• Non ci sono risultati.

Inibitori della via di segnale Wnt/β-Catenina.

5. INIBITORI DELLE VIE DI SEGNALE.

5.4. Inibitori della via di segnale Wnt/β-Catenina.

Il segnale Wnt svolge un ruolo importante nello sviluppo dei melanociti, e la β-catenina è il controllore chiave. Il ligando Wnt si lega al recettore Frizzled e innesca lo spiazzamento della glicogeno sintasi chinasi-3 β (GSK3β), che fosforila la β-catenina e, quindi, la degrada attraverso un meccanismo ubiquitina-dipendente. Inoltre, il segnale Wnt regola negativamente il GSK3β e porta all'accumulo di β- catenina. La β-catenina stabilizzata è trasferita nel nucleo e promuove l'espressione del gene MITF e la melanogenesi (rif.Art.principale). La cardamonina (136, Fig. 19), un calcone isolato dalla Aplinia katsumadai, e il fingolimod (FTY720, 137, Fig. 19)

73 (rif.Art.principale) sono riportati come inibitori della melanogenesi che hanno come target il segnale Wnt. Alcuni studi hanno chiarito che il composto 136 induce la degradazione intracellulare di β-catenina, la downregulation di MITF e l'espressione di TYR; al contrario, 137 (FTY720) inibisce la sintesi di melanina attraverso la downregulation dell'espressione di β-catenina in cellule Mel-Ab.

Bellei e coll. hanno descritto i derivati piridinilimidazolici quali inibitori della melanogenesi in cellule B16-F0, attraverso l'inibizione della classica attività della Wnt/β-catenina. (127) In particolare, i composti 138, 139 e 140 iniscono la sintesi di melanina con valori di IC50, rispettivamente, di 30, 34 e 89 nM.

Recentemente, il labdano, un diterpene andrografolide (141, Fig. 19), ha mostrato potenti attività inibitorie del contenuto di melanina e dell'attività intracellulare della TYR, in cellule B16 (rif.Art.principale).

In un modello in vivo di cavia di colorazione bruna indotta dagli UVB, il composto 141 ha ridotto la melanina e il contenuto di TYR. Ulteriori studi hanno rivelato che l'andrografolide riduce la degradazione della β-catenina attraverso il meccanismo ubiquitina- dipendente.

74

6. CONCLUSIONI

Negli ultimi anni sono stati descritti molti inibitori della melanogenesi. Nella maggior parte dei casi, questi composti bersagliano direttamente l'attività catalitica della TYR o la sua espressione attraverso diverse vie di segnale. La TYR è risultato il target molecolare più importante in quanto interviene nella sintesi della melanina, limitandone la velocità. Molto importante è anche il fatto che la TYR è espressa solo dai melanociti, pertanto bersagliando selettivamente la TYR si può inibire la melanogenesi nelle cellule senza alcun effetto collaterale.

Sono stati identificati numerosi inibitori della TYR fungina di origine sintetica, semisintetica o naturale, ma solo alcuni di essi hanno raggiunto applicazioni cliniche come agenti sbiancanti per la pelle, a causa di problemi di sicurezza e effetti sbiancanti troppo lievi. Soprattutto negli ultimi anni, i prodotti naturali hanno attratto molto l'attenzione a causa dei minori effetti collaterali e delle loro efficienti proprietà sbiancanti della pelle. Tuttavia, queste proprietà devono essere ancora studiate sugli animali o in modelli adatti, in vivo.

D'altra parte, l'identificazione di inibitori della TYR umana è di grande importanza. Sulla base dei dati riportati in letteratura è stato visto che c'è un'enorme differenza nell'attività inibitoria tra mTYR e hTYR. Infatti, molti inibitori della mTYR, alla fine, sono risultati circa 10 volte meno potenti o addirittura inattivi nei confronti della hTYR. Ad esempio, il ben noto acido kojico ha una più alta affinità di legame per mTYR (Ki = 4,3 µM) rispetto a hTYR (Ki = 350 µM),

75 mentre l'esculetina, identificata come un potente inibitore di mTYR, non ha mostrato attività inibitoria rilevabile nei confronti di hTYR. Sebbene sia ben chiaro che mTYR è economico e commercialmente disponibile per lo screening di agenti sbiancanti della pelle, deve essere convalidata l'efficienza di questi composti nei confronti della hTYR, prima di effettuare studi in vivo o su animali. Recentemente, Lai et coll. sono riusciti a sovraprodurre hTYR attiva in alta resa ed in forma pura, utilizzando il sistema di espressione del vettore baculovirus in cellule High Five; questo potrebbe risultare sicuramente utile, in futuro, sia per lo screening di cristallizzazione che per lo screening ad alto rendimento di nuovi potenziali agenti sbiancanti della pelle.

In generale, è importante progettare prodotti cosmetici con un efficace attività antiossidante, importante per ridurre gli effetti dell'invecchiamento. Recentemente, vi è stato un numero crescente di inibitori della melanogenesi la cui attività è stata associata alle proprietà antiossidanti. Tuttavia, sono necessari altri studi avanzati su questi inibitori, dal punto di vista clinico umano.

Nel programma di scoperta di farmaci, l'uso di farmaci esistenti è uno dei metodi più sicuri ed efficaci, poiché presenta numerosi vantaggi, che includono risparmio di tempo, disponibilità di farmaci, sicurezza/tollerabilità e buon rapporto costo-efficacia. Molti farmaci antitubercolari e antitiroidei si sono dimostrati potenti inibitori della tirosinasi, senza causare citotossicità significativa alle cellule. Pertanto, in futuro, dovranno essere fatti ulteriori studi per poterli usare come agenti sbiancanti.

76

7.Bibliografia

1) Lei, T. C.; Virador, V.; Yasumoto, K.; Vieira, W. D.; Toyofuku, K.; Hearing, V. J. Stimulation of melanoblast pigmentation by 8-methoxypsoralen:the involvement of microphthalmia-associated transcription factor, the protein kinase a signal pathway, and proteosome-mediated degradation. J. Invest. Dermatol. 2002, 119, 1341-1349.

2) Sviderskaya, E. V.; Hill, S. P.; Balachandar, D.; Barsh, G. S.; Bennett, D. C. Agouti signaling protein and other factors modulating differentiation and proliferation of immortal melanoblasts. Dev. Dyn. 2001, 221, 373−379.

3) Costin, G. E.; Hearing, V. J. Human skin pigmentation:melanocytes modulate skin color in response to stress. FASEB J.2007, 21, 976−994.

4) Seiberg, M. Keratinocyte-melanocyte interactions during melanosome transfer. Pigm. Cell Res. 2001, 14, 236−242.

5) Ito, S.; Wakamatsu, K. Chemistry of mixed melanogenesis−pivotal roles of dopaquinone. Photochem. Photobiol. 2008, 84, 582−592.

6) Coudrier, E. Myosins in melanocytes: to move or not to move? Pigm. Cell Res. 2007, 20, 153−160.

7-8) Melanina, Wikipedia, L'enciclopedia libera , 7/09/2018.

9)Brenner, M.; Hearing, V. J. The protective role of melanin against UV damage in human skin. Photochem. Photobiol. 2008, 84, 539−549.

10) ) Melanina, Wikipedia, L'enciclopedia libera , 7/09/2018.

11) Holbrook KA, Underwood RA, Vogel AM, et al.The appearance, density and distribution of melanocytes in human embryonic and fetal skin revealed by the anti-melanoma monoclonal antibody, HMB-45. Anat Embryol 1989; 180:443-55

12) Kobayashi, T.; Urabe, K.; Winder, A.; Jimenez-Cervantes, C. Imokawa, G.; Brewington, T.; Solano, F.; Garcia-Borron, J. C.;Hearing, V. J. Tyrosinase related protein 1 (TRP1) functions as a DHICA oxidase in melanin biosynthesis. EMBO J. 1994, 13, 5818−5825.

13) Lai, X.; Wichers, H. J.; Soler-Lopez, M.; Dijkstra, B. W. Structure of human tyrosinase related protein 1 reveals a binuclear zinc active site important for melanogenesis. Angew. Chem., Int. Ed. 2017, 56, 9812−9815.

14) Boissy, R. E.; Sakai, C.; Zhao, H.; Kobayashi, T.; Hearing, V. J. Human tyrosinase related protein-1 (TRP-1) does not function as a DHICA oxidase activity in contrast to murine TRP-1. Exp. Dermatol. 1998, 7, 198−204.

15) Kushimoto T, Basrur V, Valencia J, et al. A model for melanosome biogenesis based on the purification

and analysis of early melanosomes. U.S.A. Proc Natl Acad Sci 2001; 98:10698-10703.

16) Hearing VJ, Tsukamoto K. Enzymatic control of pigmentation in mammals. FASEB J 1991; 5:2902-2909.

17) Toyofuku K, Wada I, Valencia JC, et al. Oculocutaneous albinism types 1and 3 are ER retention diseases: mutation of tyrosinase or Tyrp1 can affect the processing of both mutant and wildtype proteins. FASEB J 2001; 15:2149-2161.

77

18) Ito S, Wakamatsu K, Ozeki H. Chemical analysis of melanins and its application to the study of the regulation of melanogenesis. Pigment Cell Res (13 suppl.) 2000; 8:103-109.

19-20) Yamaguchi, Y.; Brenner, M.; Hearing, V. J. The regulation of skin pigmentation. J. Biol. Chem. 2007, 282, 27557−27561.

21) Quevedo WC, Fitzpatrick TB, Szabo G, Jimbow K. Biology of melanocytes. In Dermatology in General Medicine. (Fitzpatrick TB, Eisen AZ, Wolff K, et al. eds) New York. McGraw-Hill 1987; 1:224-251.

22-23-24) http://www.summagallicana.it/Volume2/B.XXVIII.08.7.htm 25) https://www.my-personaltrainer.it/fisiologia/alterazioni-colore-pelle.htm

26) Soengas, M. S. & Lowe, S. W. Apoptosis and melanoma chemoresistance. Oncogene 22, 3138–3151 (2003).

27) English DR, Armstrong BK, Kricker A, Winter MG, Heenan PJ. Demographic characteristics, pigmentary and cutaneous risk factors for squamous cell carcinoma of the skin: a case-control study.Int J Cancer 1998;76:628–634

28) Zanetti R, Prota G, Napolitano A, Martinez C, Sancho-Garnier H, Osterlind A, Sacerdote C, Rosso S.Developmen t of an integrated method of skin phenotype measurement using the melanins.Melanoma Res 2001;11:551–557

29) Hochstein P, Cohen G. The cytotoxicity of melanin precursors. Ann N Y Acad Sci 1963;100:876–881

30) Miller, A. J. & Mihm, M. C. Melanoma. N. Engl. J. Med. 355, 51–65 (2006).

31) Kirkwood, J. M., Moschos, S. & Wang, W. Strategies for the development of more effective adjuvant therapy of melanoma: current and future explorations of antibodies, cytokines,vaccines, and combinations. Clin. Cancer Res. 12, 2331s–2336s (2006).

32) Hara H, Lee MH, Chen H, Luo D, Jimbow K. Role of gene expression and protein synthesis of tyrosinase, TRP-1, lamp-1, and CD63 in UVB-induced melanogenesis in human melanomas.J Invest Dermatol 1994;102:495–500

33)https://cosmetics.specialchem.com/news/industry-news/skinlightening-products-market-to- reach-usd23-bn-by-2020-globalindustry-analysts (accessed Feb 16, 2005).

34) Bonaventure, J.; Domingues, M. J.; Larue, L. Cellular and molecular mechanisms controlling the migration of melanocytes and melanoma cells. Pigm. Cell Melanoma Res. 2013, 26, 316−325. 35) Riley, P. A.; Borovanský, J.; Wiley, I. Melanins and Melanosomes: Biosynthesis, Biogenesis, Physiological, and Pathological Functions; Wiley-VCH: Weinheim, Germany, June 2011; pp 343−381.

36) Wu, X.; Hammer, J. A., 3rd. Making sense of melanosome dynamics in mouse melanocytes. Pigm. Cell Res. 2000, 13, 241−247.

37) Ahn, S. J.; Koketsu, M.; Ishihara, H.; Lee, S. M.; Ha, S. K.; Lee,K. H.; Kang, T. H.; Kima, S. Y. Regulation of melanin synthesis by selenium-containing carbohydrates. Chem. Pharm. Bull. 2006, 54, 281−286.

38) Unver, N.; Freyschmidt-Paul, P.; Horster, S.; Wenck, H.; Stab, F.; Blatt, T.; Elsasser, H. P. Alterations in the epidermal-dermal melanin axis and factor XIIIa melanophages in senile lentigo and ageing skin. Br. J. Dermatol. 2006, 155, 119−128.

78

39) Nordlund, J. J.; Boissy, R. E.; Hearing, V. J.; King, R. A.; Oetting, W. S.; Ortonne, J.-P. The Pigmentary System: Physiology and Pathophysiology, 2nd ed.; Blackwell Publishing Ltd.; Malden, MA, 2006; pp 1163−1174.

40) Cavalieri, E. L.; Li, K. M.; Balu, N.; Saeed, M.; Devanesan, P.; Higginbotham, S.; Zhao, J.; Gross, M. L.; Rogan, E. G. Catechol orthoquinones:the electrophilic compounds that form depurinating DNA adducts and could initiate cancer and other diseases. Carcinogenesis 2002, 23, 1071−1077.

41) Greggio, E.; Bergantino, E.; Carter, D.; Ahmad, R.; Costin, G.E.; Hearing, V. J.; Clarimon, J.; Singleton, A.; Eerola, J.; Hellstrom, O.; Tienari, P. J.; Miller, D. W.; Beilina, A.; Bubacco, L.; Cookson, M. R. Tyrosinase exacerbates dopamine toxicity but is not genetically associated with Parkinson’s disease. J. Neurochem. 2005, 93, 246−256.

42) Wang, N.; Hebert, D. N. Tyrosinase maturation through the mammalian secretory pathway: bringing color to life. Pigm. Cell Res.2006, 19, 3−18.

43) Van Gelder, C. W. G.; Flurkey, W. H.; Wichers, H. J. Sequence and structural features of plant and fungal tyrosinases. Phytochemistry 1997, 45, 1309−1323.

44) Olivares, C.; García-Borrón, J. C.; Solano, F. Identification of active site residues involved in metal cofactor binding and stereospecific substrate recognition in mammalian tyrosinase. Implications to the catalytic cycle. Biochemistry 2002, 41, 679−686.

45) Mayer, A. M. Polyphenol oxidases in plants and fungi: going places? A review. Phytochemistry 2006, 67, 2318−2331.

46) Decker, H.; Schweikardt, T.; Tuczek, F. The first crystalvstructure of tyrosinase: All questions answered? Angew. Chem., Int. Ed. 2006, 45, 4546−4550.

47) Favre, E.; Daina, A.; Carrupt, P.-A.; Nurisso, A. Modeling the met form of human tyrosinase: A refined and hydrated pocket for antagonist design. Chem. Biol. Drug Des. 2014, 84, 206−215. 48) Ramsden, C. A.; Riley, P. A. Tyrosinase: The four oxidation states of the active site and their relevance to enzymatic activation, oxidation and inactivation. Bioorg. Med. Chem. 2014, 22, 2388−2395.

49) Ramsden, C. A.; Stratford, M. R.; Riley, P. A. The influence of catechol structure on the suicide-inactivation of tyrosinase. Org. Biomol. Chem. 2009, 7, 3388−3390.

50) Sanchez-Ferrer, A.; Rodriguez-Lopez, J. N.; Garcia-Canovas, F.; Garcia-Carmona, F. Tyrosinase: a comprehensive review of its mechanism. Biochim. Biophys. Acta, Protein Struct. Mol. Enzymol. 1995, 1247, 1−11.

51) Munoz-Munoz, J. L.; Acosta-Motos, J. R.; Garcia-Molina, F.; Varon, R.; Garcia-Ruiz, P. A.; Tudela, J.; Garcia-Canovas, F.; Rodriguez-Lopez, J. N. Tyrosinase inactivation in its action on dopa. Biochim. Biophys. Acta, Proteins Proteomics 2010, 1804, 1467−1475.

52) Claus, H.; Decker, H. Bacterial tyrosinases. Syst. Appl. Microbiol. 2006, 29, 3−14.

53) Faccio, G.; Kruus, K.; Saloheimo, M.; Thöny-Meyer, L. Bacterial tyrosinases and their applications. Process Biochem. 2012, 47, 1749−176.

54) Fairhead, M.; Thöny-Meyer, L. Bacterial tyrosinases: old enzymes with new relevance to biotechnology. New Biotechnol. 2012, 29, 183−191.

55) Breathnach, A. C.; Nazzaro-Porro, M.; Passi, S.; Zina, G. Azelaic acid therapy in disorders of pigmentation. Clin. Dermatol. 1989, 7, 106−119.

56) Verallo-Rowell, V. M.; Verallo, V.; Graupe, K.; Lopez-Villafuerte, L.; Garcia-Lopez, M. Double-blind comparison of azelaic acid and hydroquinone in the treatment of melasma. Acta Derm.-Venereol., Suppl. 1989, 143, 58−61.

79

57) Jimbow, K. N-Acetyl-4-S-cysteaminylphenol as a new type of depigmenting agent for the melanoderma of patients with melasma. Arch. Dermatol. 1991, 127, 1528−1534.

58) Neering, H. Treatment of melasma (chloasma) by local application of a steroid cream. Dermatology 2004, 151, 349−353.

59) Griffiths, C. E.; Finkel, L. J.; Ditre, C. M.; Hamilton, T. A.; Ellis, C. N.; Voorhees, J. J. Topical tretinoin (retinoic acid) improves melasma. A vehicle-controlled, clinical trial. Br. J. Dermatol. 1993, 129, 415−42.

60) Kimbrough-Green, C. K.; Griffiths, C. E.; Finkel, L. J.; Hamilton, T. A.; Bulengo-Ransby, S. M.; Ellis, C. N.; Voorhees, J. J. Topical retinoic acid (tretinoin) for melasma in black patients. A vehicle-controlled clinical trial. Arch. Dermatol. 1994, 130, 727−733.

61) Goncalez, M. L.; Correa, M. A.; Chorilli, M. Skin delivery of kojic acid-loaded nanotechnology-based drug delivery systems for the treatment of skin aging. BioMed Res. Int. 2013, 2013, 271−276.

62) Ki, D. H.; Jung, H. C.; Noh, Y. W.; Thanigaimalai, P.; Kim, B.H.; Shin, S. C.; Jung, S. H.; Cho, C. W. Preformulation and formulation of newly synthesized QNT3-18 for development of a skin whitening agent. Drug Dev. Ind. Pharm. 2013, 39, 526−533.

63) Kumar, K. J.; Vani, M. G.; Wang, S. Y.; Liao, J. W.; Hsu, L. S.; Yang, H. L.; Hseu, Y. C. In vitro and in vivo studies disclosed the depigmenting effects of gallic acid: a novel skin lightening agent for hyperpigmentary skin diseases. Biofactors 2013, 39, 259−270.

64) Arndt, K. A.; Fitzpatrick, T. B. Topical use of hydroquinone as a depigmenting agent. Jama 1965, 194, 965−967.

65) Fitzpatrick, T. B.; Arndt, K. A.; el-Mofty, A. M.; Pathak, M. A. Hydroquinone and psoralens in the therapy of hypermelanosis and vitiligo. Arch. Dermatol. 1966, 93, 589−600.

66) Heilgemeir, G. P.; Balda, B. R. Irreversible toxic depigmentation. Observations following use of hydroquinonemonobenzylether-containing skin bleaching preparations. MMW Munch. Med. Wochenschr. 1981, 123, 47−48.

67) Kligman, A. M.; Willis, I. A new formula for depigmenting human skin. Arch. Dermatol. 1975, 111, 40−48.

68) Curto, E. V.; Kwong, C.; Hermersdorfer, H.; Glatt, H.; Santis, C.; Virador, V.; Hearing, V. J., Jr.; Dooley, T. P. Inhibitors of mammalian melanocyte tyrosinase: in vitro comparisons of alkyl esters of gentisic acid with other putative inhibitors. Biochem. Pharmacol. 1999, 57, 663−672. 69) Engasser, P. G. Ochronosis caused by bleaching creams. J. Am. Acad. Dermatol. 1984, 10, 1072−1073.

70) Fisher, A. A. Current contact news. Hydroquinone uses and abnormal reactions. Cutis 1983, 31, 240−244.

71) Romaguera, C.; Grimalt, F. Leukoderma from hydroquinone. Contact Dermatitis 1985, 12, 183.

72) Spínola, V.; Mendes, B.; Câmara, J. S.; Castilho, P. C. Effect of time and temperature on vitamin C stability in horticultural extracts. UHPLC-PDA vs iodometric titration as analytical methods. LWT-Food Sci. Technol. 2013, 50, 489−495.

73) Arulmozhi, V.; Pandian, K.; Mirunalini, S. Ellagic acid encapsulated chitosan nanoparticles for drug delivery system in human oral cancer cell line (KB). Colloids Surf., B 2013, 110, 313−320.

80

74) Tse, T. W.; Hui, E. Tranexamic acid: an important adjuvant in the treatment of melasma. J. Cosmet. Dermatol. 2013, 12, 57−66.

75) Briganti, S.; Camera, E.; Picardo, M. Chemical and instrumental approaches to treat hyperpigmentation. Pigm. Cell Res. 2003, 16, 101−110.

76) Parvez, S.; Kang, M.; Chung, H. S.; Bae, H. Naturally occurring tyrosinase inhibitors: mechanism and applications in skin health, cosmetics and agriculture industries. Phytother. Res. 2007, 21, 805−816.

77) Akhtar, T.; Hameed, S.; Khan, K. M.; Khan, A.; Choudhary, M. I. Design, synthesis, and urease inhibition studies of some 1,3,4-oxadiazoles and 1,2,4-triazoles derived from mandelic acid. J. Enzyme Inhib. Med. Chem. 2010, 25, 572−576.

78) Casanola-Martin, G. M.; Marrero-Ponce, Y.; Khan, M. T.; Ather, A.; Khan, K. M.; Torrens, F.; Rotondo, R. Dragon method for finding novel tyrosinase inhibitors: Biosilico identification and experimental in vitro assays. Eur. J. Med. Chem. 2007, 42, 1370−1381.

79) Hamidian, H. Synthesis of novel compounds as new potent tyrosinase inhibitors. BioMed Res. Int. 2013, 2013, 207181.

80) Khan, K. M.; Maharvi, G. M.; Khan, M. T.; Perveen, S.; Choudhary, M. I.; Atta-ur-Rahman. A facile and improved synthesis of sildenafil (Viagra) analogs through solid support microwave irradiation possessing tyrosinase inhibitory potential, their conformational analysis and molecular dynamics simulation studies. Mol. Diversity 2005, 9, 15−26.

81) Mojzych, M.; Dolashki, A.; Voelter, W. Synthesis of pyrazolo- [4,3-e][1,2,4]triazine sulfonamides, novel Sildenafil analogs with tyrosinase inhibitory activity. Bioorg. Med. Chem. 2014, 22, 6616−6624.

82) Gehm, B. D.; McAndrews, J. M.; Chien, P. Y.; Jameson, J. L. Resveratrol, a polyphenolic compound found in grapes and wine, is an agonist for the estrogen receptor. Proc. Natl. Acad. Sci. U. S. A. 1997, 94, 14138−14143.

83) Satooka, H.; Kubo, I. Resveratrol as a kcat type inhibitor for tyrosinase: potentiated melanogenesis inhibitor. Bioorg. Med. Chem. 2012, 20, 1090−1099.

84) Lee, T. H.; Seo, J. O.; Baek, S. H.; Kim, S. Y. Inhibitory effects of resveratrol on melanin synthesis in ultraviolet B-induced pigmentation in Guinea pig skin. Biomol. Ther. 2014, 22, 35−40.

85) Rigon, R. B.; Fachinetti, N.; Severino, P.; Santana, M. H.;Chorilli, M. Skin delivery and in vitro biological evaluation of transresveratrol- loaded solid lipid nanoparticles for skin disorder therapies. Molecules 2016, 21, 116.

86) Chaita, E.; Lambrinidis, G.; Cheimonidi, C.; Agalou, A.; Beis, D.; Trougakos, I.; Mikros, E.; Skaltsounis, A. L.; Aligiannis, N. Anti- Melanogenic properties of Greek plants. A novel depigmenting agent from Morus alba Wood. Molecules 2017, 22, 514.

87) Franco, D. C.; de Carvalho, G. S.; Rocha, P. R.; da Silva Teixeira, R.; da Silva, A. D.; Raposo, N. R. Inhibitory effects of resveratrol analogs on mushroom tyrosinase activity. Molecules 2012, 17, 11816− 11825.

88) Bae, S. J.; Ha, Y. M.; Kim, J. A.; Park, J. Y.; Ha, T. K.; Park, D.; Chun, P.; Park, N. H.; Moon, H. R.; Chung, H. Y. A novel synthesized tyrosinase inhibitor: (E)-2-((2,4- dihydroxyphenyl)diazenyl)phenyl 4- methylbenzenesulfonate as an azo-resveratrol analog. Biosci., Biotechnol.,Biochem. 2013, 77, 65−72.

89) Bae, S. J.; Ha, Y. M.; Park, Y. J.; Park, J. Y.; Song, Y. M.; Ha, T.K.; Chun, P.; Moon, H. R.; Chung, H. Y. Design, synthesis, and evaluation of (E)-N-substituted benzylidene-aniline derivatives as tyrosinase inhibitors. Eur. J. Med. Chem. 2012, 57, 383−390.

81

90) Girelli, A. M.; Mattei, E.; Messina, A.; Tarola, A. M. Inhibition of polyphenol oxidases activity by various dipeptides. J. Agric. Food Chem. 2004, 52, 2741−2745.

91) Morita, H.; Kayashita, T.; Kobata, H.; Gonda, A.; Takeya, K.; Itokawa, H. Pseudostellarins D - F, new tyrosinase inhibitory cyclic peptides from Pseudostellaria heterophylla. Tetrahedron 1994, 50, 9975−9982.

92) Abu Ubeid, A.; Zhao, L.; Wang, Y.; Hantash, B. M. Shortsequence oligopeptides with inhibitory activity against mushroom and human tyrosinase. J. Invest. Dermatol. 2009, 129, 2242−2249.

93) Kim, H.; Choi, J.; Cho, J. K.; Kim, S. Y.; Lee, Y. S. Solid-phase synthesis of kojic acid- tripeptides and their tyrosinase inhibitory activity, storage stability, and toxicity. Bioorg. Med. Chem. Lett. 2004, 14, 2843−2846.

94) Reddy, B.; Jow, T.; Hantash, B. M. Bioactive oligopeptides in dermatology: Part I. Exp. Dermatol. 2012, 21, 563−568.

95) Hsiao, N. W.; Tseng, T. S.; Lee, Y. C.; Chen, W. C.; Lin, H. H.; Chen, Y. R.; Wang, Y. T.; Hsu, H. J.; Tsai, K. C. Serendipitous discovery of short peptides from natural products as tyrosinase inhibitors. J. Chem. Inf. Model. 2014, 54, 3099−3111.

96) Schurink, M.; van Berkel, W. J.; Wichers, H. J.; Boeriu, C. G. Novel peptides with tyrosinase inhibitory activity. Peptides 2007, 28,485−495.

97) Chen, J. S.; Wei, C. I.; Marshall, M. R. Inhibition mechanism of kojic acid on polyphenol oxidase. J. Agric. Food Chem. 1991, 39, 1897−1901.

98) Li, D. F.; Hu, P. P.; Liu, M. S.; Kong, X. L.; Zhang, J. C.; Hider, R. C.; Zhou, T. Design and synthesis of hydroxypyridinone-Lphenylalanine conjugates as potential tyrosinase inhibitors. J. Agric. Food Chem. 2013, 61, 6597−6603.

99) Zhao, D. Y.; Zhang, M. X.; Dong, X. W.; Hu, Y. Z.; Dai, X. Y.; Wei, X.; Hider, R. C.; Zhang, J. C.; Zhou, T. Design and synthesis of novel hydroxypyridinone derivatives as potential tyrosinase inhibitors. Bioorg. Med. Chem. Lett. 2016, 26, 3103−3108.

100) Kim, Y. J.; No, J. K.; Lee, J. H.; Chung, H. Y. 4,4-Dihydroxybiphenyl as a new potent tyrosinase inhibitor. Biol. Pharm. Bull. 2005, 28, 323−327.

101) Bao, K.; Dai, Y.; Zhu, Z. B.; Tu, F. J.; Zhang, W. G.; Yao, X. S. Design and synthesis of biphenyl derivatives as mushroom tyrosinase inhibitors. Bioorg. Med. Chem. 2010, 18, 6708−6714.

102) Kwong, H. C.; Chidan Kumar, C. S.; Mah, S. H.; Chia, T. S.;Quah, C. K.; Loh, Z. H.; Chandraju, S.; Lim, G. K. Novel biphenyl ester derivatives as tyrosinase inhibitors: Synthesis, crystallographic, spectral analysis and molecular docking studies. PLoS One 2017, 12, e0170117. 103) Mutahir, S.; Khan, M. A.; Khan, I. U.; Yar, M.; Ashraf, M.; Tariq, S.; Ye, R. L.; Zhou, B. J. Organocatalyzed and mechanochemical solvent-free synthesis of novel and functionalized bis- biphenyl substituted thiazolidinones as potent tyrosinase inhibitors: SAR and molecular modeling studies. Eur. J. Med. Chem. 2017, 134, 406−414.

104) Oyama, T.; Takahashi, S.; Yoshimori, A.; Yamamoto, T.; Sato, A.; Kamiya, T.; Abe, H.; Abe, T.; Tanuma, S. Discovery of a new type of scaffold for the creation of novel tyrosinase inhibitors. Bioorg. Med. Chem. 2016, 24, 4509−4515.

105) Oyama, T.; Yoshimori, A.; Takahashi, S.; Yamamoto, T.; Sato, A.; Kamiya, T.; Abe, H.; Abe, T.; Tanuma, S. I. Structural insight into the active site of mushroom tyrosinase using phenylbenzoic acid derivatives. Bioorg. Med. Chem. Lett. 2017, 27, 2868−2872.

82

106) Ferro, S.; Certo, G.; De Luca, L.; Germano, M. P.; Rapisarda, A.; Gitto, R. Searching for indole derivatives as potential mushroom tyrosinase inhibitors. J. Enzyme Inhib. Med. Chem. 2016, 31, 398−403.

107) Thanigaimalai, P.; Lee, K. C.; Sharma, V. K.; Joo, C.; Cho, W. J.; Roh, E.; Kim, Y.; Jung, S. H. Structural requirement of phenylthiourea analogs for their inhibitory activity of melanogenesis and tyrosinase. Bioorg. Med. Chem. Lett. 2011, 21, 6824−6828.

108) Thanigaimalai, P.; Hoang, T. A. L.; Lee, K. C.; Bang, S. C.; Sharma, V. K.; Yun, C. Y.; Roh, E.; Hwang, B. Y.; Kim, Y.; Jung, S. H. Structural requirement(s) of N-phenylthioureas and benzaldehyde thiosemicarbazones as inhibitors of melanogenesis in melanoma B 16 cells. Bioorg. Med. Chem. Lett. 2010, 20, 2991−2993.

109) Du, B. K.; Erway, W. F. Studies on the mechanism of action of thiourea and related compounds. II. Inhibition of oxidative enzymes and oxidations catalyzed by copper. J. Biol. Chem. 1946, 165, 711−721.

110) Hall, A. M.; Orlow, S. J. Degradation of tyrosinase induced by phenylthiourea occurs following Golgi maturation. Pigm. Cell Res. 2005, 18, 122−129.

111) Poma, A.; Bianchini, S.; Miranda, M. Inhibition of L-tyrosineinduced micronuclei production by phenylthiourea in human melanoma cells. Mutat. Res., Genet. Toxicol. Environ. Mutagen. 1999, 446, 143−148.

112) You, A.; Zhou, J.; Song, S.; Zhu, G.; Song, H.; Yi, W. Structurebased modification of 3-/4- aminoacetophenones giving a profound change of activity on tyrosinase: from potent activators to highly efficient inhibitors. Eur. J. Med. Chem. 2015, 93, 255−262.

113) Kwak, S. Y.; Lee, S.; Choi, H. R.; Park, K. C.; Lee, Y. S. Dual effects of caffeoyl-amino acidyl-hydroxamic acid as an antioxidant and depigmenting agent. Bioorg. Med. Chem. Lett. 2011, 21, 5155−5158.

114) Kwak, S. Y.; Yang, J. K.; Choi, H. R.; Park, K. C.; Kim, Y. B.; Lee, Y. S. Synthesis and dual biological effects of hydroxycinnamoyl phenylalanyl/prolyl hydroxamic acid derivatives as tyrosinase inhibitor and antioxidant. Bioorg. Med. Chem. Lett. 2013, 23, 1136−1142.

115) Arung, E. T.; Shimizu, K.; Kondo, R. Structure-activity relationship of prenyl-substituted polyphenols from Artocarpus heterophyllus as inhibitors of melanin biosynthesis in cultured melanoma cells. Chem. Biodiversity 2007, 4, 2166−2171.

116) Lee, S. J.; Son, Y. H.; Lee, K. B.; Lee, J. H.; Kim, H. J.; Jeong, E. M.; Park, S. C.; Kim, I. G. 4-n-butylresorcinol enhances proteolytic degradation of tyrosinase in B16F10 melanoma cells. Int. J. Cosmet. Sci. 2017, 39, 248−255.

117) An, S. M.; Lee, S. I.; Choi, S. W.; Moon, S. W.; Boo, Y. C. p-Coumaric acid, a constituent of Sasa quelpaertensis Nakai, inhibits cellular melanogenesis stimulated by alpha-melanocyte stimulating hormone. Br. J. Dermatol. 2008, 159, 292−299.

118) Song, K.; An, S. M.; Kim, M.; Koh, J. S.; Boo, Y. C. Comparison of the antimelanogenic effects of p-coumaric acid and its methyl ester and their skin permeabilities. J. Dermatol. Sci. 2011, 63,17−22.

119) An, S. M.; Koh, J. S.; Boo, Y. C. p-Coumaric acid not only inhibits human tyrosinase activity in vitro but also melanogenesis in cells exposed to UVB. Phytother. Res. 2010, 24, 1175−1180. 120) Seo, Y. K.; Kim, S. J.; Boo, Y. C.; Baek, J. H.; Lee, S. H.; Koh, J. S. Effects of p-coumaric acid on erythema and pigmentation of human skin exposed to ultraviolet radiation. Clin. Exp. Dermatol. 2011, 36,260−266.

121) Kong, K. H.; Park, S. Y.; Hong, M. P.; Cho, S. H. Expression and characterization of human tyrosinase from a bacterial expression system. Comp. Biochem. Physiol., Part B: Biochem. Mol. Biol. 2000, 125,563−569.

83

122) Chen, G. H.; Chen, W. M.; Huang, Y. C.; Jiang, S. T. Expression of recombinant mature human tyrosinase from Escherichia coli and exhibition of its activity without phosphorylation or glycosylation. J. Agric. Food Chem. 2012, 60, 2838−2843.

123) Dolinska, M. B.; Kovaleva, E.; Backlund, P.; Wingfield, P. T.; Brooks, B. P.; Sergeev, Y. V. Albinism-causing mutations in recombinant human tyrosinase alter intrinsic enzymatic activity. PLoS One 2014, 9, e84494.

124) Fogal, S.; Carotti, M.; Giaretta, L.; Lanciai, F.; Nogara, L.; Bubacco, L.; Bergantino, E. Human tyrosinase produced in insect cells: a landmark for the screening of new drugs addressing its activity. Mol. Biotechnol. 2015, 57, 45−57.

Documenti correlati