• Non ci sono risultati.

ACPA anticorpi anti-peptidi citrullinati

ACR American College of Rheumatology APC cellula presentante l’antigene

AR artrite reumatoide BSA sieroalbumina bovina CCP peptide ciclico citrullinato CD cluster di differenziazione CRP proteina C-reattiva

CTLA-4 antigene 4 associato ai linfociti T citotossici

DMARD farmaci antireumatici che modificano l’andamento della malattia DTT ditiotreitolo

EBNA antigene nucleare Epstein-Barr EBV virus di Epstein-Barr

EDA extra-dominio A (della fibronectina) EULAR European League Against Rheumatism

F8IL10 combinazione dell’IL-10 con il frammento anticorpale F8 (Dekavil) FANS farmaci antinfiammatori non steroidei

Fc frammento cristallizzabile FR fattore reumatoide

HIF fattore indotto dall’ipossia HLA antigene umano leucocitario hnRNP-A2 ribonucleoproteina eterogenea A2 HSP proteina da shock termico

HVR regione ipervariabile IAA iodoacetamide

IL interleuchina

IPG gradiente di pH immobilizzato

MHC complesso maggiore di istocompatibilità MMP metalloproteasi

NADPH nicotinammide adenina di nucleotide fosfato PAD peptidilarginina deiminasi

PTPN22 protein-tirosin-fosfatasi non recettoriale 22 RAI indice articolare di Ritchie

ROS specie reattive dell’ossigeno SAA protein sieroamiloide A SDS sodio dodecilsolfato

SDS-PAGE elettroforesi su gel di poliacrilammide in presenza di SDS SE epitopo condiviso

SJC numero di articolazioni tumefatte T2T treat-to-target

TACE enzima convertitore il TNF-α TCR recettore dei linfociti T Th linfociti T helper

TJC numero di articolazioni dolenti TNF fattore di necrosi tumorale Treg linfociti T regolatori

VCAM-1 molecola di adesione cellulare vascolare VEGF fattore di crescita dell’endotelio vascolare VES velocità di eritrosedimentazione

Bibliografia

1. Entezami, P., et al., Historical perspective on the etiology of rheumatoid arthritis. Hand Clin, 2011. 27(1): p. 1-10.

2. Taylor, P.C., Aetiopathology of rheumatoid arthritis. Medicine, 2014. 42(5): p. 227-230.

3. Gibofsky, A., Overview of epidemiology, pathophysiology, and diagnosis of rheumatoid arthritis. Am J Manag Care, 2012. 18(13 Suppl): p. S295-302.

4. Kumar, V., et al., Robbins e Cotran - Le basi patologiche delle malattie: Vol. 1 Patologia generale. Elsevier Health Sciences Italy, 2011. 1: p. 43-76.

5. Murphy, K., Immunobiologia di Janeway. Piccin-Nuova Libraria, 2014: p. 141- 51.

6. Lessard, C.J., et al., The genomics of autoimmune disease in the era of genome- wide association studies and beyond. Autoimmun Rev, 2012. 11(4): p. 267-75.

7. Mosaad, Y.M., Clinical Role of Human Leukocyte Antigen in Health and Disease. Scand J Immunol, 2015. 82(4): p. 283-306.

8. Yarwood, A., T.W. Huizinga, and J. Worthington, The genetics of rheumatoid arthritis: risk and protection in different stages of the evolution of RA. Rheumatology (Oxford), 2016. 55(2): p. 199-209.

9. Miyadera, H. and K. Tokunaga, Associations of human leukocyte antigens with autoimmune diseases: challenges in identifying the mechanism. J Hum Genet, 2015. 60(11): p. 697-702.

10. Stastny, P., Association of the B-cell alloantigen DRw4 with rheumatoid arthritis. N Engl J Med, 1978. 298(16): p. 869-71. Abstract.

rheumatoid arthritis. Arthritis Rheum, 1987. 30(11): p. 1205-13.

12. de Almeida, D.E., S. Ling, and J. Holoshitz, New insights into the functional role of the rheumatoid arthritis shared epitope. FEBS Letters, 2011. 585(23): p. 3619-3626.

13. Viatte, S., et al., Association of HLA-DRB1 haplotypes with rheumatoid arthritis severity, mortality, and treatment response. Jama, 2015. 313(16): p. 1645-56.

14. Deighton, C.M., et al., The contribution of HLA to rheumatoid arthritis. Clin Genet, 1989. 36(3): p. 178-82. Abstract.

15. Snir, O., et al., Non-HLA genes PTPN22, CDK6 and PADI4 are associated with specific autoantibodies in HLA-defined subgroups of rheumatoid arthritis. Arthritis Res Ther, 2014. 16(4): p. 414.

16. Yamamoto, K., et al., Genetic studies of rheumatoid arthritis. Proc Jpn Acad Ser B Phys Biol Sci, 2015. 91(8): p. 410-22.

17. Plenge, R.M., et al., Replication of putative candidate-gene associations with rheumatoid arthritis in >4,000 samples from North America and Sweden: association of susceptibility with PTPN22, CTLA4, and PADI4. Am J Hum Genet, 2005. 77(6): p. 1044-60.

18. Daha, N.A., et al., Confirmation of STAT4, IL2/IL21, and CTLA4 polymorphisms in rheumatoid arthritis. Arthritis Rheum, 2009. 60(5): p. 1255- 60.

19. Scott, D.L., F. Wolfe, and T.W.J. Huizinga, Rheumatoid arthritis. The Lancet, 2010. 376(9746): p. 1094-1108.

20. Perricone, C., et al., Smoke and autoimmunity: The fire behind the disease. Autoimmun Rev, 2016. 15(4): p. 354-74.

21. Essouma, M. and J.J. Noubiap, Is air pollution a risk factor for rheumatoid arthritis? J Inflamm (Lond), 2015. 12: p. 48.

22. Trier, N.H., et al., Application of synthetic peptides for detection of anti- citrullinated peptide antibodies. Peptides, 2016. 76: p. 87-95.

23. Ball, R.J., et al., Systematic review and meta-analysis of the sero- epidemiological association between Epstein-Barr virus and rheumatoid arthritis. Arthritis Res Ther, 2015. 17: p. 274.

24. Santegoets, K.C., et al., Impaired Porphyromonas gingivalis-Induced Tumor Necrosis Factor Production by Dendritic Cells Typifies Patients With Rheumatoid Arthritis. Arthritis Rheumatol, 2016. 68(4): p. 795-804.

25. Gabarrini, G., et al., The peptidylarginine deiminase gene is a conserved feature of Porphyromonas gingivalis. Sci Rep, 2015. 5: p. 13936.

26. Anastasi, G., Trattato di anatomia umana. Edi. Ermes, 2007. 3: p. 68-72.

27. Bartok, B. and G.S. Firestein, Fibroblast-like synoviocytes: key effector cells in rheumatoid arthritis. Immunol Rev, 2010. 233(1): p. 233-55.

28. Klippel, J.H. and P. Dieppe, Rheumatology. Mosby, 1998. 1.

29. Fauci, A., Braunwald, E., Kasper, D.L., Hauser, S.L., Longo, D.L., Jameson, J.L., Harrison's Principles of Internal Medicine. McGraw-Hill Education, 2015.

1: p. 2136-49.

30. Ma, J.D., et al., Continuously elevated serum matrix metalloproteinase-3 for 3 ~ 6 months predict one-year radiographic progression in rheumatoid arthritis: a prospective cohort study. Arthritis Res Ther, 2015. 17: p. 289.

31. Noack, M. and P. Miossec, Th17 and regulatory T cell balance in autoimmune and inflammatory diseases. Autoimmunity Reviews, 2014. 13(6): p. 668-677.

biomarkers and targets of personalized therapy. Cytokine, 2015. 76(2): p. 527- 536.

33. McInnes , I.B. and G. Schett The Pathogenesis of Rheumatoid Arthritis. New England Journal of Medicine, 2011. 365(23): p. 2205-2219.

34. Boissier, M.-C., et al., Rheumatoid arthritis: From autoimmunity to synovitis and joint destruction. Journal of Autoimmunity, 2012. 39(3): p. 222-228.

35. Zvaifler, N.J., et al., Pannocytes: distinctive cells found in rheumatoid arthritis articular cartilage erosions. Am J Pathol, 1997. 150(3): p. 1125-38.

36. Todesco, S., Malattie reumatiche. McGraw-Hill Education, 2007: p. 137-69.

37. Azizi, G., R. Boghozian, and A. Mirshafiey, The potential role of angiogenic factors in rheumatoid arthritis. Int J Rheum Dis, 2014. 17(4): p. 369-83.

38. Biniecka, M., et al., Redox-mediated angiogenesis in the hypoxic joint of inflammatory arthritis. Arthritis Rheumatol, 2014. 66(12): p. 3300-10.

39. Marrelli, A., et al., Angiogenesis in rheumatoid arthritis: A disease specific

process or a common response to chronic inflammation? Autoimmunity

Reviews, 2011. 10(10): p. 595-598.

40. Maracle, C.X. and S.W. Tas, Inhibitors of angiogenesis: ready for prime time? Best Pract Res Clin Rheumatol, 2014. 28(4): p. 637-49.

41. Cummins, E.P., et al., The role of HIF in immunity and inflammation. Molecular Aspects of Medicine, 2016. 47–48: p. 24-34.

42. Waaler, E., On the occurrence of a factor in human serum activating the specific agglutination of sheep red corpuscles. Acta Pathol Microbiol Scand, 1940. 17: p. 172-88. Abstract.

43. Brink, M., et al., Rheumatoid factor isotypes in relation to antibodies against citrullinated peptides and carbamylated proteins before the onset of rheumatoid arthritis. Arthritis Res Ther, 2016. 18(1): p. 43.

44. Kumar, L.D., et al., Advancement in contemporary diagnostic and therapeutic approaches for rheumatoid arthritis. Biomedicine & Pharmacotherapy, 2016.

79: p. 52-61.

45. Valesini, G., et al., Citrullination and autoimmunity. Autoimmun Rev, 2015.

14(6): p. 490-7.

46. Aletaha, D., et al., 2010 rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Ann Rheum Dis, 2010. 69(9): p. 1580-8.

47. Habets, K.L., et al., Anti-citrullinated protein antibodies contribute to platelet activation in rheumatoid arthritis. Arthritis Res Ther, 2015. 17: p. 209.

48. Sokolove, J. and D. Pisetsky, Bone loss, pain and inflammation: three faces of ACPA in RA pathogenesis. Ann Rheum Dis, 2016. 75(4): p. 637-9.

49. Krishnamurthy, A., et al., Identification of a novel chemokine-dependent molecular mechanism underlying rheumatoid arthritis-associated autoantibody- mediated bone loss. Ann Rheum Dis, 2016. 75(4): p. 721-9.

50. Wigerblad, G., et al., Autoantibodies to citrullinated proteins induce joint pain independent of inflammation via a chemokine-dependent mechanism. Ann Rheum Dis, 2016. 75(4): p. 730-8.

51. Schwenzer, A., et al., Identification of an immunodominant peptide from citrullinated tenascin-C as a major target for autoantibodies in rheumatoid arthritis. Ann Rheum Dis, 2015.

1515-20. Abstract.

53. Trembleau, S., et al., Immunodominant T-cell epitopes of hnRNP-A2 associated with disease activity in patients with rheumatoid arthritis. Eur J Immunol, 2010.

40(6): p. 1795-808.

54. Conigliaro, P., et al., Autoantibodies in inflammatory arthritis. Autoimmun Rev, 2016. 15(7): p. 673-83.

55. Kay, J. and K.S. Upchurch, ACR/EULAR 2010 rheumatoid arthritis classification criteria. Rheumatology (Oxford), 2012. 51 Suppl 6: p. 5-9.

56. Kourilovitch, M., C. Galarza-Maldonado, and E. Ortiz-Prado, Diagnosis and classification of rheumatoid arthritis. Journal of Autoimmunity, 2014. 48–49: p. 26-30.

57. Salaffi, F. and A. Stancati, [Disability and quality of life of patients with rheumatoid arthritis: assessment and perspectives]. Reumatismo, 2004. 56(1 Suppl 1): p. 87-106.

58. Schipper, L.G. and P.L. van Riel, Ups and downs in the treatment strategies of rheumatoid arthritis. Rheumatology (Oxford), 2011. 50(5): p. 818-20.

59. Upchurch, K.S. and J. Kay, Evolution of treatment for rheumatoid arthritis. Rheumatology (Oxford), 2012. 51 Suppl 6: p. 28-36.

60. Garner, R., T. Ding, and C. Deighton, Management of rheumatoid arthritis. Medicine, 2014. 42(5): p. 237-242.

61. Smolen, J.S., et al., EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2013 update. Ann Rheum Dis, 2014. 73(3): p. 492-509.

62. Davies, R., D.P.M. Symmons, and K.L. Hyrich, Biologics registers in rheumatoid arthritis. Medicine, 2014. 42(5): p. 262-265.

63. Singh, J.A., et al., Risk of serious infection in biological treatment of patients with rheumatoid arthritis: a systematic review and meta-analysis. Lancet, 2015.

386(9990): p. 258-65.

64. Dixon, W.G., Rheumatoid arthritis: biological drugs and risk of infection. Lancet, 2015. 386(9990): p. 224-5.

65. Laev, S.S. and N.F. Salakhutdinov, Anti-arthritic agents: progress and potential. Bioorg Med Chem, 2015. 23(13): p. 3059-80.

66. Zampeli, E., P.G. Vlachoyiannopoulos, and A.G. Tzioufas, Treatment of rheumatoid arthritis: Unraveling the conundrum. J Autoimmun, 2015. 65: p. 1- 18.

67. Rossi, D., et al., Rheumatoid arthritis: Biological therapy other than anti-TNF. International Immunopharmacology, 2015. 27(2): p. 185-188.

68. Cohen, M.D. and E. Keystone, Rituximab for Rheumatoid Arthritis. Rheumatology and Therapy, 2015. 2(2): p. 99-111.

69. Dayer, J.M. and E. Choy, Therapeutic targets in rheumatoid arthritis: the interleukin-6 receptor. Rheumatology (Oxford), 2010. 49(1): p. 15-24.

70. Alunno, A., et al., Altered immunoregulation in rheumatoid arthritis: the role of regulatory T cells and proinflammatory Th17 cells and therapeutic implications. Mediators Inflamm, 2015. 2015: p. 751793.

71. Kang, S., T. Tanaka, and T. Kishimoto, Therapeutic uses of anti-interleukin-6 receptor antibody. Int Immunol, 2015. 27(1): p. 21-9.

96.

73. Garlanda, C., Charles A. Dinarello, and A. Mantovani, The Interleukin-1 Family: Back to the Future. Immunity, 2013. 39(6): p. 1003-1018.

74. Schett, G., J.M. Dayer, and B. Manger, Interleukin-1 function and role in rheumatic disease. Nat Rev Rheumatol, 2016. 12(1): p. 14-24.

75. Smolen, J.S., et al., Treating rheumatoid arthritis to target: 2014 update of the recommendations of an international task force. Ann Rheum Dis, 2016. 75(1): p. 3-15.

76. Stoffer, M.A., et al., Evidence for treating rheumatoid arthritis to target: results of a systematic literature search update. Ann Rheum Dis, 2016. 75(1): p. 16-22.

77. Singh, J.A., et al., 2015 American College of Rheumatology Guideline for the Treatment of Rheumatoid Arthritis. Arthritis Rheumatol, 2016. 68(1): p. 1-26.

78. Matcham, F., et al., Are depression and anxiety associated with disease activity in rheumatoid arthritis? A prospective study. BMC Musculoskelet Disord, 2016.

17(1): p. 155.

79. Shiozawa, K., K. Hino, and S. Shiozawa, Alternatively spliced EDA-containing fibronectin in synovial fluid as a predictor of rheumatoid joint destruction. Rheumatology (Oxford), 2001. 40(7): p. 739-42.

80. Rybak, J.N., et al., The extra-domain A of fibronectin is a vascular marker of solid tumors and metastases. Cancer Res, 2007. 67(22): p. 10948-57.

81. Villa, A., et al., A high-affinity human monoclonal antibody specific to the alternatively spliced EDA domain of fibronectin efficiently targets tumor neo- vasculature in vivo. Int J Cancer, 2008. 122(11): p. 2405-13.

82. Doll, F., et al., Murine analogues of etanercept and of F8-IL10 inhibit the progression of collagen-induced arthritis in the mouse. Arthritis Res Ther, 2013.

15(5): p. R138.

83. Schwager, K., et al., Preclinical characterization of DEKAVIL (F8-IL10), a novel clinical-stage immunocytokine which inhibits the progression of collagen- induced arthritis. Arthritis Res Ther, 2009. 11(5): p. R142.

84. Galeazzi, M., et al., A phase IB clinical trial with Dekavil (F8-IL10), an immunoregulatory 'armed antibody' for the treatment of rheumatoid arthritis, used in combination wiIh methotrexate. Isr Med Assoc J, 2014. 16(10): p. 666.

85. Crutchfield, C.A., et al., Advances in mass spectrometry-based clinical biomarker discovery. Clin Proteomics, 2016. 13: p. 1.

86. Magdeldin, S., et al., Basics and recent advances of two dimensional- polyacrylamide gel electrophoresis. Clin Proteomics, 2014. 11(1): p. 16.

87. Streckfus, C.F., Advances in Salivary Diagnostics. Springer, 2015: p. 1-16.

88. Mahmood, T. and P.C. Yang, Western blot: technique, theory, and trouble shooting. N Am J Med Sci, 2012. 4(9): p. 429-34.

89. Khan, P., et al., Luminol-based chemiluminescent signals: clinical and non- clinical application and future uses. Appl Biochem Biotechnol, 2014. 173(2): p. 333-55.

90. Rabilloud, T. and C. Lelong, Two-dimensional gel electrophoresis in proteomics: a tutorial. J Proteomics, 2011. 74(10): p. 1829-41.

91. Wilson, K., et al., Metodologia biochimica. Le bioscienze e le biotecnologie in laboratorio. Cortina Raffaello, 2001: p. 578-603.

92. Giusti, L., et al., Is GRP78/BiP a potential salivary biomarker in patients with rheumatoid arthritis? Proteomics Clin Appl, 2010. 4(3): p. 315-24.

94. Kilani, R.T., et al., Detection of high levels of 2 specific isoforms of 14-3-3 proteins in synovial fluid from patients with joint inflammation. J Rheumatol, 2007. 34(8): p. 1650-7.

95. Abildtrup, M., G.H. Kingsley, and D.L. Scott, Calprotectin as a biomarker for rheumatoid arthritis: a systematic review. J Rheumatol, 2015. 42(5): p. 760-70.

Iconografia

Documenti correlati