• Non ci sono risultati.

Structure preserving schemes for the continuum Kuramoto model: Phase transitions

N/A
N/A
Protected

Academic year: 2021

Condividi "Structure preserving schemes for the continuum Kuramoto model: Phase transitions"

Copied!
25
0
0

Testo completo

(1)

Contents lists available atScienceDirect

Journal

of

Computational

Physics

www.elsevier.com/locate/jcp

Structure

preserving

schemes

for

the

continuum

Kuramoto

model:

Phase

transitions

José

A. Carrillo

a

,

,

Young-Pil Choi

b

,

Lorenzo Pareschi

c aDepartmentofMathematics,ImperialCollegeLondon,LondonSW72AZ,UnitedKingdom

bDepartmentofMathematicsandInstituteofAppliedMathematics,InhaUniversity,Incheon,402-751,RepublicofKorea cDepartmentofMathematicsandComputerScience,UniversityofFerrara,ViaN.Machiavelli35,44121,Ferrara,Italy

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory:

Received10March2018

Receivedinrevisedform6September2018 Accepted27September2018

Availableonline2October2018

Keywords:

Structurepreserving Kuramotooscillators Kineticequations Phasetransitions

TheconstructionofnumericalschemesfortheKuramotomodelischallengingduetothe structural properties of the system whichare essentialin orderto capture the correct physicalbehavior,likethedescriptionofstationarystatesandphasetransitions.Additional difficulties are represented by the high dimensionality of the problem in presence of multiplefrequencies.Inthispaper, wedevelopnumericalmethods whichare capableto preservethesestructuralpropertiesoftheKuramotoequationinthepresenceofdiffusion and tosolve efficiently themultiple frequenciescase.The novelschemes are thenused tonumericallyinvestigatethephasetransitionsinthecaseofidenticalandnonidentical oscillators.

©2018TheAuthors.PublishedbyElsevierInc.ThisisanopenaccessarticleundertheCC BYlicense(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Synchronization phenomena of large populations of weakly coupled oscillators are very common in naturalsystems, andit has beenextensively studied invarious scientific communities such asphysics, biology,sociology, etc. [2,4,29,52]. Synchronization arises due to the adjustment of rhythms of self-sustained periodic oscillators weakly connected [2,47], anditsrigorousmathematicaltreatmentispioneeredbyWinfree[53] andKuramoto[4].In[4,53],phasemodelsforlarge weaklycoupledoscillatorsystemswereintroduced,andthesynchronizedbehaviorofcomplexbiologicalsystemswasshown to emerge from the competingmechanisms of intrinsicrandomness andsinusoidal couplings. Since then, the Kuramoto modelbecomesaprototypemodelforsynchronizationphenomenaandvariousextensionshavebeenextensivelyexplored invariousscientific communitiessuch asapplied mathematics,engineering, controltheory,physics,neuroscience,biology, andsoon[28,47,52].

Givenan ensembleof sinusoidallycoupled nonlinear oscillators, whichcan be visualized as active rotorson the unit circle

S

1,let z

j

=

eiϑj be thepositionofthe j-throtor.Then, thedynamicsof zj iscompletelydetermined bythat ofits phase

ϑ

j.Letusdenotethephaseandfrequencyofthe j-thoscillatorby

ϑ

jand

˙ϑ

j,respectively.Then,thephasedynamics ofKuramotooscillatorsaregovernedbythefollowingfirst-orderODEsystem[4]:

˙ϑ

i

=

ω

i

K N N



j=1 sin

i

− ϑ

j

),

i

=

1

,

· · · ,

N

,

t

>

0

,

(1.1)

*

Correspondingauthor.

E-mailaddresses:carrillo@imperial.ac.uk(J.A. Carrillo),ypchoi@inha.ac.kr(Y.-P. Choi),lorenzo.pareschi@unife.it(L. Pareschi).

https://doi.org/10.1016/j.jcp.2018.09.049

0021-9991/©2018TheAuthors.PublishedbyElsevierInc.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).

(2)

subject to initial data

ϑ

i

(

0

)

=: ϑ

i0, i

=

1

,

· · · ,

N, where K is the uniform positive couplingstrength, and

ω

i denotes the naturalphase-velocity(frequency)andisassumedtobearandomvariableextractedfromthegivendistribution g

=

g

(

ω

)

satisfying



R

g

(

ω

)

d

ω

=

1

.

Wenoticethatthefirsttermandsecondtermintherighthandsideoftheequation(1.1) representtheintrinsicrandomness andthenonlinearattraction–repulsioncoupling,respectively.

Thesystem(1.1) hasbeenextensivelystudied,anditstillremainsapopularsubjectinnonlineardynamicsandstatistical physics.Wereferthereaderto[2] andreferencesthereinforgeneralsurveyoftheKuramotomodelanditsvariants.In[4], Kuramoto firstobserveda continuousphase transitioninthecontinuum Kuramotomodel(N

→ ∞

,see(1.2) below)with a symmetric distribution function g

(

ω

)

by introducing an orderparameter r∞ whichmeasures thedegree of the phase synchronizationinthemean-fieldlimit.Moreprecisely,theorderparameterisgivenby

rN

(

t

)

eiϕN(t)

:=

1 N N



j=1 eiϑj(t)

,

r

:=

lim t→∞Nlim→∞r N

(

t

).

In fact,Kuramoto showedthat theorderparameter r∞ asafunction ofthecoupling strength K changesfromzero (dis-ordered state)toanon-zerovalue(orderedstate)whenthecouplingstrength K exceedsacriticalvalue Kc

:=

2

/(

π

g

(

0

))

, i.e., r

(

K

)

=

0 (incoherentstate)for K

∈ [

0

,

Kc

)

,1

r

(

K

)

>

0 (coherentstate)forK

>

Kc,andr

(

K

)

increaseswith K . Later,itisalsoobservedthatthecontinuumKuramotomodelcanexhibitcontinuous ordiscontinuous phasetransitionby takingintoaccountdifferenttypesofnaturalfrequencydistributionfunctions[11,12,45].Here,continuousphasetransitions refertothecontinuityatK

=

Kc oftheorderparameterr

(

K

)

.ItisknowntobecontinuousfortheGaussiandistributed infrequencyoscillators[52] anddiscontinuousfortheuniformlydistributedinfrequencyoscillators[45].

As the numberofoscillatorsgoes toinfinity

(

N

→ ∞)

,a continuum descriptionofthe system(1.1) canbe rigorously derivedbyemployingbynowstandardmean-fieldlimittechniquesfortheVlasovequation[19,21,40,42].Let

ρ

=

ρ

(ϑ,

ω

,

t

)

betheprobabilitydensityfunctionofKuramotooscillatorsin

ϑ

∈ T

:= R/(

2

π

Z)

withanaturalfrequency

ω

extractedfrom adistributionfunctiong

=

g

(

ω

)

attimet.ThenthecontinuumKuramotoequationisgivenby

t

ρ

+ ∂

ϑ

(

u

[

ρ

]

ρ

)

=

0

,

(ϑ,

ω

)

∈ T × R,

t

>

0

,

u

[

ρ

](ϑ,

ω

,

t

)

=

ω

K



T×R

sin

− ϑ

)

ρ

,

ω

,

t

)

g

(

ω

)

d

ϑ

d

ω

,

(1.2)

subjecttotheinitialdata:

ρ

(ϑ,

ω

,

0

)

=:

ρ0

(ϑ,

ω

),



T

ρ0

(ϑ,

ω

)

d

ϑ

=

1

.

(1.3)

Theorderparameterr andtheaveragephase

ϕ

associatedto(1.2) aregivenas

r

(

t

)

eiϕ(t)

=



T×R eiϑ

ρ

(ϑ,

ω

,

t

)

g

(

ω

)

d

ϑ

d

ω

,

leadingto r

(

t

)

=



T×R cos

ϕ

(

t

))

ρ

(ϑ,

ω

,

t

)

g

(

ω

)

d

ϑ

d

ω

.

(1.4)

Forthecontinuum equation(1.2), globalexistence anduniqueness ofmeasure-valued solutionsarestudiedin[21,40] and important qualitative properties such as theLandau damping towards the incoherentstationary stateswere analyzed in [30].

Averyrelevantissuefromtheapplicationviewpointishowstablethesestationarystatesandphasetransitionsareby addingnoisetothesystem[4,50].Themean-fieldlimitequationassociatedto(1.1) withstandardGaussiannoiseofstrength

2D,withD

>

0,is

t

ρ

+ ∂

ϑ

(

u

[

ρ

]

ρ

)

=

D

ϑ2

ρ

,

(ϑ,

ω

)

∈ T × R,

t

>

0

,

u

[

ρ

](ϑ,

ω

,

t

)

=

ω

K



T×R sin

− ϑ

)

ρ

,

ω

,

t

)

g

(

ω

)

d

ϑ

d

ω

,

(1.5)

(3)

subjecttotheinitial data(1.3). Phasetransitionshavealsobeenfound intermsoftheorder parameterr∞ asafunction of K for D

>

0. In fact, it was proven in [50] that foridentical oscillators there is a continuous phase transition. This phasetransitionisalsocontinuousforGaussiananduniformlycouplednoisy oscillators[2] anddiscontinuous forbimodal distributions[16,25].StabilityofthecoherentandincoherentstatesandtheasymptoticdynamicsfortheKuramotomodel withnoise(1.5) wereanalyzed in[31,32,37,38].Noise-drivenphasetransitionsininteractingparticlesystemsareahottopic ofresearchfromthenumericalandtheoreticalviewpoints,see[5–10,25,33] andthereferencestherein.

Inthepresentwork,wefocusontheconstructionofeffectivenumericalschemesforthecontinuumKuramotosystem withdiffusionobtainedinthelimit ofaverylarge numberofoscillatorsandinpresenceofnoise.Thenumericalsolution of such system is challenging due to the high dimensionality of the problem and the intrinsic structural properties of the system which are essential in order to capture the correct physical behavior. The literature dealing with the study ofnumericalschemes to thecontinuum Kuramoto model(1.2) ismainly focused ondeterministic spectral andstochastic methods.Wereferto[2,SectionVI.B] andthereferencesthereinforgeneraldiscussionsonthestochasticanddeterministic numerical methods used in Kuramoto models, see also [10,35,36,47] for Monte Carlo related methods and [1,3,46] for spectralmethods.

Structurepreservingnumericalschemesformean-fieldtypekineticequationshavebeenpreviouslyconstructedin[2,14,

17,18,20,22,44,51].Wereferalsoto[34] forrelatedapproachesforgeneralsystemsofbalancelawsandto[27] foran intro-ductiontonumericalmethodsforkineticequations.Here,followingtheapproachin[18,22,44] weintroduceadiscretization ofthephasevariablesuch thatnonnegativity of thesolution,physicalconservations,asymptoticbehavior andfree energy dissipationarepreservedatadiscretelevelforidenticaloscillators.Thisapproachisthencoupledwithasuitablecollocation methodforthefrequencyvariablebasedonorthogonalpolynomialswithrespecttothegivenfrequencydistribution.Similar collocationstrategieshavebeenusedforkineticequationsinthecaseoflineartransportandsemiconductors[39,41,49].

Therestofthemanuscriptisorganizedasfollows.First,inSection2werecallsomebasicpropertiesofthecontinuum Kuramoto model, in particular concerning some relevant existence theory and some useful estimates underpinning our numericalstrategy.WealsodiscusstheasymptoticbehavioroftheKuramotomodelwithnoise,stationarystatesandrelated freeenergyestimatesinthecaseofidenticaloscillators.ThediscretizationofKuramotosystemsisdiscussedinSection 3. Structure preserving schemes are developed in combination with a collocation method for the frequency variable. The asymptoticbehavioroftheschemesaswellastheotherrelevantphysicalpropertiesarediscussed.InSection4wepresent severalnumericaltests,witha particularemphasisonthestudyofphasetransitions.We willalsocompareourstructure preserving methodsto MonteCarloandspectral methods.Futureresearch directionsandconclusions are reportedinthe lastSection.

2. The continuum Kuramoto model

2.1. StabilityoftheKuramotomodelwithrespecttothefrequencydistribution

Inthissubsection,webriefly reviewsome relevantissuesrelatedtothewell-posedness theoryandseveraluseful esti-matesforthecontinuumKuramotoequation(1.2) anditsversionwithnoise(1.5).Wereferto[19,21,40] forfurtherdetails. Wefirstprovidea priori estimatesfortheequation(1.2).

Lemma 2.1. Let

ρ

beasmoothsolutionto(1.2)–(1.3).Thenwehave

(

i

)

d dt



T

ρ

(ϑ,

ω

,

t

)

d

ϑ

=

0 i.e.,



T

ρ

(ϑ,

ω

,

t

)

d

ϑ

=



T

ρ0

(ϑ,

ω

)

d

ϑ

=

1 for w

∈ R,

(

ii

)

d dt



T×R

ρ

(ϑ,

ω

,

t

)

log

(

ρ

(ϑ,

ω

,

t

))

g

(

ω

)

d

ϑ

d

ω

=

K r2

(

t

),

fort

0,wherer isgivenin(1.4).

Proof. The proofof

(

i

)

isstraightforward.Fortheidentity

(

ii

)

,byusingthedefinitionofr in(1.4) werewriteu

[

ρ

]

as

u

[

ρ

](ϑ,

ω

,

t

)

=

ω

K r sin

ϕ

(

t

)).

(2.1)

Directcomputationsyield

d dt



T×R

ρ

(ϑ,

ω

,

t

)

log

(

ρ

(ϑ,

ω

,

t

))

g

(

ω

)

d

ϑ

d

ω

= −



T×R g

(

ω

)∂

ϑ

(

u

[

ρ

]

ρ

)

log

ρ

d

ϑ

d

ω

=



T×R g

(

ω

)

u

[

ρ

]∂

ϑ

ρ

d

ϑ

d

ω

(4)

= −



T×R

(∂

ϑu

[

ρ

])

ρ

(ϑ,

ω

)

g

(

ω

)

d

ϑ

d

ω

=

K r



T cos

ϕ

(

t

))

ρ

(ϑ,

ω

)

g

(

ω

)

d

ϑ

d

ω

=

K r2

,

completingtheproof.

2

We next discussglobalexistence anduniqueness ofmeasure-valuedsolutions. Letusdenoteby

M(T

× R)

the setof nonnegative Radonmeasures on

T

× R

,which canbe regardedasnonnegativeboundedlinearfunctionals on

C

0

(

T

× R)

. Thenournotionofmeasure-valuedsolutionsto(1.2) isdefinedasfollows.

Definition 2.1. For T

∈ [

0

,

∞)

,let

μ

C

w

(

0

,

T

;

M(T

× R))

be ameasure-valuedsolutionto (1.2) withan initial measure

μ

0

M(T

× R)

ifandonlyif

μ

satisfiesthefollowingconditions:

μ

isweaklycontinuous,i.e.,



μ

t

,

h

is a continuous as a function of t

,

h

C

0

(

T × R),

where



μ

t

,

h

:=



T×R h

(ϑ,

ω

)

μ

t

(

d

ϑ,

d

ω

).

Forh

C

10

(

T

× R

× [

0

,

T

))

,

μ

satisfiesthefollowingintegralequation:



μ

t

,

h

(

·, ·,

t

)

− 

μ0

,

h

(

·, ·,

0

)

=

t



0



μ

s

, ∂

sh

+

u

[

μ

]∂

ϑh

ds

,

whereu

[

μ

]

isgivenby u

[

μ

](ϑ,

ω

,

t

)

:=

ω

K



T×R sin

− ϑ

)

g

(

ω

)

μ

t

(

d

ϑ

,

d

ω

).

WealsointroducethedefinitionoftheboundedLipschitzdistance.

Definition 2.2. Let

μ

,

ν

M(T

× R)

betwoRadonmeasures.ThentheboundedLipschitzdistanced

(

μ

,

ν

)

between

μ

and

ν

isgivenby

d

(

μ

,

ν

)

:=

sup

h∈S

|

μ

,

h

− 

ν

,

h

| ,

wheretheadmissibleset

S

oftestfunctionsisdefined as

S

:= {

h

: T × R → R :

max

{

h

L∞,Lip

(

h

)

} ≤

1

}

with Lip

(

h

)

:=

sup (ϑ,ω) =(ϑ)

|

h

((ϑ,

ω

))

h

((ϑ

,

ω

))

|

|(ϑ,

ω

)

− (ϑ

,

ω

)

|

.

Wenowpresenttheresultsontheglobalexistenceandstabilityofmeasure-valuedsolutionsto(1.2).Wereferthereader to[19,21,40] fordetailsoftheproof.

Proposition 2.1. Forany

μ

0

M(T

×R)

,(1.2) hasauniquesolution

μ

C

w

(

0

,

T

;

M(T

×R))

withtheinitialdata

μ

0.Furthermore,

if

μ

and

ν

aretwosuchsolutionsto(1.2),thenthereexistsaconstantC

>

0 dependingonT suchthat

(5)

Remark 2.1. Onecanalsocharacterizethesolution

μ

oftheinitial-valueproblemfor(1.2) asthepush-forwardoftheinitial data

μ

0throughtheflowmapgeneratedbyu

[

μ

]

,i.e.,foranyh

C

c1

(

T

× R)

andt

,

s

0



T×R h

(ϑ,

ω

)

μ

t

(

d

ϑ,

d

ω

)

=



T×R h

( (

0

;

t

, ϑ,

ω

),

ω

)

μ0

(

d

ϑ,

d

ω

),

where

satisfies d dt

(

t

;

s

, ϑ,

ω

)

=

u

[

μ

]( (

t

;

s

, ϑ,

ω

),

ω

,

t

)

with

(

s

;

s

, ϑ,

ω

)

= ϑ.

(2.2)

Note that the characteristic system (2.2) is well definedsince the velocity field u

[

μ

]

is globally Lipschitz in

(ϑ,

ω

)

and continuousont evenforgeneralmeasures

μ

C

w

(

0

,

T

;

M(T

× R))

.

Remark 2.2. AsasimpleextensionofProposition2.1,see[21],wealsoobtainthatthesolution

μ

t canbeapproximatedas asumofDiracmeasuresofthefollowingform

μ

N t

=

1 N N



i=1

δ

ϑi(t)

⊗ δ

ωi

,

i.e., d

(

μ

t

,

μ

Nt

)

0 as N

→ ∞

. This can be accomplished by choosing a particle approximation of the initial data. One proceduretoconstructparticleapproximationsisthefollowing.Letuschoosethesmallestsquarecontainingthesupportof theinitialdata

μ

0,i.e.,supp

(

μ

0

)

R.Foragivenn,wedividethesquare R inton2subsquares Ri,i.e.,

R

=

n2



i=1

Ri

.

Let

ϑ

i0

,

ω

i bethecenterofRi fori

=

1

,

· · · ,

n2.Thenweconstructtheinitialapproximation

μ

n0 as

μ

n0

=

n2



i=1 mi

δ

ϑ0 i

⊗ δ

ωi with mi

=



Ri

μ0

(ϑ,

ω

)

d

ϑ

d

ω

.

Thenwecaneasilyshowthatd

(

μ

n0

,

μ

0

)

C

/

n

0 asn

→ ∞

.

Fromnow on,weassumethat theinitialmeasureisa smoothabsolutely continuous withrespecttoLebesguedensity withconnectedsupport.ThisassumptioncanberemovedbythestabilitypropertyinProposition2.1.Wenextshowstability oftheorderparameterr withrespecttoapproximatedfrequencydistributionsandinitialdataby againusingthestability estimatepresentedinProposition2.1.

Proposition 2.2. Let

μ

bethemeasure-valuedsolutiontotheequation(1.2)–(1.3) inthetimeinterval

[

0

,

T

]

withg

S

andtheinitial data

μ

0

M(T

× R)

.Letusdefinernas

rn

(

t

)

eiϕn(t)

=



T×R

eiϑ

ρ

n

(ϑ,

ω

,

t

)

gn

(

ω

)

d

ϑ

d

ω

,

where

ρ

nisthemeasure-valuedsolutionto(1.2) withtheinitialdata

ρ

n

0

S

satisfyingd

(

ρ

n

0

,

μ

0

)

0.Thenforany g

n

M(R)

satisfyingd

(

gn

,

g

)

0 asn

→ ∞

,wehave

lim

n→∞r

n

(

t

)

=

r

(

t

)

for t

∈ [

0

,

T

].

Proof. We firstestimate the1-Wassersteindistancebetween

ρ

n and

μ

.Observethat

ρ

n

(

t

)

S

forall t

0 bythe push-forwardcharacterizationinRemark2.1.Moreover,italsofollowsfromRemark2.1that









T×R h

(ϑ,

ω

)

ρ

n

(ϑ,

ω

,

t

)

d

ϑ

d

ω



T×R h

(ϑ,

ω

)

μ

t

(

d

ϑ,

d

ω

)







=









T×R h

(

n

(

0

;

t

, ϑ,

ω

),

ω

)

ρ

n 0

(ϑ,

ω

)

d

ϑ

d

ω



T×R h

( (

0

;

t

, ϑ,

ω

),

ω

)

μ0

(

d

ϑ,

d

ω

)







,

(6)

foranyh

C

c1

(

T

× R)

andt

,

s

0,where

n satisfies d dt

n

(

t

;

s

, ϑ,

ω

)

=

un

[

ρ

n

](

n

(

t

;

s

, ϑ,

ω

),

ω

,

t

)

=

ω

K



T×R sin

(

n

(

t

;

s

, ϑ,

ω

)

− ϑ

)

ρ

n

,

ω

,

t

)

gn

(

ω

)

d

ϑ

d

ω

,

with

n

(

s

;

s

,

ϑ,

ω

)

= ϑ

forall n

1 and

satisfies (2.2). Fornotationalsimplicity, we denote

n

(

t

;

0

,

ϑ,

ω

)

=

n

(

t

)

and

(

t

;

0

,

ϑ,

ω

)

= (

t

)

.Thenastraightforwardcomputationyields

d dt

|

n

(

t

)

− (

t

)

| ≤

K









T×R sin

(

n

(

t

)

− ϑ

)

ρ

n

,

ω

,

t

)

d

ϑ

(

gn

g

)(

dw

)







+

K









T×R sin

(

n

(

t

)

− ϑ

)

g

(

w

) (

ρ

n t

μ

t

)(

d

ϑ

,

d

ω

)







+

K









T×R



sin

(

n

(

t

)

− ϑ

)

sin

( (

t

)

− ϑ

)



g

(

w

)

μ

t

(

d

ϑ

,

d

ω

)







K d

(

gn

,

g

)

+

K d

(

ρ

tn

,

μ

t

)

+

K

|

n

(

t

)

− (

t

)

|.

Thusweconclude

|

n

(

t

)

− (

t

)

| ≤

C

(

K

,

T

)

d

(

gn

,

g

)

+

t



0 d

(

ρ

sn

,

μ

s

)

ds

⎠ ,

whereC

>

0 isindependentofn.Thistogetherwiththeboundednessof

n and

in

[

0

,

T

]

gives









T×R h

(

n

(

0

;

t

, ϑ,

ω

),

ω

)

ρ

0n

(ϑ,

ω

)

d

ϑ

d

ω



T×R h

( (

0

;

t

, ϑ,

ω

),

ω

)

μ0

(

d

ϑ

d

ω

)







C

d

(

gn

,

g

)

+

t



0 d

(

ρ

n s

,

μ

s

)

ds

⎠ +

Cd

(

ρ

n 0

,

μ

0

).

Hencewehave d

(

ρ

tn

,

μ

t

)

C

d

(

gn

,

g

)

+

t



0 d

(

ρ

sn

,

μ

s

)

ds

⎠ +

Cd

(

ρ

n0

,

μ0

),

i.e., d

(

ρ

n t

,

μ

t

)

Cd

(

gn

,

g

)

+

Cd

(

ρ

0n

,

μ

0

),

whereC

>

0 isindependentofn.Wenowshowthestrongconvergenceofrn tor.Forthis,weusethefollowingidentities

rn

(

t

)

=









T×R eiϑ

ρ

n

(ϑ,

ω

,

t

)

gn

(

ω

)

d

ϑ

d

ω







and r

(

t

)

=









T×R eiϑg

(

ω

)

μ

t

(

d

ϑ,

d

ω

)







,

toobtain

|

rn

(

t

)

r

(

t

)

| ≤









T×R cos

ϑ



ρ

tngn

μ

tg



(

d

ϑ,

d

ω

)





 +









T×R sin

ϑ



ρ

tngn

μ

tg



(

d

ϑ,

d

ω

)







=:

I1

+

I2

.

(7)

Here I1 canbeestimatedas I1









T×R cos

ϑ



ρ

nt

μ

t



g

(

d

ϑ,

d

ω

)





 +









T×R cos

ϑ



gn

g



ρ

tn

(

d

ϑ,

d

ω

)







d

(

ρ

nt

,

μ

t

)

+

d

(

gn

,

g

),

duetocos

ϑ

g

(

ω

),

cos

ϑ

ρ

n

t

(ϑ,

ω

)

S

.Similarly,wealsofind I2

d

(

ρ

tn

,

μ

t

)

+

d

(

gn

,

g

)

,concludingthat

|

rn

(

t

)

r

(

t

)

| ≤

I1

+

I2

2d

(

ρ

tn

,

μ

t

)

+

2d

(

gn

,

g

)

Cd

(

gn

,

g

)

+

Cd

(

ρ

n

0

,

μ

0

)

0 as n

→ ∞.

Thiscompletestheproof.

2

Remark 2.3. AsimilarresulttoProposition2.2canbeobtainedifweapproximatetheinitialdata

μ

0

M(T

× R)

andthe frequencydistribution gn

(

ω

)

L

(

R)

asfollows:

μ

n

0

M(T

× R)

and gn

(

ω

)

S

satisfying d

(

μ

n0

,

μ

0

)

0 and

gn

(

·)

g

(

·)

L(R)

0 asn

→ ∞

.

Remark 2.4. AsimilarresulttoProposition2.2canalsobeprovedfortheKuramotomodelwithnoise(1.5).Thestrategyof theproofisanalogousbutitusesstochasticprocessestechniquestowritethecorrespondingstochasticdifferentialequation systems.Moreover,one needstoresorttoWasserstein distancesinsteadoftheboundedLipschitzdistanceabovetomake thestabilityargumentofthesolutions.Wedonotincludethedetailsoftheproofsincethetechnicalitieslieoutsideofthe scopeofthepresentwork,see[15] forrelatedproblems.

NoticethatProposition2.2andRemark2.4allowustoworkwithcontinuousfrequencydistributionsforbothKuramoto models(1.2) and(1.5) byapproximation.Moreprecisely,wecanapproximateGaussiananduniformfrequencydistributions bysumsofDiracDeltasatafinitenumberoffrequencieswhileapproximatingtheinitialdatabysmoothfunctionsifthey arenotregularenough.ThisfactwillbeusedinthenumericalschemesinSection3andthesimulationsinSection4.

2.2. TheKuramotomodelwithdiffusion:stationarystatesandfreeenergies

Wefirstderiveanexplicitcompatibilityconditionforsmoothstationarystates

ρ

oftheequation(1.5).Wefirsteasily findfrom(1.5) and(2.1) that

D

ϑ2

ρ

= ∂

ϑ

((

ω

K r∞sin

ϕ

))

ρ

) ,

wherer and

ϕ

∞ aregivenby

reiϕ

=



T×R

eiϑ

ρ

(ϑ,

ω

)

g

(

ω

)

d

ϑ

d

ω

.

Wenoticethatwecanset

ϕ

=

0 inthestationarystatewithoutlossofgeneralitybychoosingtherightangularreference system.Thisyields

ϑ

ρ

(ϑ,

ω

)

ω

K r∞sin

ϑ

D

ρ

=

c0

(

w

),

forsomefunctionc0

(

w

)

.Solvingtheabovedifferentialequation,wefind

ρ

(ϑ,

ω

)

=

ρ

(

0

,

ω

)

exp



K r

+

ω

ϑ

+

K rcos

ϑ

D



×

1

+

c0

(

ω

)

e K rD

ρ

(

0

,

ω

)

ϑ



0 exp



ω

ϑ

+

K r∞cos

ϑ

D



d

ϑ

⎠ ,

for

ϑ

∈ [

0

,

2

π

)

,where

ρ

(

0

,

ω

)

isfixedbythenormalization,i.e.,



T

(8)

Ontheotherhand,since

ρ

(

2

π

,

ω

)

=

ρ

(

0

,

ω

)

,weget 1

=

exp



2

π ω

D

 ⎛

1

+

c0

(

ω

)

e K rD

ρ

(

0

,

ω

)

2π



0 exp



ω

ϑ

+

K r∞cos

ϑ

D



d

ϑ

⎠ ,

andsubsequently,thisimplies

c0

(

ω

)

e K rD

ρ

(

0

,

ω

)

=

exp

(

2

π ω

/

D

)

1



2π 0 exp

(

−(

ω

ϑ

+

K r∞cos

ϑ

)/

D

)

d

ϑ

.

Hencewehave

ρ

(ϑ,

ω

)

=

ρ

(

0

,

ω

)

exp



K r

+

ω

ϑ

+

K rcos

ϑ

D



×



1

+

(

exp

(

2

π ω

/

D

)

1

)



ϑ 0 exp

(

−(

ω

ϑ

+

K r∞cos

ϑ

)/

D

)

d

ϑ



2π 0 exp

(

−(

ω

ϑ

+

K r∞cos

ϑ

)/

D

)

d

ϑ



.

(2.3)

LetusdiscussfurtherpropertiesinthecaseofnoisyidenticalKuramotooscillators,whicharegovernedbytheequation (1.5) with g

= δ

0.Thenwecanset

ω

=

0 withoutlossofgeneralityin(2.3) toconcludethatitsstationarystateisgivenby

ρ

(ϑ)

=

ρ

(

0

)

exp



K r

+

K rcos

ϑ

D



,

where

ρ

(

0

)

isagainfixedbythenormalization



T

ρ

(ϑ)

d

ϑ

=

1

.

Notethatforbothidenticalandnon-identicaloscillatorsifr

=

0,i.e.,incoherencestate,weobtain

ρ

(ϑ,

ω

)

=

ρ

(

0

,

ω

)

=

1

2

π

,

for all

ω

∈ R,

duetothenormalization.Inthiscasetheequation(1.5) hasthestructureofagradientflow.Moreprecisely,ifweset

ξ

[

ρ

](ϑ,

t

)

:=

K

(

W

ρ

)(ϑ,

t

)

D log

ρ

(ϑ,

t

),

withW

(ϑ)

=

cos

ϑ

,thenitiseasytocheckthat

t

ρ

+ ∂

ϑ

(

ρ

ϑ

ξ

[

ρ

]) =

0

.

Usingthisobservation,wenowestimatethefollowingfreeenergy

E

(

t

)

:= −

K 2



T

(

W

ρ

)(ϑ,

t

)

ρ

(ϑ,

t

)

d

ϑ

+

D



T

ρ

(ϑ,

t

)

log

ρ

(ϑ,

t

)

d

ϑ.

Lemma 2.2. Let

ρ

beasmoothsolutiontotheequation(1.5) withg

= δ

0.Thenwehave

d

dt

E

(

t

)

= −

D

E

(

t

),

wherethedissipationrate

D

E

(

t

)

isgivenby

D

E

(

t

)

:=



T

|∂

ϑ

ξ

[

ρ

]|

2

ρ

d

ϑ.

Proof. A straightforwardcomputationyields

d dt

E

(

t

)

= −



T

(

K

(

W

ρ

)

D log

ρ

) ∂

t

ρ

d

ϑ

= −



T

ξ

[

ρ

]∂

t

ρ

d

ϑ

= −



T

|∂

ϑ

ξ

[

ρ

]|

2

ρ

d

ϑ.

2

(9)

Lemma 2.3. Let

ρ

beasmoothsolutiontotheequation(1.5) withg

= δ

0.Thenwehave

˙

r

=

K r



T sin2

(

ϕ

− ϑ)

ρ

d

ϑ

Dr

.

Inparticular,ifthestrengthofnoiseD isstrongenoughsuchthatD

K ,then

˙

r

0 forallt

0.

Proof. By definitionoftheorderparameterr,weget

˙

r

= ˙

ϕ



T sin

ϕ

)

ρ

(ϑ,

t

)

d

ϑ

+



T cos

ϕ

)∂

t

ρ

(ϑ,

t

)

d

ϑ

=

I1

+

I2

,

whereI1vanishessince

I1

=

˙

ϕ

r



T×T sin

− ϑ

)

ρ

(ϑ,

t

)

ρ

,

t

)

d

ϑ

d

ϑ

=

0

.

FortheestimateofI2,wefind

I2

=



T cos

ϕ

)



D

ϑ2

ρ

− ∂

ϑ

(

u

[

ρ

]

ρ

)



d

ϑ

= −

D



T cos

ϕ

)

ρ

d

ϑ



T sin

ϕ

)

u

[

ρ

]

ρ

d

ϑ

= −

Dr

+

K



T sin2

ϕ

)

ρ

d

ϑ.

Combiningtheabovetwoestimatesconcludesthedesiredresult.

2

Beforepassingtotheconstructionofnumericalmethodsthefollowingremarkshouldbemade.

Remark 2.5. Severalworksforthecontinuum Kuramoto modelarebased onthe g-weighted kinetic density f

(ϑ,

ω

,

t

)

:=

ρ

(ϑ,

ω

,

t

)

g

(

ω

)

(see[13] forexample).Inthisway,onecanrewritetheKuramotomodel(1.5) as

tf

+ ∂

ϑ

(

v

[

f

]

f

)

=

D

ϑ2f

,

with f

(ϑ,

ω

,

t

)

=

ρ

(ϑ,

ω

,

t

)

g

(

ω

),

(2.4) v

[

f

](ϑ,

ω

,

t

)

=

ω

K



T×R

sin

− ϑ

)

f

,

ω

,

t

)

d

ϑ

d

ω

.

Notethatthedistributionofthenaturalfrequenciesisnowgivenby

g

(

ω

)

=



T

f

(ϑ,

ω

,

t

)

d

ϑ.

Evenif,inthecontinuation,wewillusetheform(1.5) fortheconstructionofourstructurepreservingnumericalmethods, theycanbeeasilyreformulatedtotheform(2.4).InSection4wewillshowboth

ρ

(ϑ,

ω

,

t

)

and f

(ϑ,

ω

,

t

)

insomenumerical tests.

3. Structure preserving methods

The goalnow isto propose finitevolume numericalschemes preserving the structureof gradientflow to the caseof identicaloscillatorsandthataregeneralizableforoscillatorswithnaturalfrequenciesgivenbyadistributionfunction g

(

w

)

. Tostartwith,from(2.1) and(1.5),itfollowsthatthedensity

ρ

satisfiesthefollowingcontinuityequation

t

ρ

= ∂

ϑF

[

ρ

],

(3.1)

with

(10)

3.1. Semi-discretestructurepreservingschemes

Inspired by [17,18,22,44,51], we construct a discrete numerical scheme in the variable

ϑ

for the above equation as follows.Fori

=

1

,

· · · ,

N,wefirstintroduceauniform spatialgrid

ϑ

i

∈ T

suchthat

ϑ

i+1

− ϑ

i

= ϑ

and

ϑ

N+k

= ϑ

kfork

∈ R

. Withoutlossofgenerality,weset

ϑ

1/2

= ϑ

N+1/2

=

0

2

π

,andwethendefine

ρ

i

(

ω

,

t

)

:=

1

ϑ

ϑ



i+1/2 ϑi−1/2

ρ

(ϑ,

ω

,

t

)

d

ϑ.

Weconsiderthefollowingapproximationsfor(3.1)

d

dt

ρ

i

(

ω

,

t

)

=

Fi+1/2

[

ρ

](

ω

,

t

)

Fi−1/2

[

ρ

](

ω

,

t

)

ϑ

for i

=

1

,

· · · ,

N

,

(3.3)

wherethenumericalfluxfunction Fi±1/2

[

ρ

](

ω

,

t

)

isgivenby

Fi+1/2

[

ρ

](

ω

,

t

)

:=

D

ρ

i+1

ρ

i

ϑ

ui+1/2

ρ

˜

i+1/2

,

(3.4) with ui+1/2

(

ω

,

t

)

:=

1

ϑ

ϑi+1



ϑi u

(ϑ,

ω

,

t

)

d

ϑ,

ρ

˜

i+1/2

:= (

1

− δ

i+1/2

)

ρ

i+1

+ δ

i+1/i

,

and u

(ϑ,

ω

,

t

)

=

ω

+

K

ϑ

N



j=1 sin

j

− ϑ)



R

ρ

j

(

ω

,

t

)

g

(

ω

)

d

ω

.

(3.5)

As in[22,44] asuitablechoiceoftheweightfunctions

δ

i+1/2 yieldsamethodthatmaintainsnonnegativityofthesolution (withoutrestrictionson

ϑ

)andpreservesthesteadystateofthesystemwitharbitraryorderofaccuracy.Wewillreferto theschemesobtainedinthiswayasChang–Coopertypeschemes[22].

First,observethatwhenthenumericalflux(3.4) vanishesweget

ρ

i+1

ρ

i

=

D

ϑ

+ δ

i+1/2ui+1/2 D

ϑ

− (

1

− δ

i+1/2

)

ui+1/2

.

(3.6)

Similarly,ifweconsidertheexactflux(3.2),byimposing F

[

ρ

]

0,wehave

D

ϑ

ρ

=

u

ρ

.

Integratingtheaboveequationonthecell

i

,

ϑ

i+1

]

weget

ϑi+1



ϑi 1

ρ

ϑ

ρ

ϑ

=

ϑi+1



ϑi u Dd

ϑ,

whichgives

ρ

i+1

ρ

i

=

exp



ϑ

D ui+1/2



.

(3.7)

Therefore,byequating(3.6) and(3.7) werecover

δ

i+1/2

=

1

ξ

i+1/2

+

1 1

exp

i+1/2

)

with

ξ

i+1/2

= −

ϑ

D ui+1/2

.

(3.8)

Wecanstatethefollowing.

Proposition 3.1. Thenumericalfluxfunction(3.4) with

δ

i+1/2definedby(3.8) vanisheswhenthecorrespondingflux(3.2) isequalto

(11)

Proof. The latterresultfollowsfromthesimpleinequalityexp

(

x

)

1

+

x.

2

Remark 3.1. Since r cos

(

ϕ

− ϑ

i

)

= ϑ

N



j=1 cos

j

− ϑ

i

)



R

ρ

j

(

ω

,

t

)

g

(

ω

)

d

ω

,

weget ui+1/2

(

ω

,

t

)

=

ω

+

K N



j=1



cos

j

− ϑ

i+1

)

cos

j

− ϑ

i

)

 

R

ρ

j

(

ω

,

t

)

g

(

ω

)

d

ω

=

ω

+

K r

ϑ

(

cos

(

ϕ

− ϑ

i+1

)

cos

(

ϕ

− ϑ

i

)) .

Ontheother hand,the aboveexpressionforui+1/2 isnot thatusefulinpracticesinceitcontains r whichdependson

ρ

. Thus,itwouldbemoretechnicallyusefultowrite

ui+1/2

(

ω

,

t

)

=

ω

+

2K sin

( ϑ/

2

)

N



j=1 sin

j

− ϑ

i+1/2

)



R

ρ

j

(

ω

,

t

)

g

(

ω

)

d

ω

=

ω

+

2K sin

( ϑ/

2

)

cos

i+1/2

)

N



j=1

ρ

sj

(

t

)

sin

i+1/2

)

N



j=1

ρ

cj

(

t

)

⎠ ,

(3.9) whereweset

ρ

sj

(

t

)

:=

sin

j

)



R

ρ

j

(

ω

,

t

)

g

(

ω

)

d

ω

and

ρ

cj

(

t

)

:=

cos

j

)



R

ρ

j

(

ω

,

t

)

g

(

ω

)

d

ω

.

Remark 3.2. Theresultingschemeissecondorderaccuratein

ϑ

forD

>

0,anddegeneratetosimplefirstorderupwinding inthelimitcaseD

=

0.Infact,itisimmediatetoshowthatasD

0 weobtaintheweights

δ

i+1/2

=



0

,

ui+1/2

<

0

,

1

,

ui+1/2

>

0

.

Inthelemmabelow,weshowthatthenumericalschemeconservesthemass.

Lemma 3.1. Considerthenumericalscheme(3.3).Thenwehave

d dt N



i=1

ρ

i

(

ω

,

t

)

=

0 for

(

ω

,

t

)

∈ R × R

+

.

Proof. It followsfromtheperiodicityofdomainthat

ρ

N+1

=

ρ1

and

ρ

N

=

ρ0

.

(3.10)

Similarly, we getuN+1/2

=

u1/2 andsubsequentlythisimplies

ξ

N+1/2

= ξ

1/2,

δ

N+1/2

= δ

1/2,and

ρ

˜

N+1/2

= ˜

ρ

1/2.From the aboveproperties,wecaneasilyobtain

FN+1/2

[

ρ

](

ω

,

t

)

=

F1/2

[

ρ

](

ω

,

t

)

for

(

ω

,

t

)

∈ R × R

+

.

This,togetherwiththefollowingstraightforwardcomputation

d dt N



i=1

ρ

i

(

ω

,

t

)

=

1

ϑ

N



i=1



Fi+1/2

[

ρ

](

ω

,

t

)

Fi−1/2

[

ρ

](

ω

,

t

)



=

1

ϑ



FN+1/2

[

ρ

](

ω

,

t

)

F1/2

[

ρ

](

ω

,

t

)



=

0

,

(12)

We next providethe positivity preservation whose proof can be obtained by usingalmost sameargument asin [44, Proposition 1]. However, for the completeness of thiswork, we sketch the proof in the propositionbelow. For this, we introducethetimediscretizationtn

=

n

t with

t

>

0 andn

∈ N

0andconsiderthefollowingforwardEulermethod

ρ

ni+1

(

ω

,

t

)

=

ρ

ni

(

ω

,

t

)

+

tF n i+1/2

[

ρ

](

ω

,

t

)

Fni−1/2

[

ρ

](

ω

,

t

)

ϑ

for i

=

1

,

· · · ,

N

,

(3.11) where Fni+1/2

[

ρ

](

ω

,

t

)

:=

D

ρ

n i+1

ρ

n i

ϑ

u n i+1/2

ρ

˜

in+1/2

.

Proposition 3.2. Supposethatg iscompactlysupportedandthetimestep

t satisfies

t

( ϑ)

2

2

(

C0

ϑ

+

D

)

where C0

= |

supp

(

g

)

| +

K

.

Thentheexplicitscheme(3.11) preservesnonnegativity,i.e.,

ρ

n+1

i

0 if

ρ

in

0 fori

=

1

,

· · · ,

N.

Proof. It followsfrom(3.11) that

Fni+1/2

[

ρ

](

ω

,

t

)

Fin1/2

[

ρ

](

ω

,

t

)

=

ρ

in+1



D

ϑ

u n i+1/2

(

1

− δ

ni+1/2

)



+

ρ

in



uni1/2

(

1

− δ

in1/2

)

uni+1/2

δ

ni+1/2

2D

ϑ



+

ρ

ni1



D

ϑ

+

u n i−1/2

δ

in−1/2



.

Ontheotherhand,weeasilyfind

D

ϑ

u n i+1/2

(

1

− δ

ni+1/2

)

=

D

ξ

i+1/2

ϑ



1

1 1

exp



ξ

i+1/2





0

,

duetox

(

1

− (

1

ex

)

−1

)

0 forx

∈ R

.Similarly,weget

D

ϑ

+

u n i−1/2

δ

ni−1/2

=

D

ϑ



ξ

i−1/2 exp



ξ

i−1/2



1



0

.

Wealsonoticethat

max 0≤iN





uni1/2

(

1

− δ

in1/2

)

uni+1/2

δ

ni+1/2

2D

ϑ



 ≤

max 0≤iN



|

uni+1/2

| + |

uni1/2

|



+

2D

ϑ

2



|

supp

(

g

)

| +

K

+

D

ϑ



.

This, together with the property of convex combination, yields that the nonnegativity is preserved ifthe time step

t

satisfies

t

ϑ

2

(

|

supp

(

g

)

| +

K

+

D

/ ϑ)

.

2

Remark 3.3. The parabolicstability restriction

t

=

O( ϑ

2

)

whichappears inProposition3.2canbeavoided ifwe usea semi-implicitschemeasin[44].Tobemoreprecise,letusconsider

ρ

ni+1

(

ω

,

t

)

=

ρ

ni

(

ω

,

t

)

+

t

ˆ

Fni++11/2

[

ρ

](

ω

,

t

)

− ˆ

Fni+11/2

[

ρ

](

ω

,

t

)

ϑ

for i

=

1

,

· · · ,

N

,

(3.12) where

ˆ

Fni++11/2

[

ρ

](

ω

,

t

)

:=

D

ρ

n+1 i+1

ρ

n+1 i

ϑ

u n i+1/2



(

1

− δ

in+1/2

)

ρ

in++11

+ δ

ni+1/2

ρ

in+1



.

Figura

Fig. 1. Time evolution of solution ρ ( t ) with K = 1 and D = 0 . 25 with the ESP scheme and N = 51 (left)
Fig. 2. Comparison between fluxes with different δ i + 1 / 2 ( 3.8 ) and ( 3.18 ), labeled ESP2, with K = 1, D = 0
Fig. 4. Evolution of the order parameter r ∞ ( D ) for fixed K = 1 (left). Time evolution of solution r ∞ ( K ) with D = 1 (right)
Fig. 6. Uniform distribution case: phase transition of the order parameter r ∞ ( K )
+6

Riferimenti

Documenti correlati

According to FAO food balance sheets and to Alexandratos and Bruinsma (2012), in 2005-2007 people in developed countries consumed three-times more meat and four-times more milk

A livello teorico, si può definire come un testo elettronico che dal punto di vista della forma testuale si riallaccia all’eredità della cultura del libro — “un testo strutturato,

When the central bank expands the money supply via open market operations, it acquires government securities (i.e. assets increase) so to expand reserves held by private banks..

tipologia di dispositivi da parte dei clienti consente alle imprese assicurative di disporre di dati reali e sempre aggiornati sulle condizioni di salute degli assicurati,

Il cari- co orale di glucosio non è raccomandato come test di routine, ma può essere richiesto nella valutazione dei pazienti con IFG o quando vi è il sospetto di diabete

• Section 4 contains the Mountain Pass-type Theorem (Theorem 4.12) which establishes exis- tence of a radial, non-negative, non-decreasing solution and whose main ingredient relies on