• Non ci sono risultati.

4.3 PROCEDURE SPERIMENTALI

4.3.6 PREPARAZIONE DEI BIONANOCOMPOSITI TRAMITE SOLUTION CASTING

La procedura di preparazione consiste essenzialmente nella miscelazione di una soluzione del copolimero con una dispersione di nanowhiskers, entrambe in cloroformio. Una certa quantità di copolimero è stata disciolta all’interno di un volume di cloroformio e mantenuta sotto agitazione tramite ancoretta magnetica. Contemporaneamente, una quantità di CNWs (0.25 , 0.5, 1, 2 % ww rispetto al peso di copolimero) è stata disciolta in un volume opportuno di cloroformio e sottoposta alla procedura di dispersione; agitazione meccanica a 21.000 rpm per 15 minuti mediante Ultra- TURAX e due cicli di sonicazione, con sonicatore a punta, per 2 minuti intervallati da 30 secondi di pausa.

CopR7030 7 x10-3 3 x 10-3

4 x 10-6

101 La dispersione di CNWs così ottenuta è stata aggiunta alla soluzione del copolimero. La nuova miscela è stata successivamente sottoposta ad agitazione con TURAX per altri 15 minuti seguita da un’ultima sonicazione di 2 minuti. Il contenuto è stato infine versato in dischi di petri in teflon per permettere l’evaporazione del solvente e così la formazione del film di composito.

Sono stati preparati due gruppi di film a spessore differente; 100-200 µm e 1- 1.5 mm destinati alle prove di degradazione idrolitica i primi e meccaniche di trazione i secondi. In tabella 8 sono riportate le quantità usate per la preparazione delle due tipologie di compositi.

Tabella 8 Campioni di bionanocompositi preparati per prove di degradazione idrolitica e meccaniche

utilizzo Copolimero

(g)

CNWs (mg) % ww

CNWs

Cloroformio (ml) Spessore film (mm) CopR CNWs Degradazione idrolitica 1g 0 0 10 10 0.15 2.5 0.25 0.13 5.0 0.5 0.20 10.0 1 0.17 20.0 2 0.14 Prove meccaniche 4.6 0 0 40 30 1.34 11.5 0.25 1.39 23.0 0.5 1.50 46.0 1 1.48 92.0 2 1.46

102

5

BIBLIOGRAFIA

1. D. F. Williams, Consensus and definitions in biomaterials: Implant Materials in Biofunction, edited by C. de Putter, G.L. de Lange, Κ. de Groot and A.J.C. Lee, Advances in Biomaterials Elsevier Science Publishers B.V., Amsterdam, 1988, Volume 8, 11-16. 2. Erich Wintermantel, Suk-Woo Ha, Biokompatible Werkstoffe und Bauweisen, Springer-

Verlag Berlin Heidelberg New York, 2. Aufl. 1998.

3. Li S, Hydrolytic degradation characteristics of aliphatic polyesters derived from lactic and

glycolic acids, J Biomed Mater Res Part B: Appl Biomater 1999, 48, 342-353.

4. Ma PX, Langer R. Degradation, Structure and properties of fibrous poly(glycolic acid)

scaffolds for tissue engineering, edited by Mikos AG, Leong KW, Radomsky ML, Tamada

JA, Yaszemski MJ, editors, Polymers in Medicine and Pharmacy. MRS, Pittsburgh, 1995, 99–104.

5. Bleach NC, Nazhat SN, Tanner KE, Kellomaki M, Tormala P. Effect of filler content on

mechanical and dynamic mechanical properties of particulate biphasic calcium phosphate polylactide composites, Biomaterials, 2002, 23, 1579-1585.

6. Donlan RM, Costerton JW. Biofilms, Survival mechanisms of clinically relevant

microorganisms, Clin. Microbiol. Rev, 2002, 167-193.

7. Griffith LG, Polymeric biomaterials , Acta Mater., 2000, 48, 263-277.

8. Ciardelli G, Chiono V, Vozzi G, Pracella M, Ahluwalia A, Barbani N, et al, Blends of poly-

(3-caprolactone) and polysaccharides in tissue engineering applications,

Biomacromolecules, 2005, 6, 1961-1976.

9. Azeredo, Henriette, Nanocomposites for food packaging applications, Food Research International, 2009, 42, 9, 1240-1253.

103 10. Schadler L. S., L. C. Brinson, W. G. Sawyer, Polymer nanocomposites: a small part of the

story, Nanocompos. Mat., 2007, 59, 3, 53-60.

11. Brode G. L.; Koleske J. V., Lactone polymerization and polymer properties, J. Macromol. Sci. Chem., 1972, A6(6), 1109.

12. Kricheldorf H.; Kreiser-Saunders I.; Boettcher C., Polylactones, Sn(II)Octoateinitiated

polymerization of L-lactide , A mechanistic study, Polymer, 1995, 36, 1253.

13. Kowalski A., Duda A., Penczek S., Kinetics and mechanism of cyclic esters polymerization

initiated with tin(II) octoate, 1. Polymerization of ε-caprolactone, Macromol. Rapid.

Commun., 1998, 19, 567.

14. Labet, Marianne, and Wim Thielemans, Synthesis of polycaprolactone: a review. , Chemical Society Reviews, 2009, 38, 12, 3484-3504.

15. Liu, F., Zhao, Z., Yang, J., Wei, J., & Li, S. Enzyme-catalyzed degradation of poly (l-

lactide)/poly (

ɛ

-caprolactone) diblock, triblock and four-armed copolymers, Polymer

Degradation and Stability, 2009, 94, 2, 227-233.

16. Andrzej Duda, Tadeusz Biela, Jan Libiszowski, Stanislaw Penczek, Philippe Dubois, David Mecerreyes & Robert Jérômeb, Block and random copolymers of e-caprolactone. Polymer Degradation and Stability, 1998, 59, 2 1 5-222

17. Veld, P. J., Velner, E. M., Witte, P. V. D., Hamhuis, J., Dijkstra, P. J., & Feijen, J., Melt

block copolymerization of ε-caprolactone and L-lactide, Journal of Polymer Science, Part A:

Polymer chemistry, 1997, 35, 2, 219-226.

18. Dong, X. M., Revol, J. F., & Gray, D. G., Effect of microcrystallite preparation conditions

on the formation of colloid crystals of cellulose, Cellulose, 1998, 5, 1, 19-32.

19. Iwamoto, S., Kai, W., Isogai, A., & Iwata, T., Elastic modulus of single cellulose

microfibrils from tunicate measured by atomic force microscopy, Biomacromolecules, 2009,

10, 9, 2571-2576.

20. Heux, L., Chauve, G., & Bonini, C., Nonflocculating and chiral-nematic self-ordering of

cellulose microcrystals suspensions in nonpolar solvents, Langmuir, 2000, 16, 21, 8210-

104 21. Goffin, A. L., Raquez, J. M., Duquesne, E., Siqueira, G., Habibi, Y., Dufresne, A., & Dubois, P. From interfacial ring-opening polymerization to melt processing of cellulose

nanowhisker-filled polylactide-based nanocomposites, Biomacromolecules, 2011, 12, 7,

2456-2465.

22. Eichhorn, Stephen J. Cellulose nanowhiskers: promising materials for advanced

applications, Soft Matter, 2011, 7, 2, 303-315.

23. Labet, Marianne, Wim Thielemans, and Alain Dufresne, Polymer grafting onto starch

nanocrystals, Biomacromolecules, 2007, 8, 9, 2916-2927.

24. Guo Q. and Groeninckx G., Crystallization Kinetics Poly(

ε

-caprolactone) in Miscible

Thermosetting Polymer Blends of Epoxy Resin and Poly (

ε

-caprolactone), Polymer, 2001,

42, 8647-8655.

25. Hoogsteen, W., Postema, A. R., Pennings, A. J., Ten Brinke, G., & Zugenmaier, P., Crystal

structure, conformation and morphology of solution-spun poly (L-lactide) fibers,

Macromolecules, 1990, 23, 2, 634-642.

26. Turner J. F., Riga A., O’Connor A., Zhang J., Collis J., Characterization of drawn and

undrawn poly-L-lactide films by differential scanning calorimetry, Journal of Thermal

Analysis and Calorimetry, 2004, 75, 257–268.

27. Aoyagi, Y., Yamashita, K., & Doi, Y. Thermal degradation of poly [(R)-3-

hydroxybutyrate], poly [ε-caprolactone], and poly [(S)-lactide], Polymer Degradation and

Stability, 2002, 76, 1, 53-59.

28. Persenaire, O., Alexandre, M., Degée, P., & Dubois, P., Mechanisms and kinetics of thermal

degradation of poly (ε-caprolactone), Biomacromolecules, 2001, 2, 1, 288-294.

29. Vilay, V., Mariatti, M., Ahmad, Z., Pasomsouk, K., & Todo, M., Characterization of the

mechanical and thermal properties and morphological behavior of biodegradable poly

(L

lactide)/poly (ε

caprolactone) and poly (L

lactide)/poly (butylene succinate

co

L

lactate)

polymeric blends, Journal of applied polymer science, 2009, 114, 3, 1784-1792.

30. Zhang, J., Xu, J., Wang, H., Jin, W., & Li, J., Synthesis of multiblock thermoplastic

elastomers based on biodegradable poly (lactic acid) and polycaprolactone, Materials

105 31. Palacio, J., Orozco, V. H., & López, B. L., Effect of the molecular weight on the

physicochemical properties of poly (lactic acid) nanoparticles and on the amount of ovalbumin adsorption, Journal of the Brazilian Chemical Society, 2011, 22, 12, 2304-2311.

32. Cetin, N. S., Tingaut, P., Özmen, N., Henry, N., Harper, D., Dadmun, M., & Sèbe, G.,

Acetylation of cellulose nanowhiskers with vinyl acetate under moderate conditions,

Macromolecular bioscience, 2009, 9, 10, 997-1003.

33. Petersson, L., I. Kvien, and K. Oksman. Structure and thermal properties of poly (lactic

acid)/cellulose whiskers nanocomposite materials. Composites Science and Technology,

2007, 67, 11, 2535-2544.

34. Rosa, M. F., Medeiros, E. S., Malmonge, J. A., Gregorski, K. S., Wood, D. F., Mattoso, L. H. C., & Imam, S. H., Cellulose nanowhiskers from coconut husk fibers: Effect of

preparation conditions on their thermal and morphological behavior, Carbohydrate

Polymers, 2010, 81, 1, 83-92.

35. Everton Luiz de Paula , Valdir Mano, Fabiano Vargas Pereira, Influence of cellulose

nanowhiskers on the hydrolytic degradation behavior of poly(D,L-lactide). Polymer

Degradation and Stability 2011, 96, 1631-1638.

36. Moravek, Scott J., and Robson F. Storey. Copolymers of rac-lactide and ε-caprolactone:

Conventional copolymerization vs. Macroinitiator copolymerization, Journal of

Macromolecular Science, Part A: Pure and Applied Chemistry, 2009, 46, 4, 339-345.

37. Jorge Fernández, Agustin Etxeberria, Jose-Ramon Sarasua, Synthesis, structure and

properties of poly(L-lactide-co-ε-caprolactone) statistical copolymers. Journal of the

Mechanical Behavior of Biomedical Materials, 2012, 9, 100-112.

38. Jeong, S. I., Kim, S. H., Kim, Y. H., Jung, Y., Kwon, J. H., Kim, B. S., & Lee, Y. M.,

Manufacture of elastic biodegradable PLCL scaffolds for mechano-active vascular tissue engineering. Journal of Biomaterials Science, Polymer Edition, 2004, 15, 5, 645-660.

39. Barber FA., Resorbable fixation devices, a product guide (Orthopedic Special Edition) 1998, 4, 1111-1117

106 40. Kasperczyk, J.& Bero, M., Coordination polymerization of lactides, 2. Microstructure

determination of poly[(L,L-lactide)-co-(ε-caprolactone)] with 13C nuclear magnetic resonance spectroscopy , Makromolekulare Chemie, , 1991, 192, 1777-1787.

41. Herbert, I.R., Statistical analysis of copolymer sequence distribution, NMR Spectroscopy of Polymers, 1993, 2, 50-79.

42. Ruseckaite, Roxana A., and Alfonso Jiménez., Thermal degradation of mixtures of

polycaprolactone with cellulose derivatives, Polymer degradation and stability, 2003, 81, 2

353-358.

43. Cao, X., et al., Green composites reinforced with hemp nanocrystals in plasticized starch, Journal of Applied Polymer Science, 2008. 109, 6, 3804-3810.

44. Li S., Garreau H., Vert M., Structure- property relationships in the case of degradation of

solid aliphatic poly(α-Hidroxy acids) in aqueous media: part. 1 poly(DL-lactic acid). J.

mater Sci mater med 1990 ; 1: 123-130.

45. Hepworth DG, Bruce DM, A method of calculating the mechanical properties of nanoscopic

plant cell wall components from tissue properties J. Mater Sci, 2000, 35, 5861-5865

46. Sharma, H.S.S.; Carmichael, E.; Muhamad, M.; McCall, D.; Andrews, F.; Lyons, G.; McRoberts, W.C.; Hornsby, P.R. , Biorefining of perennial ryegrass for the production of

nano-fibrillated cellulose, RSC ADVANCES, 2012, 2, 2, 6424-6437.

Documenti correlati