SLA, lo sviluppo di approcci terapeutici in grado di mi- gliorare in modo significativo il decorso clinico non è stato altrettanto soddisfacente. Al momento, la terapia della SLA rimane basata su inter- venti supportivi, mirati ad affrontare le complicanze della malattia. Tut- tavia negli ultimi anni sono emerse nuove strategie terapeutiche, la cui efficacia è stata dimostrata almeno a livello preclinico. Molti dei farmaci in via di studio sono attualmente considerati dei potenziali agenti tera- peutici per la SLA. Comunque, raramente è stato possibile replicare nei pazienti gli effetti ottenuti nei modelli animali di SLA. Tali fallimenti po- trebbero ammettere varie spiegazioni:

➢ molti farmaci non riescono ad attraversare la barriera ematoence- falica in maniera efficace;

➢ risultati promettenti sono spesso ottenuti dai farmaci somministrati nella fase presintomatica della malattia (nei modelli animali); ➢ poiché la popolazione dei pazienti con la SLA è piccola e la pato-

genesi è in parte sconosciuta, gli effetti clinici sono considerati come unico punto finale nei trial clinici randomizzati.

Tuttavia, una maggior collaborazione tra aziende farmaceutiche, ricer- catori di base, ricercatori clinici e neurologi renderà possibile lo sviluppo di una terapia efficace contro la SLA. Il più grande successo terapeutico probabilmente sarà ottenuto mediante l’utilizzo di un singolo farmaco, capace di agire su più fronti oppure dalla combinazione di più farmaci con meccanismi d’azione diversi. 114,123

70

Bibliografia

1. Limpert AS, Mattmann ME, Cosford ND. Recent progress in the discovery of small molecules for the treatment of amyotrophic lateral sclerosis (ALS). Beilstein journal of organic chemistry 2013; 9: 717-32. 2. Zarei S, Carr K, Reiley L, et al. A comprehensive review of amyotrophic lateral sclerosis. Surgical Neurology International 2015; 6: 171.

3. Wijesekera LC, Leigh PN. Amyotrophic lateral sclerosis. Orphanet journal of rare diseases 2009; 4: 3.

4. Leigh PN, Ray-Chaudhuri K. Motor neuron disease. Journal of neurology, neurosurgery, and psychiatry 1994; 57(8): 886-96.

5. Hillel AD, Miller R. Bulbar amyotrophic lateral sclerosis: patterns of progression and clinical management. Head & neck 1989; 11(1): 51- 9.

6. Kim WK, Liu X, Sandner J, et al. Study of 962 patients indicates progressive muscular atrophy is a form of ALS. Neurology 2009; 73(20): 1686-92.

7. Singer MA, Statland JM, Wolfe GI, Barohn RJ. Primary lateral sclerosis. Muscle & nerve 2007; 35(3): 291-302.

8. Wijesekera LC, Mathers S, Talman P, et al. Natural history and clinical features of the flail arm and flail leg ALS variants. Neurology 2009; 72(12): 1087-94.

9. Garg N, Park SB, Vucic S, et al. Differentiating lower motor neuron syndromes. Journal of neurology, neurosurgery, and psychiatry 2016. 10. Moura MC, Novaes MR, Eduardo EJ, Zago YS, Freitas Rdel N, Casulari LA. Prognostic Factors in Amyotrophic Lateral Sclerosis: A Population-Based Study. PloS one 2015; 10(10): e0141500.

11. Arthur KC, Calvo A, Price TR, Geiger JT, Chio A, Traynor BJ. Projected increase in amyotrophic lateral sclerosis from 2015 to 2040. Nature communications 2016; 7: 12408.

12. Vucic S, Rothstein JD, Kiernan MC. Advances in treating amyotrophic lateral sclerosis: insights from pathophysiological studies. Trends in neurosciences 2014; 37(8): 433-42.

13. Rowland LP, Shneider NA. Amyotrophic lateral sclerosis. The New England journal of medicine 2001; 344(22): 1688-700.

14. Kiernan MC, Vucic S, Cheah BC, et al. Amyotrophic lateral sclerosis. Lancet (London, England) 2011; 377(9769): 942-55.

15. De Vos KJ, Chapman AL, Tennant ME, et al. Familial amyotrophic lateral sclerosis-linked SOD1 mutants perturb fast axonal transport to reduce axonal mitochondria content. Human molecular genetics 2007;

71

16. Ferraiuolo L, Kirby J, Grierson AJ, Sendtner M, Shaw PJ. Molecular pathways of motor neuron injury in amyotrophic lateral sclerosis. Nature reviews Neurology 2011; 7(11): 616-30.

17. Kieran D, Hafezparast M, Bohnert S, et al. A mutation in dynein rescues axonal transport defects and extends the life span of ALS mice. The Journal of cell biology 2005; 169(4): 561-7.

18. Williamson TL, Cleveland DW. Slowing of axonal transport is a very early event in the toxicity of ALS-linked SOD1 mutants to motor neurons. Nature neuroscience 1999; 2(1): 50-6.

19. Bilsland LG, Sahai E, Kelly G, Golding M, Greensmith L, Schiavo G. Deficits in axonal transport precede ALS symptoms in vivo. Proceedings of the National Academy of Sciences of the United States of America 2010; 107(47): 20523-8.

20. Shigeri Y, Seal RP, Shimamoto K. Molecular pharmacology of glutamate transporters, EAATs and VGLUTs. Brain research Brain research reviews 2004; 45(3): 250-65.

21. Shaw PJ, Eggett CJ. Molecular factors underlying selective vulnerability of motor neurons to neurodegeneration in amyotrophic lateral sclerosis. Journal of neurology 2000; 247 Suppl 1: I17-27.

22. Lin CL, Bristol LA, Jin L, et al. Aberrant RNA processing in a neurodegenerative disease: the cause for absent EAAT2, a glutamate transporter, in amyotrophic lateral sclerosis. Neuron 1998; 20(3): 589- 602.

23. Trotti D, Rolfs A, Danbolt NC, Brown RH, Jr., Hediger MA. SOD1 mutants linked to amyotrophic lateral sclerosis selectively inactivate a glial glutamate transporter. Nature neuroscience 1999; 2(5): 427-33. 24. Ilieva H, Polymenidou M, Cleveland DW. Non-cell autonomous toxicity in neurodegenerative disorders: ALS and beyond. The Journal of cell biology 2009; 187(6): 761-72.

25. Rothstein JD. Excitotoxicity and neurodegeneration in amyotrophic lateral sclerosis. Clinical neuroscience 1995; 3(6): 348-59. 26. Honig LS, Chambliss DD, Bigio EH, Carroll SL, Elliott JL. Glutamate transporter EAAT2 splice variants occur not only in ALS, but also in AD and controls. Neurology 2000; 55(8): 1082-8.

27. Carriedo SG, Sensi SL, Yin HZ, Weiss JH. AMPA exposures induce mitochondrial Ca(2+) overload and ROS generation in spinal motor neurons in vitro. The Journal of neuroscience : the official journal of the Society for Neuroscience 2000; 20(1): 240-50.

28. Forsberg K, Andersen PM, Marklund SL, Brannstrom T. Glial nuclear aggregates of superoxide dismutase-1 are regularly present in patients with amyotrophic lateral sclerosis. Acta neuropathologica 2011;

72

29. Boillee S, Vande Velde C, Cleveland DW. ALS: a disease of motor neurons and their nonneuronal neighbors. Neuron 2006; 52(1): 39-59. 30. Corcia P, Pradat PF, Salachas F, et al. Causes of death in a post- mortem series of ALS patients. Amyotrophic lateral sclerosis : official publication of the World Federation of Neurology Research Group on Motor Neuron Diseases 2008; 9(1): 59-62.

31. Echaniz-Laguna A, Zoll J, Ribera F, et al. Mitochondrial respiratory chain function in skeletal muscle of ALS patients. Annals of neurology 2002; 52(5): 623-7.

32. Wang W, Zhang F, Li L, et al. MFN2 couples glutamate excitotoxicity and mitochondrial dysfunction in motor neurons. The Journal of biological chemistry 2015; 290(1): 168-82.

33. Weisskopf MG, Morozova N, O'Reilly EJ, et al. Prospective study of chemical exposures and amyotrophic lateral sclerosis. Journal of neurology, neurosurgery, and psychiatry 2009; 80(5): 558-61.

34. Chio A, Benzi G, Dossena M, Mutani R, Mora G. Severely increased risk of amyotrophic lateral sclerosis among Italian professional football players. Brain : a journal of neurology 2005; 128(Pt 3): 472-6.

35. Yu Y, Hayashi S, Cai X, et al. Pu-erh tea extract induces the degradation of FET family proteins involved in the pathogenesis of amyotrophic lateral sclerosis. BioMed research international 2014;

2014: 254680.

36. Baranowska-Bosiacka I, Gutowska I, Rybicka M, Nowacki P, Chlubek D. Neurotoxicity of lead. Hypothetical molecular mechanisms of synaptic function disorders. Neurologia i neurochirurgia polska 2012;

46(6): 569-78.

37. Kamel F, Umbach DM, Hu H, et al. Lead exposure as a risk factor for amyotrophic lateral sclerosis. Neuro-degenerative diseases 2005;

2(3-4): 195-201.

38. Barbeito AG, Martinez-Palma L, Vargas MR, et al. Lead exposure stimulates VEGF expression in the spinal cord and extends survival in a mouse model of ALS. Neurobiology of disease 2010; 37(3): 574-80. 39. Wagner S, Rokita AG, Anderson ME, Maier LS. Redox regulation of sodium and calcium handling. Antioxidants & redox signaling 2013;

18(9): 1063-77.

40. Mochly-Rosen D, Das K, Grimes KV. Protein kinase C, an elusive therapeutic target? Nature reviews Drug discovery 2012; 11(12): 937- 57.

41. Markovac J, Goldstein GW. Lead activates protein kinase C in immature rat brain microvessels. Toxicology and applied pharmacology 1988; 96(1): 14-23.

73

42. Lasley SM. Regulation of dopaminergic activity, but not tyrosine hydroxylase, is diminished after chronic inorganic lead exposure. Neurotoxicology 1992; 13(3): 625-35.

43. Martinez-Samano J, Torres-Duran PV, Juarez-Oropeza MA, Verdugo-Diaz L. Effect of acute extremely low frequency electromagnetic field exposure on the antioxidant status and lipid levels in rat brain. Archives of medical research 2012; 43(3): 183-9.

44. Simko M, Mattsson MO. Extremely low frequency electromagnetic fields as effectors of cellular responses in vitro: possible immune cell activation. Journal of cellular biochemistry 2004; 93(1): 83-92.

45. Iwasaki Y, Ikeda K, Kinoshita M. Molecular and cellular mechanism of glutamate receptors in relation to amyotrophic lateral sclerosis. Current drug targets CNS and neurological disorders 2002;

1(5): 511-8.

46. Morozova N, Weisskopf MG, McCullough ML, et al. Diet and amyotrophic lateral sclerosis. Epidemiology 2008; 19(2): 324-37.

47. Veldink JH, Kalmijn S, Groeneveld GJ, et al. Intake of polyunsaturated fatty acids and vitamin E reduces the risk of developing amyotrophic lateral sclerosis. Journal of neurology, neurosurgery, and psychiatry 2007; 78(4): 367-71.

48. Goldstein LH, Abrahams S. Changes in cognition and behaviour in amyotrophic lateral sclerosis: nature of impairment and implications for assessment. The Lancet Neurology 2013; 12(4): 368-80.

49. Chio A, Finocchiaro E, Meineri P, Bottacchi E, Schiffer D. Safety and factors related to survival after percutaneous endoscopic gastrostomy in ALS. ALS Percutaneous Endoscopic Gastrostomy Study Group. Neurology 1999; 53(5): 1123-5.

50. Diagnosis ETFo, Management of Amyotrophic Lateral S, Andersen PM, et al. EFNS guidelines on the clinical management of amyotrophic lateral sclerosis (MALS)--revised report of an EFNS task force. European journal of neurology 2012; 19(3): 360-75.

51. Davenport RJ, Swingler RJ, Chancellor AM, Warlow CP. Avoiding false positive diagnoses of motor neuron disease: lessons from the Scottish Motor Neuron Disease Register. Journal of neurology, neurosurgery, and psychiatry 1996; 60(2): 147-51.

52. Hardiman O, van den Berg LH, Kiernan MC. Clinical diagnosis and management of amyotrophic lateral sclerosis. Nature reviews Neurology 2011; 7(11): 639-49.

53. Salajegheh M, Bryan WW, Dalakas MC. The challenge of diagnosing ALS in patients with prior poliomyelitis. Neurology 2006;

67(6): 1078-9.

54. Mitchell JD, Borasio GD. Amyotrophic lateral sclerosis. Lancet (London, England) 2007; 369(9578): 2031-41.

74

55. Chio A, Borasio GD. Breaking the news in amyotrophic lateral sclerosis. Amyotrophic lateral sclerosis and other motor neuron disorders : official publication of the World Federation of Neurology, Research Group on Motor Neuron Diseases 2004; 5(4): 195-201.

56. Bensimon G, Lacomblez L, Meininger V. A controlled trial of riluzole in amyotrophic lateral sclerosis. ALS/Riluzole Study Group. The New England journal of medicine 1994; 330(9): 585-91.

57. Meininger V, Dib M, Aubin F, Jourdain G, Zeisser P. The Riluzole Early Access Programme: descriptive analysis of 844 patients in France. ALS/Riluzole Study Group III. Journal of neurology 1997; 244

Suppl 2: S22-5.

58. Wokke J. Riluzole. Lancet (London, England) 1996; 348(9030):

Documenti correlati