• Non ci sono risultati.

78

MATERIALI E METODI

Se non diversamente specificato, tutti i solventi ed i reagenti utilizzati per la sintesi sono stati acquistati dalle ditte fornitrici e sono stati utilizzati senza ulteriore purificazione.

Come agente essiccante è stata utilizzata P2O5.

L’evaporazione dei solventi è stata effettuata sottovuoto utilizzando l’evaporatore rotante.

Le rese (%) si riferiscono a composti cromatograficamente e spettroscopicamente (1H-NMR) omogenei.

Le reazioni sono state monitorate mediante cromatografia su strato sottile (T.L.C.) realizzate su foglio di alluminio ricoperto di silice (MERK 60 F-254, spessore 0.2 mm).

Per le colonne cromatografiche è stato utilizzato il gel di silice 60 (230-400 mesh).

Gli spettri di risonanza magnetica del protone (1H-NMR) sono stati eseguiti in soluzione di cloroformio deuterato (CDCl3-d), oppure in una soluzione di

dimetilsolfossido esa-deuterato (DMSO-d6) con uno spettrometro Brucker-400 (400-MHz) utilizzando (CH3)4Si (TMS) come standard interno.

I punti di fusione sono stati determinati con un apparecchio di Reichert Kӧfler e non sono stati corretti.

79

Sintesi dei 2-[(dimetilamino)metilen]-5-fenil-1,3-cicloesanedione 89[64]

Il composto 88 (2,00g, 0.010 moli) è solubilizzato in 2,00 ml (0.015 moli) di DMF-DMA e scaldato a 100 °C per circa 1 ora controllando l’andamento della reazione mediante T.L.C. (etere di petrolio 40-60/acetato di etile 1: 9). Dopo raffreddamento la sospensione ottenuta viene triturata con etere etilico ed il solido ottenuto, raccolto per filtrazione sotto vuoto corrisponde al composto desiderato

89.

Resa 95%

80

Sintesi 4-(6-fenil-4-oxo-4,5,6,7-tetraidro-1H-indazol-1-il)benzenesolfonamide (84c)[61]

Il composto 89 ( 1,00 g, 0,004 moli) è solubilizzato in etanolo e addizionato di 1,103 g (0,005 moli) di 4-solfonammidofenilidrazina cloridrato. La reazione viene scaldata a 90° per un periodo che va dalle 4 alle 5 ore controllandone l’andamento mediante T.L.C. (miscela eluente: etere di petrolio 40-60/acetato di etile = 1:9). Dopo raffreddamento il solido ottenuto viene raccolto mediante filtrazione sottovuoto e successivamente purificato tramite cristallizzazione da etanolo. Resa 54% P.f.:197-199 °C 1 H NMR (400 MHz, DMSO-d6): δ 2.54-2.58 (m, 1H), 2.95-3.02 (m, 1H), 3.15- 3.20 (m, 1H), 3.43-3.56 (m, 2H), 7.26 (t, J = 8.0 Hz, 1H), 7.33-7.41 (m, 4H), 7.48 (s, 2H, NH2 scamb.), 7.86 (d, J = 8.0 Hz, 2H), 7.98 (d, J = 8.0 Hz, 2H), 8.18 (s, 1H) ppm. 13C NMR (100 MHz, DMSO-d6): δ 30.42, 40.99, 44.37, 120.40, 123.45 (2C), 127.04 (2C), 127.11 (2C), 128.50 (2C), 138.42, 140.61, 142.96, 143.17, 149.73, 191.46

81

Sintesi dei derivati 4-(4-oxo-6-fenill-4,5,6,7-tetraidro-1H-indazol-1-il)-N- fenilbenzenesolfonamidici 86a-i

Procedura generale

Il composto 84c (0,300 g, 0,817 mmoli) è addizionato di 0,007 g (0,04 mmoli) di CuI, 0,981 mmoli dell’opportuno iodobenzene, 0,282g (2,045 mmoli) di K2CO3,

0,04 ml di N,N’-dimetiletilendiammina (DMEDA) solubilizzati in 10 ml di Acetonitrile . La reazione viene condotta in corrente di N2 e scaldata a 100 °C,

mantenendola in agitazione, per un periodo che va da 8 a 24 ore, controllandone l’andamento mediante T.L.C. (miscela eluente: etere di petrolio 40-60/acetato di etile = 5:5). Dopo raffreddamento la miscela viene addizionata di 3 ml di acqua distillata e quindi acidificata con HCl 2N, fino a pH 4. Si esegue, quindi, un’estrazione con Acetato di Etile, da cui si raccolgono le fasi organiche che vengono seccate su MgSO4 ed evaporate a pressione ridotta. I composti grezzi

ottenuti vengono purificati mediante cromatografia flash su gel di silice (diametro: 3 cm, altezza: 17 cm, miscela eluente: etere di petrolio 40-60/acetato di etile = 5:5).

82 4-(4-oxo-6-fenill-4,5,6,7-tetraidro-1H-indazol-1-il)-N-fenilbenzenesolfonamide 86a Resa: 15.0 % P.f.: 98-100 °C 1 H NMR (400 MHz, DMSO-d6): δ 2.54-2.55 (m, 1H), 2.93-3.01 (m, 1H), 3.11- 3.16 (m, 1H), 3.40-3.55 (m, 2H), 7.02 (t, J = 8.0 Hz, 1H), 7.10 (d, J = 7.6 Hz, 2H), 7.21-7.27 (m, 3H), 7.32-7.40 (m, 4H), 7.83 d, J = 8.8 Hz, 2H), 7.90 d, J = 8.8 Hz, 2H), 8.16 (s, 1H), 10.40 (s, 1H, scamb.) ppm. 13C NMR (100 MHz, DMSO-d6): δ 30.57, 41.13, 44.47, 120.31 (2C), 120.561, 123.52 (2C), 124.36, 126.93, 127.15 (2C), 128.27 (2C), 128.58 (2C), 129.28 (2C), 137.46, 138.53, 138.66, 141.50, 143.02, 149.92, 191.51. N-(4-metossifenill)-4-(4-oxo-6-fenil-4,5,6,7-tetraidro-1H-indazol-1- il)benzenesolfonamide 86b Resa: 15.0 % P.f.: 108-110 °C 1 H NMR (400 MHz, DMSO-d6): δ 2.54-2.56 (m, 1H), 2.94-3.01 (m, 1H), 3.12- 3.16 (m, 1H), 3.41-3.54 (m, 2H), 3.65 (s, 3H), 6.80 (AA′XX′, JAA’/XX’ = 2.4 Hz, JAX = 8.8 Hz, 2H), 6.98 (AA′XX′, JAA’/XX’ = 3.0 Hz, JAX = 8.8 Hz, 2H), 7.26 (t, J = 8.0 Hz, 1H), 7.32-7.41 (m, 4H), 7.82 (s, 4H), 8.17 (s, 1H), 10.02 (s, 1H,

scamb.) ppm. 13C NMR (100 MHz, DMSO-d6): 13C NMR (100 MHz, DMSO-d6):

δ 30.50, 41.04, 44.32, 55.09, 114.32 (2C), 120.50, 123.35 (2C), 123.71 (2C), 126.85, 127.06 (2C), 128.20 (2C), 128.50 (2C), 129.73, 138.38, 138.56, 141.26, 142.94, 149.80, 156.67, 191.45.

83 N-(4-clorofenill)-4-(4-oxo-6-fenil-4,5,6,7-tetraidro-1H-indazol-1- il)benzenesolfonamide 86c Resa: 35.0 % P.f.: 100-102 °C 1 H NMR (400 MHz, DMSO-d6): δ 2.53-2.55 (m, 1H), 2.94-3.01 (m, 1H), 3.13- 3.16 (m, 1H), 3.41-3.52 (m, 2H), 7.10-7.12 (m, 2H), 7.24-7.40 (m, 7H), 7.84-7.91 (m, 4H), 8.17 (s, 1H), 10.56 (s, 1H, scamb.) ppm. 13C NMR (100 MHz, DMSO- d6): 13C NMR (100 MHz, DMSO-d6): δ 30.53, 41.06, 44.35, 120.56 (2C), 121.83 (2C), 123.48 (2C), 126.86, 127.08 (2C), 128.21 (2C), 128.40, 128.51 (2C), 129.20, (2C), 138.08, 138.63, 141.56, 142.94, 149.87, 191.45. N-(4-nitrofenil)-4-(4-oxo-6-fenil-4,5,6,7-tetraidro-1H-indazol-1- il)benzenesulfonamide 86d Resa: 80.0 % P.f.: 137-139 °C 1 H NMR (400 MHz, DMSO-d6): δ 2.54-2.56 (m, 1H), 2.94-3.01 (m, 1H), 3.14- 3.19 (m, 1H), 3.41-3.52 (m, 2H), 7.23-7.27 (m, 1H), 7.32-7.40 (m, 6H), 7.89 (AA′XX′, JAA’/XX’ = 2.2 Hz, JAX = 8.0 Hz, 2H), 8.03 (AA′XX′, JAA’/XX’ = 2.2

Hz, JAX = 8.0 Hz, 2H), 8.12-8.17 (m, 3H), 11.42 (s, 1H, scamb.) ppm. 13C NMR

(100 MHz, DMSO-d6): δ 30.52, 41.06, 44.36, 118.13 (2C), 120.60 (2C), 123.66

(2C), 125.39 (2C), 126.85, 127.06 (2C), 128.32, 128.50 (2C), 137.80, 138.69, 141.93, 142.71, 142.91, 143.85, 149.94, 191.45.

84 4-(4-oxo-6-fenil-4,5,6,7-tetraidro-1H-indazol-1-il)-N-(p- tolil)benzenesolfonamide 86e Resa: 25.0 % P.f.: 101-103 °C 1 H NMR (400 MHz, DMSO-d6): δ 2.16 (s, 3H), 2.55 (d, J = 3.2 Hz, 1H), 2.93- 3.01 (m, 1H), 3.10-3.15 (m, 1H), 3.40-3.53 (m, 2H), 6.97 (AA′XX′, JAA’/XX’ = 2.0 Hz, JAX = 8.4 Hz, 2H), 7.02 (AA′XX′, JAA’/XX’ = 2.0 Hz, JAX = 8.4 Hz, 2H), 7.26 (tt, J = 1.6 Hz, J = 8.0 Hz, 1H), 7.32-7.40 (m, 4H), 7.82 (AA′XX′, JAA’/XX’ = 2.0 Hz, JAX = 6.8 Hz, 2H), 7.86 AA′XX′, JAA’/XX’ = 2.0 Hz, JAX =

6.8 Hz, 2H), 8.17 (s, 1H), 10.22 (s, 1H, scamb.) ppm. 13C NMR (100 MHz, DMSO-d6): δ 20.23, 30.46, 41.04, 44.39, 120.50, 120.86 (2C), 123.40 (2C), 126.84, 127.05 (2C), 128.17, 128.49 (2C), 129.59 (2C), 133.66, 134.66, 138.44, 138.55, 141.32, 142.93, 149.81, 191.42. N-(3-metossifenill)-4-(4-oxo-6-fenil-4,5,6,7-tetraidro-1H-indazol-1- il)benzenesolfonamide 86f Resa: 15% P.f.: 90-92 °C 1 H NMR (400 MHz, DMSO-d6): δ 2.55 (d, J = 3.2 Hz, 1H), 2.94-3.01 (m, 1H), 3.11-3.16 (m, 1H), 3.40-3.53 (m, 2H), 3.64 (s, 3H), 6.59-6.61 (m, 1H), 6.66-6.70 (m, 2H), 7.13 (t, J = 8.0 Hz, 1H), 7.26 (tt, J = 1.6 Hz, J = 7.6 Hz, 1H), 7.32-7.40 (m, 4H), 7.84 (AA′XX′, JAA’/XX’ = 2.0 Hz, JAX = 9.2 Hz, 2H), 7.86 (AA′XX′,

JAA’/XX’ = 2.0 Hz, JAX = 9.2 Hz, 2H), 8.17 (s, 1H), 10.22 (s, 1H, scamb.) ppm. 13C

85 112.21, 120.65, 123.61, (2C), 125.13 (2C), 126.99, 127.20 (2C), 128.37, 128.64 (2C), 130.21, 137.42, 138.49, 138.72, 141.58, 143.06, 149.98, 159.81, 191.62. N-(3-clorofenill)-4-(4-oxo-6-fenil-4,5,6,7-tetraidro-1H-indazol-1- il)benzenesolfonamide 86g Resa: 27% P.f.: 93-95 °C 1 H NMR (400 MHz, DMSO-d6): δ 2.54 (d, J = 2.8 Hz, 1H), 2.94-3.01 (m, 1H), 3.12-3.17 (m, 1H), 3.41-3.53 (m, 2H), 7.07-7.12 (m, 3H), 7.24-7.40 (m, 5H), 7.86 (d, J = 8.8 Hz, 2H), 7.93 (d, J = 8.8 Hz, 2H), 8.18 (s, 1H), 10.71 (s, 1H, scamb.) ppm. 13C NMR (100 MHz, DMSO-d6): δ 14.23, 41.24, 44.56, 118.47, 119.52, 120.73, 123.78 (2C), 124.24, 127.07, 127.25 (2C), 128.42 (2C), 128.71 (2C), 131.21, 133.60, 138.16, 138.83, 139.13, 141.83, 143.09, 150.12, 191.76. N-(3-nitrofenil)-4-(4-oxo-6-fenil-4,5,6,7-tetraidro-1H-indazol-1- il)benzenesulfonamide 86h Resa: 55.0 % P.f.: 105-107 °C 1 H NMR (400 MHz, DMSO-d6): δ 2.54-2.55 (m, 1H), 2.93-3.00 (m, 1H), 3.12- 3.17 (m, 1H), 3.40-3.52 (m, 2H), 7.23-7.27 (m, 1H), 7.32-7.39 (m, 4H), 7.54-7.56 (m, 2H), 7.86-7.90 (m, 3H), 7.96-7.98 (m, 3H), 8.17 (s, 1H), 11.06 (s, 1H, scamb.) ppm. 13C NMR (100 MHz, DMSO-d6): δ 30.53, 41.04, 44.36, 113.60, 118.67, 120.58, 123.61 (2C), 125.50 (2C), 126.85, 127.05 (2C), 128.26, 128.49 (2C), 130.89, 137.72, 138.66, 138.77, 141.80, 142.91, 148.19, 149.91, 191.44.

86 4-(4-oxo-6-fenil-4,5,6,7-tetraidro-1H-indazol-1-il)-N-(m- tolil)benzenesolfonamide 86i Resa: 18% P.f.: 87-89 °C 1 H NMR (400 MHz, DMSO-d6): δ 2.17 (s, 3H), 2.55 (d, J = 2.8 Hz, 1H), 2.94- 3.01 (m, 1H), 3.11-3.15 (m, 1H), 3.40-3.53 (m, 2H), 6.84 (d, J = 7.6 Hz, 1H), 7.08-7.12 (m, 1H), 7.25-7.27 (m, 1H), 7.32-7.40 (m, 4H), 7.83 (d, J = 8.8 Hz, 2H), 7.90 (d, J = 8.8 Hz, 2H), 8.17 (s, 1H), 10.34 (s, 1H, scamb.) ppm. 13C NMR (100 MHz, DMSO-d6): δ 20.83, 30.61, 41.15, 44.48, 117.36, 120.62, 120.85, 123.56 (2C), 125.13 (2C), 126.96, 127.17 (2C), 128.30, 128.61 (2C), 129.11, 137.42, 138.59, 138.64, 138.69, 141.49, 143.05, 149.94, 191.56.

88

[1] Supuran, C. T., Scozzafava, A., & Casini, A. (2003). Carbonic anhydrase inhibitors. Medicinal research reviews, 23(2), 146-189.

[2] Supuran, C. T., & Capasso, C. (2015). The η-class carbonic anhydrases as drug targets for antimalarial agents. Expert opinion on therapeutic targets, 19(4), 551-563.

[3] Del Prete, S., Vullo, D., Fisher, G. M., Andrews, K. T., Poulsen, S. A., Capasso, C., & Supuran, C. T. (2014). Discovery of a new family of carbonic anhydrases in the malaria pathogen Plasmodium falciparum—The η-carbonic anhydrases. Bioorganic & medicinal chemistry letters, 24(18), 4389-4396. [4] Alterio, V., Di Fiore, A., D’Ambrosio, K., Supuran, C. T., & De Simone, G. (2012). Multiple binding modes of inhibitors to carbonic anhydrases: how to design specific drugs targeting 15 different isoforms?. Chemical reviews, 112(8), 4421-4468.

[5] Hilvo, M., Tolvanen, M., Clark, A., Shen, B., Shah, G. N., Waheed, A., ... & Sly, W. S. (2005). Characterization of CA XV, a new GPI-anchored form of carbonic anhydrase. Biochemical Journal, 392(1), 83-92.

[6] Winum, J. Y., Scozzafava, A., Montero, J. L., & Supuran, C. T. (2006). Therapeutic potential of sulfamides as enzyme inhibitors. Medicinal research reviews, 26(6), 767-792.

[7] Supuran, C. T. (2008). Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nature reviews Drug discovery, 7(2), 168. [8] Supuran, C. T. (2016). How many carbonic anhydrase inhibition mechanisms exist?. Journal of enzyme inhibition and medicinal chemistry, 31(3), 345-360.

[9] Innocenti, A., Vullo, D., Scozzafava, A., & Supuran, C. T. (2008). Carbonic anhydrase inhibitors: interactions of phenols with the 12 catalytically active mammalian isoforms (CA I–XIV). Bioorganic & medicinal chemistry letters, 18(5), 1583-1587.

[10] Carta, F., Temperini, C., Innocenti, A., Scozzafava, A., Kaila, K., & Supuran, C. T. (2010). Polyamines inhibit carbonic anhydrases by anchoring to the zinc-coordinated water molecule. Journal of medicinal chemistry, 53(15), 5511-5522.

89

[11] D'Ambrosio, K., Carradori, S., Monti, S. M., Buonanno, M., Secci, D., Vullo, D., ... & De Simone, G. (2015). Out of the active site binding pocket for carbonic anhydrase inhibitors. Chemical Communications, 51(2), 302-305. [12] Alp, C., Özsoy, Ş., Alp, N. A., Erdem, D., Gültekin, M. S., Küfrevioğlu, Ö. İ., ... & Supuran, C. T. (2012). Sulfapyridine-like benzenesulfonamide derivatives as inhibitors of carbonic anhydrase isoenzymes I, II and VI. Journal of enzyme inhibition and medicinal chemistry, 27(6), 818-824.

[13] Brahimi-Horn, M. C., & Pouysségur, J. (2007). Oxygen, a source of life and stress. FEBS letters, 581(19), 3582-3591.

[14] Van den Eynden, G. G., Van der Auwera, I., Van Laere, S. J., Colpaert, C. G., Turley, H., Harris, A. L., ... & Van Marck, E. A. (2005). Angiogenesis and hypoxia in lymph node metastases is predicted by the angiogenesis and hypoxia in the primary tumour in patients with breast cancer. British journal of cancer, 93(10), 1128.

[15] Guidi, A. J., Berry, D. A., Broadwater, G., Perloff, M., Norton, L., Barcos, M. P., & Hayes, D. F. (2000). Association of angiogenesis in lymph node metastases with outcome of breast cancer. Journal of the National Cancer Institute, 92(6), 486-492.

[16] D’Ascenzio, M., Guglielmi, P., Carradori, S., Secci, D., Florio, R., Mollica, A., ... & Supuran, C. T. (2017). Open saccharin-based secondary sulfonamides as potent and selective inhibitors of cancer-related carbonic anhydrase IX and XII isoforms. Journal of enzyme inhibition and medicinal chemistry, 32(1), 51-59.

[17] Thiry, A., Dogne, J. M., Masereel, B., & Supuran, C. T. (2006). Targeting tumor-associated carbonic anhydrase IX in cancer therapy. Trends in pharmacological sciences, 27(11), 566-573.

[18] Webb, B. A., Chimenti, M., Jacobson, M. P., & Barber, D. L. (2011). Dysregulated pH: a perfect storm for cancer progression. Nature Reviews Cancer, 11(9), 671.

[19] Ivanov, S., Liao, S. Y., Ivanova, A., Danilkovitch-Miagkova, A., Tarasova, N., Weirich, G., ... & Zavada, J. (2001). Expression of hypoxia-

90

inducible cell-surface transmembrane carbonic anhydrases in human cancer. The American journal of pathology, 158(3), 905-919.

[20] Supuran, C. T. (2011). Bacterial carbonic anhydrases as drug targets: toward novel antibiotics?. Frontiers in pharmacology, 2, 34.

[21] Temperini, C., Scozzafava, A., & Supuran, C. T. (2008). Carbonic anhydrase activation and the drug design. Current pharmaceutical design, 14(7), 708.

[22] Sun, M. K., & Alkon, D. L. (2002). Carbonic anhydrase gating of attention: memory therapy and enhancement. Trends in pharmacological sciences, 23(2), 83-89.

[23] Draghici, B., Vullo, D., Akocak, S., Walker, E. A., Supuran, C. T., & Ilies, M. A. (2014). Ethylene bis-imidazoles are highly potent and selective activators for isozymes VA and VII of carbonic anhydrase, with a potential nootropic effect. Chemical Communications, 50(45), 5980-5983.

[24] Purkerson, J. M., & Schwartz, G. J. (2007). The role of carbonic anhydrases in renal physiology. Kidney international, 71(2), 103-115.

[25] Supuran, C. T. (2008). Diuretics: from classical carbonic anhydrase inhibitors to novel applications of the sulfonamides. Current pharmaceutical design, 14(7), 641-648.

[26] Zhang, K., Zhang, L., & Weinreb, R. N. (2012). Ophthalmic drug discovery: novel targets and mechanisms for retinal diseases and glaucoma. Nature reviews Drug discovery, 11(7), 541.

[27] Masini, E., Carta, F., Scozzafava, A., & Supuran, C. T. (2013). Antiglaucoma carbonic anhydrase inhibitors: a patent review. Expert opinion on therapeutic patents, 23(6), 705-716.

[28] Friedenwald, J. S. (1949). The Formation of the Intraocular Fluid*: Proctor Award Lecture of the Association for Research in Ophthalmology. American journal of ophthalmology, 32(6), 9-27.

[29] KINSEY, V. E. (1953). Comparative chemistry of aqueous humor in posterior and anterior chambers of rabbit eye: Its physiologic significance. AMA archives of ophthalmology, 50(4), 401-417.

91

[30] Kinsey, V. E., & Bárány, E. (1949). The Rate of Flow of Aqueous Humor*: Ii. Derivation of Rate of Flow and its Physiologic Significance. American journal of ophthalmology, 32(6), 189-202.

[31] Wistrand, P. J. (1951). Carbonic Anhydrase in the Anterior Urea of the Rabbit. Acta Physiologica Scandinavica, 24(2‐3), 144-148.

[32] Becker, B. (1955). The mechanism of the fall in intraocular pressure induced by the carbonic anhydrase inhibitor, Diamox. American journal of ophthalmology, 39(2), 177-184.

[33] KINSEY, V. E., Reddy, D. V. N., Aitken, I., & Carter, R. (1959). Turnover of total carbon dioxide in the aqueous humors and the effect thereon of acetazolamide. AMA archives of ophthalmology, 62(1), 78-83.

[34] Steele, R. M., Benedini, F., Biondi, S., Borghi, V., Carzaniga, L., Impagnatiello, F., ... & Temperini, C. (2009). Nitric oxide-donating carbonic anhydrase inhibitors for the treatment of open-angle glaucoma. Bioorganic & medicinal chemistry letters, 19(23), 6565-6570.

[35] Gao, B. B., Clermont, A., Rook, S., Fonda, S. J., Srinivasan, V. J., Wojtkowski, M., ... & Aiello, L. P. (2007). Extracellular carbonic anhydrase mediates hemorrhagic retinal and cerebral vascular permeability through prekallikrein activation. Nature medicine, 13(2), 181.

[36] Liao, S. Y., Ivanov, S., Ivanova, A., Ghosh, S., Cote, M. A., Keefe, K., ... & Lerman, M. I. (2003). Expression of cell surface transmembrane carbonic anhydrase genes CA9 and CA12 in the human eye: overexpression of CA12 (CAXII) in glaucoma. Journal of medical genetics, 40(4), 257-261.

[37] Vullo, D., Innocenti, A., Nishimori, I., Pastorek, J., Scozzafava, A., Pastoreková, S., & Supuran, C. T. (2005). Carbonic anhydrase inhibitors. Inhibition of the transmembrane isozyme XII with sulfonamides—a new target for the design of antitumor and antiglaucoma drugs?. Bioorganic & medicinal chemistry letters, 15(4), 963-969.

[38] Riihonen, R., Supuran, C. T., Parkkila, S., Pastorekova, S., Väänänen, H. K., & Laitala-Leinonen, T. (2007). Membrane-bound carbonic anhydrases in osteoclasts. Bone, 40(4), 1021-1031.

92

[39] Supuran, C. T. (2003). Carbonic anhydrase inhibitors in the treatment and prophylaxis of obesity. Expert Opinion on Therapeutic Patents, 13(10), 1545- 1550.

[40] Picard, F., Deshaies, Y., Lalonde, J., Samson, P., & Richard, D. (2000). Topiramate reduces energy and fat gains in lean (Fa/?) and obese (fa/fa) Zucker rats. Obesity research, 8(9), 656-663.

[41] Casini, A., Antel, J., Abbate, F., Scozzafava, A., David, S., Waldeck, H., ... & Supuran, C. T. (2003). Carbonic anhydrase inhibitors: SAR and X-ray crystallographic study for the interaction of sugar sulfamates/sulfamides with isozymes I, II and IV. Bioorganic & medicinal chemistry letters, 13(5), 841- 845.

[42] Mercer, S. L. (2011). ACS chemical neuroscience molecule spotlight on Qnexa.

[43] Vullo, D., Franchi, M., Gallori, E., Pastorek, J., Scozzafava, A., Pastorekova, S., & Supuran, C. T. (2003). Carbonic anhydrase inhibitors: inhibition of the tumor-associated isozyme IX with aromatic and heterocyclic sulfonamides. Bioorganic & medicinal chemistry letters, 13(6), 1005-1009. [44] Abbate, F., Casini, A., Owa, T., Scozzafava, A., & Supuran, C. T. (2004). Carbonic anhydrase inhibitors: E7070, a sulfonamide anticancer agent, potently inhibits cytosolic isozymes I and II, and transmembrane, tumor- associated isozyme IX. Bioorganic & medicinal chemistry letters, 14(1), 217- 223.

[45] Fukuoka, K., Usuda, J., Iwamoto, Y., Fukumoto, H., Nakamura, T., Yoneda, T., ... & Nishio, K. (2001). Mechanisms of action of the novel sulfonamide anticancer agent E7070 on cell cycle progression in human non- small cell lung cancer cells. Investigational new drugs, 19(3), 219-227.

[46] Pastorekova, S., Casini, A., Scozzafava, A., Vullo, D., Pastorek, J., & Supuran, C. T. (2004). Carbonic anhydrase inhibitors: the first selective, membrane-impermeant inhibitors targeting the tumor-associated isozyme IX.

Bioorganic & medicinal chemistry letters, 14(4), 869-873.

[47] Wilkinson, B. L., Bornaghi, L. F., Houston, T. A., Innocenti, A., Supuran, C. T., & Poulsen, S. A. (2006). A novel class of carbonic anhydrase inhibitors:

93

glycoconjugate benzene sulfonamides prepared by “click-tailing”. Journal of

medicinal chemistry, 49(22), 6539-6548.

[48] De Simone, G., Vitale, R. M., Di Fiore, A., Pedone, C., Scozzafava, A., Montero, J. L., ... & Supuran, C. T. (2006). Carbonic anhydrase inhibitors: hypoxia-activatable sulfonamides incorporating disulfide bonds that target the tumor-associated isoform IX. Journal of medicinal chemistry, 49(18), 5544- 5551.

[49] Meldrum, N. U., & Roughton, F. J. W. (1933). Carbonic anhydrase. Its preparation and properties. The Journal of physiology, 80(2), 113-142.

[50] Smith, K. S., Jakubzick, C., Whittam, T. S., & Ferry, J. G. (1999). Carbonic anhydrase is an ancient enzyme widespread in prokaryotes.

Proceedings of the National Academy of Sciences, 96(26), 15184-15189.

[51] Supuran, C. T., & Scozzafava, A. (2000). Carbonic anhydrase inhibitors and their therapeutic potential. Expert Opinion on Therapeutic Patents, 10(5), 575-600.

[52] Briganti, F., Mangani, S., Scozzafava, A., Vernaglione, G., & Supuran, C. T. (1999). Carbonic anhydrase catalyzes cyanamide hydration to urea: is it mimicking the physiological reaction?. JBIC Journal of Biological Inorganic

Chemistry, 4(5), 528-536.

[53] Scozzafava, A., Mastrolorenzo, A., & Supuran, C. T. (2006). Carbonic anhydrase inhibitors and activators and their use in therapy. Expert Opinion on

Therapeutic Patents, 16(12), 1627-1664.

[54] Cottier, F., Raymond, M., Kurzai, O., Bolstad, M., Leewattanapasuk, W., Jiménez-López, C., ... & Palková, Z. (2012). The bZIP transcription factor Rca1p is a central regulator of a novel CO2 sensing pathway in yeast. PLoS

pathogens, 8(1), e1002485.

[55] Marini, A. M., Maresca, A., Aggarwal, M., Orlandini, E., Nencetti, S., Da Settimo, F., ... & Nuti, E. (2012). Tricyclic sulfonamides incorporating benzothiopyrano [4, 3-c] pyrazole and pyridothiopyrano [4, 3-c] pyrazole effectively inhibit α-and β-carbonic anhydrase: X-ray crystallography and solution investigations on 15 isoforms. Journal of Medicinal Chemistry,

94

[56] Weber, A., Casini, A., Heine, A., Kuhn, D., Supuran, C. T., Scozzafava, A., & Klebe, G. (2004). Unexpected nanomolar inhibition of carbonic anhydrase by COX-2-selective celecoxib: new pharmacological opportunities due to related binding site recognition. Journal of medicinal chemistry, 47(3), 550-557.

[57] Di Fiore, A., Pedone, C., D’Ambrosio, K., Scozzafava, A., De Simone, G., & Supuran, C. T. (2006). Carbonic anhydrase inhibitors: valdecoxib binds to a different active site region of the human isoform II as compared to the structurally related cyclooxygenase II ‘selective’inhibitor celecoxib.

Bioorganic & medicinal chemistry letters, 16(2), 437-442.

[58] Dogne, J. M., Thiry, A., Pratico, D., Masereel, B., & Supuran, C. T. (2007). Dual carbonic anhydrase-cyclooxygenase-2 inhibitors. Current topics

in medicinal chemistry, 7(9), 885-891.

[59] Supuran, C. T., Casini, A., Mastrolorenzo, A., & Scozzafava, A. (2004). COX-2 selective inhibitors, carbonic anhydrase inhibition and anticancer properties of sulfonamides belonging to this class of pharmacological agents.

Mini reviews in medicinal chemistry, 4(6), 625-632.

[60] Barresi, E., Salerno, S., Marini, A. M., Taliani, S., La Motta, C., Simorini, F., ... & Supuran, C. T. (2016). Sulfonamides incorporating heteropolycyclic scaffolds show potent inhibitory action against carbonic anhydrase isoforms I, II, IX and XII. Bioorganic & medicinal chemistry,

24(4), 921-927.

[61] Salerno, S., Barresi, E., Amendola, G., Berrino, E., Milite, C., Marini, A. M., ... & Taliani, S. (2018). 4-Substitutedbenzenesulfonamides incorporating bi/tricyclic moieties act as potent and isoform-selective carbonic anhydrase II/IX inhibitors. Journal of medicinal chemistry.

[62] Khalifah, R. G. (1971). The carbon dioxide hydration activity of carbonic anhydrase I. Stop-flow kinetic studies on the native human isoenzymes B and C. Journal of Biological Chemistry, 246(8), 2561-2573.

[63] Alterio, V., Hilvo, M., Di Fiore, A., Supuran, C. T., Pan, P., Parkkila, S., ... & Scozzafava, A. (2009). Crystal structure of the catalytic domain of the

95

tumor-associated human carbonic anhydrase IX. Proceedings of the National

Academy of Sciences, pnas-0908301106.

[64] Schenone, P., Mosti, L., & Menozzi, G. (1982). Reaction of 2‐dimethylaminomethylene‐1, 3‐diones with dinucleophiles. I. Synthesis of 1, 5‐disubstituted 4‐acylpyrazoles. Journal of Heterocyclic Chemistry, 19(6), 1355-1361.

[65] Kubas, H., Meyer, U., Krueger, B., Hechenberger, M., Vanejevs, M., Zemribo, R., ... & Abel, U. (2013). Discovery, synthesis, and structure– activity relationships of 2-aminoquinazoline derivatives as a novel class of metabotropic glutamate receptor 5 negative allosteric modulators. Bioorganic

Documenti correlati