• Non ci sono risultati.

Classification and lift-off height prediction of non-premixed MILD and autoignitive flames

N/A
N/A
Protected

Academic year: 2021

Condividi "Classification and lift-off height prediction of non-premixed MILD and autoignitive flames"

Copied!
8
0
0

Testo completo

(1)

Classification

and

lift-off

height

prediction

of

non-premixed

MILD

and

autoignitive

flames

M.J.

Evans

a, b, ∗

,

P.R.

Medwell

a

,

H.

Wu

b

,

A.

Stagni

b, c

,

M.

Ihme

b aSchoolofMechanicalEngineering,TheUniversityofAdelaide,SouthAustralia5005,Australia

bDepartmentofMechanicalEngineering,StanfordUniversity,California94305,USA

cDipartimentodiChimica,MaterialiedIngegneriaChimica“G.Natta”,PolitecnicodiMilano,20133Milan,Italy

Received4December2015;accepted1June2016

Abstract

Moderateorintenselowoxygendilution(MILD)combustionhasbeenthesubjectofnumerousstudiesin recentyears.Anissueremains,however,inthedefinitionoftheboundariesoftheMILDcombustionregime withrespecttonon-premixedconfigurationswithoutpredefinedreferencetemperatures.Aflameletdefinition isappliedtonon-premixedconfigurationstobetterunderstandtheMILDcombustionregimeandclassify previousexperimentalinvestigations.Throughasimplifiedanalysis,anewdefinitionforthenon-premixed MILDcombustionregimeisderived.Thisnewdefinitionisafunctionofinitialandfinaltemperatures,and theeffectiveactivationenergyofanequivalentone-stepchemicalreaction.Thisinherentlyagreeswiththe featuresofthepremixedflameletdefinitionandprovidesinsightintopreviousattemptstoreconcilepremixed andnon-premixedclassificationsof MILDcombustion.Previouslystudiedturbulentflamesareclassified usingthenewdefinitionof MILDcombustionandarecomparedtoexperimentalobservations.Thenew definitionof MILDcombustionissubsequentlycomparedtotheignitioncharacteristicsofopposed-flow ethyleneflames,showinggoodagreement.Finally,transientflameletsaresolvedforamodelledflow-field tosuccessfullyreproducenon-monotonictrendsinthelift-offthatisobservedexperimentallyinaseriesof MILDandautoignitive,turbulentethyleneflamesinhot,dilutedcoflows.

Keywords: MILDcombustion;Non-premixedflames;Liftedflames;Autoignition;Flamelettheory

Correspondingauthorat:SchoolofMechanical

En-gineering,TheUniversityofAdelaide,SouthAustralia, 5005,Australia.Fax:+61883134367.

E-mail address: m.evans@adelaide.edu.au (M.J. Evans).

1. Introduction

Moderate or intense low oxygen dilution (MILD) combustion features reduced pollutant emissionsandefficiency improvements over con-ventionalcombustion[1].OperationintheMILD, or flameless, combustion regime is generally achieved byburning fuel in hot, low oxygen en-vironments.Thisreduceschemicalreaction rates,

(2)

Nomenclature

α Heatreleaseparameter

χ Scalardissipationrate

T Temperatureincrease

ω Reactionrate

ρ Density

τ Non-dimensionaltime

θ Non-dimensionaltemperature

D Jetexitdiameter

Da GlobalDamköhlernumber

Eeff Effectiveone-stepactivationenergy

R Universalgasconstant

r Radius (cylindrical polar coordi-nates)

Sct TurbulentSchmidtnumber

T Temperature

u0 Jetbulkvelocity relativeto coflow velocity

x Axialdistancefromjetexitplane

Subscripts

0 Referencevalue

b Fullyburntmixture

cofl Coflowconditions

ex Extinctioncondition

ign Steady-stateautoignitioncondition

in Initialcondition

mr Mostreactivemixture

si Self-ignitioncondition

st Stoichiometricmixture

u Unburnt(fresh)mixture

resultingindistributedreactionzonesasopposed to the high temperature peaks in conventional flames [1]. As a result, jet flames in the MILD regime featureaglobalDamköhler number(Da) nearunity,suchthatfinite-ratechemistrybecomes important [2,3]. Despite numerous investigations intotheuniquecharacteristicsof MILD combus-tion, the boundaries of the MILD regime have not been thoroughly defined in non-premixed configurations.

IgnitionandcombustionstabilityoftheMILD combustionregimehavebeeninvestigated experi-mentally[4]andnumerically[4–7]inpremixed re-actors[1].Theseanalyseshavebeenbasedoninitial temperature(Tin)andtemperatureincrease(T),

relativetoaself-ignitiontemperature(Tsi)[1].This

Tsi is defined as the minimum inlet temperature

requiredforignitioninaperfectly-stirredreactor (PSR)within one second[1]. This definitionhas sinceformedthebasisofpremixed[4–6]and non-premixed[8]analysesofMILDcombustion.

TheMILDcombustionregimeinapremixed re-actorhasbeendefined independentlytoTsi[1,5].

Bythisdefinition,MILDcombustionimpliesthat theS-shapedcurveoftemperatureasafunctionof thecharacteristictimeismonotonic,andwithout

ignitionorextinctionpoints[5,9–11].This defini-tionleadstoacriterionforpremixedMILD com-bustion,which,assumingconstantspecificheatat constantpressure,maybeapproximatedas[1]:

Ee f f/(RTin)≤ 4(1+Tin/T) (1)

whereRistheuniversal gasconstant andEeff is

theeffectiveactivationenergyofanequivalent one-stepreaction. This definitionseparates gradually ignitingMILDflamesfromconventional autoigni-tiveflames, whichfeatureignitionandextinction pointson the S-shaped curve. This is consistent withthe“flameless” descriptionofMILD combus-tion [1,5].The two alternatepremixed classifica-tionsof MILDcombustionbothproposedistinct definitionsoftheMILDregime,basedonacritical temperature,Tsi,[1]ortheglobalignitionprocess,

Eeff[5].

Thedefinitionof MILDcombustionbasedon theS-shapedcurvehaspreviouslybeenappliedin analytical[9]andnumerical[10,11]studies.A pre-viousanalyticalstudycombinedthemonotonic S-shapedcurvewithapre-definedquenching temper-ature,toenforce anextinctioncondition[9].The S-shapedcurveconcepthasadditionallybeenused toclassifyresultsinanumericalstudy,with extinc-tiondisappearingwithsufficientpreheatingand di-lution[11].

Experimental studies of non-premixed ethy-lene (C2H4) flames in a jet-in-hot-coflow (JHC) burnerindicatethatapparentlyattachedflames un-dergogradualignitioninlowoxygencoflows, cor-respondingtoMILDcombustion[12,13]. Increas-ingoxygenconcentrationleadstoatransitiontoa conventionalautoignitiveflamestructure[12–14]. Bothflame structureswere observedbyMedwell etal.[12]intwoflamesmeetingthePSRdefinition ofMILDcombustion,despitetheirdifferent igni-tioncharacteristics.

ThenumericalinvestigationofMILD combus-tioninaJHCconfigurationadded“quasi-MILD” and“MILD-like” regimes[8]tothePSRdefinition ofCavaliereanddeJoannon[1].Bothregimeskeep theconditionT < Tsi,however,theformer

de-scribescasesrequiringforcedignitionandthelatter doesnotmeettheimposed“lowoxygendilution” criterion[8].Neither[8],northesubsequent chemi-calkineticsanalysis[6]offerfurtherdistinctions be-tweenMILDcombustionandthesetwo regimes. These classifications expand the PSR definition, howeverareunabletodistinguishgradualMILD combustionfromconventionalautoignition.

The definitions of MILD combustion based on temperatures are not consistent between premixed and non-premixed configurations. The current work aims to use an idealised, one-dimensional flamelet analysis to define non-premixed MILD combustion without the requirementforcomposition-dependentreference temperatures, by including a fuel-specific Eeff.

(3)

concept [5,9] which is applied to non-premixed configurationsthroughanalysissimilartothatby Pitsch andFedotov [15].This newdefinition for non-premixed MILD combustion is quantified through an opposed-flow flamelet analysis, to produceacriterionfornon-premixedMILD com-bustion, which is compared to premixed regime classifications. This definition is subsequently used to classify previous experiments, and com-pare flamelet simulations to new experimental observationsinaJHCburner.

2. Numericalanalysis

2.1. Non-premixedflameletanalysis

The one-dimensional, opposed-flow flamelet equationsforanon-premixedsystemwithan irre-versible,one-stepreactionwereanalysedbyPitsch andFedotov[15].Thisanalysiscouplesthereaction rate(ω),scalar dissipationrate(χ), mixture frac-tion(Z)andnormalisedtime(τ).At stoichiomet-ricconditions(st),theflameletsolutionwasshown toyieldthefollowingequationrelatingnormalised temperature(θst)andχ alongtheS-shapedcurve

[15]: dθst + (χst/χst,0)θst− ω(θst)=0 (2) withθ =(T− Tst,u)/Tand: ω=Da(1− θst)2 (1− α)exp(β0− β) 1− α(1− θst) ×exp  −αβ 1− θst 1− α(1− θst)  (3) whereα =Tst/Tst,bistheheatreleaseparameter,

β =Ee f f/(RTst,b)istheactivationtemperature

ra-tio,ureferstotheunburnt(fresh)mixture,b indi-catesfully-burnt,0indicatesareferencevalueand

Daisconstantforanygivenfuelandoxidant com-bination.DifferentiationofEq.(3)withrespectto

θst,atsteady-state,producestheconditionfor

turn-ingpointsintheS-shapedcurve(∂χst

∂θst =0),onthe interval0<θst<1:

ζ =(β2+6β +1)α2− (6β − 2)α +1≥ 0 (4) Satisfyingthisconditionimpliesturningpoints ex-istinthecurveχstversusθst,correspondingto

ig-nition(ig)andextinction(ex)givenby:

θst=1−

1+(3+β)α ± ζ1/2

2(α2+(1+β)α) , θst,ex≥ θst,ign (5) Ifθst,ignandθst,exarereal,theS-shapedcurve

fea-turesautoignitionandextinction.Iftheseare com-plex,ζ < 0,thenχstversusθstismonotonic,

indi-catingMILDcombustion[5].Finally,negative val-uesindicatenophysicalsolution.

2.2. S-Shapedcurvegeneration

Sixty-threeS-shapedcurveswithC2H4fuelwere simulatedinFlameMaster[16].TheFlameMaster codeusesafinitedifferencemethodsolvedonan adaptivemeshwithasecond-order,implicit back-warddifferenceformula.TheseS-shapedcurve so-lutionswere usedtoform amapof θst,ex− θst,ign

(seeEq.(5)),withMILDcombustionidentifiedif

θst,ex− θst,ign was zero orcouldnot beevaluated.

Oxidisers rangedfrom 1000Kto 1600K,at in-tervalsof 100K,andcomposedof2–15%O2 by volume,atincrementsof1%from2–9%andthen every2%to15%.Theoxidisersconsistedof 10% H2Oand3%CO2,balancedbyN2[12].Thesewere solvedusingtheC1–C3sub-mechanismfromthe December 2014version of thedetailed POLIMI mechanismforhydrocarboncombustion[17].

2.3. Transientflameletanalysis

The ignition of MILD and conventional autoignitive flames was analysed using two-dimensionalprofilesforZandχ.Thisprocedure is similar to previous analyses of turbulent jet flames using transient, opposed-flow flamelets [18].Aconicalpotentialcorewasimposedforthe mixturefractionwith alengthof 7x/D.Further downstream (x/D ≥ 7), the Z profilewas taken fromtheself-similaranalysisby[19]:

x/D<7: Z=  1, R(x)<0  1+[γ Rη(x)]2/4−2Sct, R(x)≥ 0 x/D≥ 7: Z= 70 32 (1+2Sct)D (x+x0)(ρ0ρst)1/2  1+[γ η] 2 4 −2Sct (6) whereγ =[3× 702/(64ρ st)]1/2 [19];η =rρD/(x+ x0) [19]; x0=[70/32(1+2Sct)ρst− 7]D; R(x)= [1− x/(7D)]/2and: Rη(x)= [rρ− R(x)]D x+[1− x/(7D)]x0 (7) =D−1  2  r 0 ρ ρco f l rdr 1/2 (8) with Sct = 0.71 [19]. Values of D = 4.6 mm, ρ0 = 1.26 kg/m3, ρcofl = 0.31 kg/m3 and

ρst=0.20kg/m3andu0=15.2m/sweretakenfrom experimentalconditions.Densitywastakentobe thelinearmixtureofthefuelandoxidantstreams. Finally,theprofileofχ wastakenas[18,20]:

χ =u0/(35SctD)(ρ0/ρ)2 

drdZρ2 (9) Fuelandoxidiserstreamswerematchedtothe cur-rentexperimentalC2H4flamesin1250-Kcoflows of3%,6%and9%O2byvolumewithZst=0.01,

(4)

Premixed Flamelet Premixed Flamelet Non−Premixed Non−Premixed Non− − − PSR PSR Tin T/T in 5000 1000 1500 2000 2500 0.2 0.4 0.6 0.8 1 No Non−Premixed Solution Premixed F la Prem

Premixed Non Premixed Non Pre

Fig.1. CombinedregimemapforMILDcombustionaccordingtothreedifferentdefinitions:PSR[1](blue),premixed

flamelet[5](green),andnon-premixedflamelet(red).WithTsi=1000K,Eeff=1.67× 108J/kmol[1]andTin=Tst,u.(For

interpretationofthereferencestocolourinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle).

0.02and0.03,respectively.Flameswithhot oxidis-ersinitiallyigniteatthemost-reactivemixture frac-tion(Zmr) <Zst,withthemaximumreactionrate

[21].AlthoughZmr isnot strongly dependenton

χ,higherχ increaseignitiondelays[21].Changes inthereactantstreamsmayshift Zmr andthe

ig-nitionlocation,resulting insignificantlydifferent ignition delays. The flamelets were solved using the USC-II C1-C4 chemical kinetics mechanism [22].A stoichiometric flameletvelocity described thedownstreammotionof Zst intime[18],based

onaself-similarjetvelocityprofile[19].Higher val-uesofZstareclosertothefasterfueljet,andhence

havehigherflameletvelocities.Thestoichiometric flameletvelocitywassubsequentlyusedtoremap timestocorrespondingx/Dforanalysis.

3. Experimentaldetails

ChemiluminescenceimagesweretakenofC2H4 flames in a previously studied JHC burner [12]. Chemiluminescence of OH∗ is spontaneous UV emissionfromexcitedOH.Thepeakintensityof OH∗concentrationhasbeenshowntocorrespond topeakflametemperaturesinlaminarflames[11]. ImagingofOH∗chemiluminescencemaybe there-foreusedtoqualitativelyidentifythehighest tem-peratureregionsofaflame.

Fuelissuesfroma4.6-mmdiametercentraljet at a Reynolds number near 10,000 into 2.8 m/s coflowswithmeasuredcoflowtemperatures(Tcofl)

of 1250Kand3–11%O2.These coflowsalso in-clude10.7%H2O and3.6%CO2 byvolume, bal-ancedwithN2.Thesecompositionsaresimilarto previousexperiments[12],whichareusedforthe C2H4 regime map.This configurationprovidesa controlledenvironmentforapproximately100mm

downstreamof thecoflowexitplane.Flamesare imagedusingapco.pixelflycamerawithaLambert Instrumentsintensifier.Anf-number3.5,UV trans-missivelensisfittedwitha310nmopticalfilterwith abandwidthof 10nm.Meanimagesareformed fromaseriesof 50images,eachtakenwithagate timeof1msandcorrectedforbackground.

4. Resultsanddiscussion

4.1. MILDcombustiondefinitions

DifferentdefinitionsofMILDcombustionare shownoverlaidinFig.1.ThevaluesofTsi=1000K

andEeff = 1.67× 108 J/kmol (40kcal/mol) are

chosen from reference [1]. The blue region indi-catesthePSRdefinitionofCavaliereandde Joan-non [1],bounded by T≤ Tsi;the premixed

S-shapedcurvedefinitionofOberlacketal.[5],where Eq. (1) holds, is in green; and the current non-premixedstudy,wheretheconditioninEq.(4)is notmet,isshowninred.Theoverlapbetweenthe domainsindicatesthatbothgradualignitionand conventional autoignition flame structures exist withintheboundariesof thePSRdefinedregime. ThisindicatesthatthePSRregimeincludesflames featuringinstabilitiesduetolocalautoignitionand extinction, and those which are devoid of local extinction or sharp peaks in flame temperature, whichareconsistentwiththephysicaldescription of MILDcombustion[1].Thisisconsistentwith previous experimental investigations of ethylene 3%O2 and9%O2 oxidantswhichexhibit signifi-cantdifferencesinstructure[12],despiteboth con-ditionsmeetingthePSRdefinitionofMILD com-bustion[1].ThePSRdefinition simplylimitsthe maximumflametemperaturetoTin + Tsi,whereas

(5)

the definitions basedon theS-shaped curves in-dicatetheshiftfromgradualignitionto autoigni-tion.The maximum flametemperature of the S-shaped curve-based MILDregimes, however, in-creasewithTin,highlightinginconsistencybetween

T= Tst,b− Tst,u ≤ Tsi andtheflame ignition

characteristics. Thissupports theuseof the new MILDcombustiondefinition forpredicting igni-tionbehaviourofnon-premixedflames.

Combustion is apparent well below the pre-defined Tin = 1000 K PSR threshold [1] shown

in Fig. 1.This region exhibits whatWang et al. [6,8] term“quasi-MILD” combustion, which re-quiresan externalignition source. Thisindicates MILDcombustionoccurringunderforcedignition [6,8],in contrasttotheTin ≥ Tsi requirementof

thePSRdefinition[1].Inthissense,thenewMILD definitionpredicts“quasi-MILD” behaviour sug-gestedbyWangetal.[6,8].Theregionof “MILD-like” combustion[6,8] cannot,however,be deter-minedfromthisgeneralisedfigurewhichmakesno referencetooxygenlevels.

Of the flamelet regimes in Fig. 1, the non-premixedMILDregimeallowsforgreaterT com-paredtothepremixedcaseformostTin.Athigher

Tin,however,thenon-premixedlimitbeginsto

ap-proachalimitingvaluewhilstthemaximumT/Tin

for thepremixed MILD regime continues to in-crease.Additionally,theanalysisfeaturesaregion oflowT/Tinwhereanon-premixedsolutiondoes

notexist.Theseeffectsdemonstratethedifferences between premixed and non-premixedflames, de-spitequalitativelysimilartrends anddescriptions ofMILDcombustion.Thesedifferenttrendsshow thatforagivenfuelofsomeEeff,thereisalimiting

value of T/Tin fornon-premixedMILDflames

whichdoesnotexistinpremixedconfigurations.

4.2. Non-premixedregimemaps

The MILDregime mapin Fig. 1may be ex-pandedtoarbitraryfuelandoxidantcombinations ontheα andβ axes.TheregimediagraminFig.2 showsshadedcontoursofθst,ign,definedbyEq.(5),

inthethreedistinctregionsfordifferentfuelswith specificEeff.

Aselectionof experimentalcasesareincluded in Fig. 2 to classify flames as either MILD or autoignitive flames. Eeff is taken to be 2.51 ×

108 J/kmol (60 kcal/mol)[23] forall cases using CH4-basedfuels. TheseareHM1-3casesusing a CH4-H2 blend[24],theDelftJHC(DJHC)using Dutch naturalgas[25],theF1, F4andF7cases usingpureCH4 [26]andCH4-airflameofCabra et al. [27].One set of data for pure C2H4 fuels is included [12] with Eeff = 1.26 × 108 J/kmol

(30kcal/mol)[28].Theclassificationofthe HM1-3flamesagreeswithpreviouslysimulatedS-shaped curves,whichindicateautoignitioninthetwocases withthegreatest%O2 coflows[10].Thecasesfor oxidants with 3% O2 in the studies from

Med-Fig.2.Normalisedautoignitiontemperature,θst,ign,for

arangeofα andβ andshowingexperimentalcaseswith

coflowO2concentrationsaspercentageofvolume.

welletal.[12]andDallyetal.[24]arewithinthe MILDregime,whereastheremainingflameswith oxidantO2∼ 7–10%,areautoignitive.Thisis con-sistentwiththeexperimentallyobservedstructures oftheseflames[12,24–27].Thisisinspiteofsome oftheseflames[12,25]meetingthePSRconditions ofMILDcombustion[1].

TheregimediagraminFig.2separatesMILD andautoignitiveflamesandmaybeusedtopredict thestructureofflamesfromevaluationofthe ini-tialmixingtemperatureTst,u,adiabaticflame

tem-peratureTst,bandEeffforagivenfuel.Thisregime

mapshowsthelimitedachievablerangeof α with almostconstantβ usingCH4/air coflows[25,26]. BoththeHM1-3andC2H4setsofflames,igniteat almostconstantTst,uwithvaryingconcentrations

ofO2.Thishighlightsthenecessityofstudying ig-nitionincoflowswithdifferentfuelsanddiluents whichcanaccessawiderrangeofoperating condi-tions[12,24].

The regimediagram inFig. 2showsaregion ofsignificanttemperatureincreasefollowedby au-toignition(θst,ign>10%),whichmaybeindicative

ofthe“transitional” flamesdescribedbyMedwell etal.[12].Thewidthofthisregionincreaseswithβ, implyingprecursorreactionswithsignificantheat releasearemoreprominentforhighβ,orlowTst,b.

Additionally,increasingTst,uwithconstantT

re-sultsinlowerβ.ThisshowsthatMILDcombustion ismostreadilyachievableforhighTst,u,however

maybeachievedatanyTst,u withsufficientlylow

T,consistentwiththepremixeddefinition[5]and theregimesofWangetal.[6,8].

Figure 3 presents regimes of stoichiometric ethylene combustion as a function of oxidant O2 molar concentrationandinitial mixture tem-perature. This figure showsa pair of previously studied flames [12], and flame conditions to be

(6)

Fig.3.Contoursofθst,ex− θst,ignforC2H4flameletson TcoflandO2axes,withtheboundarybetweenMILDand

autoignitionregimes(ζ =0)fromEq.(4).

examinedin thenext section.The lineof ζ = 0 (seeEq.(4))withEeff =1.26× 108 J/kmol[28]is

plottedoverthesecontours,andshowsverygood agreementinthelocationoftheMILDcombustion regime boundary. Discrepanciesin the lower-left cornerofthefigureareduetosmallθst,ex− θst,ign <

100K.Theseignitioneventsaretheresultof two-stageignitionprocessesnotcapturedbythecubic S-shapedcurveof theanalytical model.Inthese flames,autoignitionoccursaftersignificant, grad-ualincreasesintemperature,whicharereminiscent ofgradualMILDignition.Additionally,thismay beindicativeofnon-unityLewisnumbereffectsin theflameletanalyses,neglectedinderivingζ .

The good agreement between regime bound-ariesinFig.3implies thatbothautoignition and MILDcombustionmay be analysedwith single-step reactions. Insuch analyses, different condi-tionsandchemicalpathwayscouldbe accounted forwithratecoefficientswhicharefunctionsofthe fuelandoxidantcompositions,andthelocal mix-turefraction.Thisisincontrasttoprevious mod-ellingofsimilarflameswhichstressedthe impor-tanceofmulti-stepkinetics[2].Theseresults sug-gestthepotentialeffectivenessofone-stepreaction models,usingfunctionsasratecoefficients,nearthe limitsofautoignition.

4.3. Chemiluminescenceofjetflames

Chemiluminescenceofexcitedhydroxylfroma seriesofturbulentC2H4jetflamesissuingintohot anddilutedcoflowsareshowninFig.4.Theregime diagraminFig.3indicatesthattheflamesissuing intothe9%and11%O2coflowsshouldbe autoigni-tive,withtheremainderintheMILDregime.These imagesshowstrongOH∗emissionsnearthebaseof theautoignitiveflameswhicharenotapparentin theMILDflames.TheOH∗signalmaybeusedas aqualitativeindicatorofregionsofpeak tempera-tures[11].Well-definedlift-offheightsof8mmand

Fig.4.Imagesof OH∗emissionsfromturbulentC2H4

flamesin1250-Kcoflowswithdifferent%O2(byvol.)

av-eragedover50× 1msimages.Theheightisgivenin mil-limetres,withtheloweredgeoftheimagesatthejetexit plane.Imagesare16mm× 60mmandcorrectedfor back-ground.

Fig.5.Tvs.Z/Zstprofilesoftransientflameletsat

differ-enttimesforC2H4fuelin1250-Kcoflows.

11mm(x/D=1.7and2.4)areseenfortheflames in11%and9%O2 coflows,withlessdistinct lift-off heightsof approximately 14mm (x/D = 3.0) in5%and6%O2coflows.NoOH∗ chemilumines-cenceisdetectablebelowthesepointsforany cam-eraandintensifierexposuretimes. Chemilumines-centemissionsarediscernibleinthe3%and4%O2 casesfrom11mmdownstreamofthejetexit, fol-lowingadjustmentsofthecolour-scale(notshown forbrevity).Belowtheselocations,anyOH∗ emis-sionis below the measurement threshold of the equipment. This trendin lift-off heights demon-strategradualignitioninMILDcombustioninlow O2coflows,andthetransitiontoconventional au-toignitionwithincreasingO2concentration.

4.4. Transientflameletanalyses

TransientflameletprofilesoftheMILDand au-toignitiveflamesfromFig.4arepresentedinFig.5. Theseresultsindicatethatallflamesbegintoignite atapproximately1.2ms.Thiscorrespondsto ini-tialignitionat1.6,1.8and2.0x/Dinthe3%,6% and9%O2 coflowsrespectively, afterthistimeis remappedtox/Dusingthestoichiometricflamelet

(7)

Fig.6. Tvs.Zprofilesoftransientflameletsatdifferent timesforC2H4fuelin1400-Kcoflows.

velocitiesfortherespectivevaluesof Zst [18].The

increasingheights with increasingO2 aredueto

Zstshiftingtowardsregionsof higherχ,delaying

ignition.Followinginitialignition,theflameletin the9%O2 coflow reachesitsmaximum tempera-ture by2 ms, which isremapped tox/D of 2.6. This isshorterthan the6%O2 casewhichtakes 2.6ms, correspondingtox/D of 2.7.The3%O2 casedoesnotreachasteadytemperatureuntil ap-proximately5ms,atx/Dof3.0,undergoinga sig-nificantlymoregradualignitionprocess.These re-sultsreplicate theexperimentallyobservedtrend, wherethemaximum chemiluminescenceof flame inthe6%O2coflowappearshigherthanthatinthe 9%O2coflowandtheflameinthe3%O2coflow ini-tiatesgradually,initiallyappearingclosesttothejet exitplane.ThisisrepresentativeoftheMILD com-bustionbehaviourinthe3%O2casetransitioning toautoignitivebehaviourinthe9%O2case.

TheeffectsofincreasedtemperatureonMILD flame stabilisation were assessed using transient flamelets with 1400-K oxidants. Fig. 3 indicates thatalloftheseflamesarewithintheMILD com-bustionregime.Temperatureprofilesfromthe tran-sient analyses areshown in Fig.6 with lines on each plotindicatingincrements of 0.10 ms from 0.25msto1.35ms.Theprofilesindicateignition initiating afterapproximately0.5 ms,0.4ms and 0.35msinthe3%,6%and9%O2oxidants, respec-tively.Flametemperaturesreachsteady-state val-uesby1.65ms,1.05msand0.65ms,at1.9,1.7and 1.3x/D,inthe3%,6%and9%O2oxidants, respec-tively.ThisshowsthatincreasesincoflowO2 de-creasetheheightsof boththeinitialignitionand thedistancetoreachasteadytemperatureanddo not indicate any non-monotonic trend inlift-off height.Incontrast,theflamesin1250-K coflows exhibitincreasingheightsbeforeinitialtemperature increaseswithincreasingO2concentration, demon-strating the effects of temperature, coupled with theimposedZandχ fields.Inthecooler1250-K coflow,ZmrshiftstowardsZstinregionsofhigher

χ andlowervelocity(describedintheanalysisof Fig. 5).Lower χ at Zmr allows the flame in3%

O2 coflow tostabilise closerto thejetexitplane thaninthe6%O2 case.Withtheincreaseto9% O2,theincreasedreactivityatZmrovercomeshigher

χ andtheflame-basemovesclosertothejetexit plane,asseenexperimentally.Thissuggeststhatthe non-monotonictrendinlift-offheightseen experi-mentallyindicatesZmrshiftsawayfromthecoflow,

intothehighshear mixinglayer,where autoigni-tiveflamesignitemorereadilythanMILDflames. Thisadditionallyexplainsthewiderreactionzones underMILDconditionsseeninpreviousworkat lower temperatures[12],as theburning mixtures areconfinedbythelowZflammabilitylimit and thehighχ turbulentmixinglayer.

5. Conclusions

Anewnon-premixeddefinitionforMILD com-bustion,basedonanequivalentactivationenergy rather thanprior assessmentof areference tem-perature,wasderivedandshowntobeconsistent withpreviousexperimentalobservationsof grad-ualignition.Thisdefinitionincorporates,and con-solidates,previousdefinitionsof theMILD com-bustionconditionsandthesuggestedcombustion regimeswhichexhibitsimilarignitionbehaviours. The new definition has shown good agreement withsteady-stateflameletsimulations, demonstrat-ingbetteragreementthanpreviousclassifications between the simulated andpredicted boundaries betweenthenon-premixedMILDandautoignitive regimes.Theseboundariesshowthatnon-premixed MILDcombustionisachievablebyminimisingthe overalltemperatureincrease, orincreasinginitial temperaturesandmaybeachievedfollowingforced ignition.

Time-averaged chemiluminescent images of a seriesofflamesshowedthatautoignitiveflames ex-hibitpeaktemperaturesattheflame-base,in con-trasttothegradualignitionpredictedandobserved inMILDjetflames.Transientflameletmodelling indicated thatthe shift inignition location from regionsof lowscalardissipationratetowardsthe jetshearlayerisresponsiblefortheobserved non-monotonictrendinflamelift-offheights.Thisshift towardsshearlayerisdrivenbydecreasing temper-atureandincreasingoxidant O2 levels. Thismay also explain the decreasing reaction zone width in the transition to conventional autoignition. These results provide a better understanding of theboundariesandstabilisationofnon-premixed flamesin,andnear,theMILDcombustionregime. Acknowledgements

The authors thank Ms Jingjing Ye for her assistance during experimental setup and flame imaging.The authorsacknowledgesupportfrom

(8)

The University of Adelaide, Stanford

Univer-sity and the Politecnico di Milano. M.J.E.

ac-knowledgesfinancialsupportfromtheEndeavour

Scholarships and Fellowship grant programme;

P.R.M.andM.J.E.acknowledgefinancialsupport

Australian Research Council (ARC) Discovery

(DPandDECRA)grantschemeandtheUnited

States Asian Office for Aerospace Research and

Development(AOARD);andH.W. andM.I.

ac-knowledgefinancialsupportthroughNASAwith

awardnumberNNX15AV04A.

References

[1] A.Cavaliere, M.deJoannon,Prog.Energy Com-bust.30(4)(2004)329–366,doi:10.1016/j.pecs.2004. 02.003.

[2] F.C.Christo, B.B.Dally,Combust.Flame142(1– 2)(2005)117–129,doi:10.1016/j.combustflame.2005. 03.002.

[3] M.Ihme,Y.C.See,Proc.Combust.Inst.33(1)(2011) 1309–1317,doi:10.1016/j.proci.2010.05.019. [4] P.Sabia,M.deJoannon,A.Picarelli,R. Ragucci,

Combust.Flame160(1)(2013)47–55,doi:10.1016/j. combustflame.2012.09.015.

[5] M.Oberlack,R.Arlitt,N.Peters,Combust.Theor. Model.4(4)(2000)495–510,doi:10.1088/1364-7830/ 4/4/307.

[6] F.Wang,P.Li,Z.Mei,J.Zhang,J.Mi,Energy72 (2014)242–253,doi:10.1016/j.energy.2014.05.029. [7] M.J.Evans,P.R.Medwell,Z.F.Tian,A.Frassoldati,

A. Cuoci,A.Stagni,AIAAJ.(2016). InPress, doi: 10.2514/1.J054958.

[8] F.Wang,J.Mi, P.Li,Energy Fuels27(6)(2013) 3488–3498,doi:10.1021/ef400500w.

[9] K.Bray,M.Champion,P.A.Libby,Combust.Flame 107(1–2)(1996)53–64,doi:10.1016/0010-2180(96) 00014-4.

[10] M. Ihme, J. Zhang, G. He, B.B. Dally, Flow Turbul.Combust.89(2012)449–464,doi:10.1007/ s10494-012-9399-7.

[11] J.A. Sidey, E. Mastorakos, Combust. Flame 163 (2016) 1–11, doi:10.1016/j.combustflame.2015.07. 034.

[12] P.R. Medwell, P.A.M. Kalt, B.B. Dally, Com-bust. Flame 152 (2008) 100–113, doi:10.1016/j. combustflame.2007.09.003.

[13] B. Choi, S. Chung, Combust. Flame 157 (12) (2010)2348–2356,doi:10.1016/j.combustflame.2010. 06.011.

[14] M.J. Evans, P.R. Medwell, Z.F. Tian, Combust. Sci.Technol.187(7)(2015)1093–1109,doi:10.1080/ 00102202.2014.1002836.

[15] H.Pitsch,S.Fedotov,Combust.Theor.Model.5(1) (2001)41–57,doi:10.1088/1364-7830/5/1/303. [16] H. Pitsch, 1998. FlameMaster: A C++computer

program for 0D combustion and 1D laminar flamecalculations.AvailableatURL:http://www.itv. rwth-aachen.de/downloads/flamemaster/.

[17] E.Ranzi,A.Frassoldati,R.Grana,etal.,Prog. En-ergyCombust. Sci.38(4)(2012)468–501, doi:10. 1016/j.pecs.2012.03.004. Version:Dec.2015. Current versionofmechanismavailablefrom URL:http://creckmodeling.chem.polimi.it/ [18] H. Pitsch, M. Chen, N. Peters, Proc.

Combust. Inst. 27 (1) (1998) 1057–1064, doi:10.1016/S0082-0784(98)80506-7.

[19] N.Peters, TurbulentCombustion, Cambridge Univer- sityPress,2000.

[20] N.Peters,F.A.Williams,AIAAJ.21(3)(1983)423– 429,doi:10.2514/3.8089.

[21] E.Mastorakos,Prog.EnergyCombust.Sci.35(1) (2009)57–97,doi:10.1016/j.pecs.2008.07.002. [22] H.Wang,X.You,A.V.Joshi,etal.2007.USCMech

Version II. High-Temperature Combustion Reac-tionModelofH2/CO/C1-C4Compounds. Mecha-nismavailablefromURL:http://ignis.usc.edu/USC_ Mech_II.htm.

[23] N.Peters,F.Williams,Combust.Flame68(2)(1987) 185–207,doi:10.1016/0010-2180(87)90057-5. [24] B. Dally, A. Karpetis, R. Barlow, Proc.

Com-bust. Inst. 29 (1) (2002) 1147–1154, doi:10.1016/ S1540-7489(02)80145-6.

[25] E. Oldenhof, M.J. Tummers, E.H. van Veen, D.J.E.M.Roekaerts,Combust.Flame157(6)(2010) 1167–1178, doi:10.1016/j.combustflame.2010.01. 002.

[26] C.M. Arndt,R. Schießl,J.D.Gounder, W.Meier, M. Aigner,Proc.Combust.Inst.34(1)(2013)1483– 1490,doi:10.1016/j.proci.2012.05.082.

[27] R.Cabra,J.-Y.Chen,R.Dibble,A.Karpetis,R. Bar-low,Combust.Flame143(4)(2005)491–506,doi:10. 1016/j.combustflame.2005.08.019.

[28] C.K.Westbrook,F.L.Dryer,Prog.EnergyCombust. Sci. 10(1)(1984)1–57,doi:10.1016/0360-1285(84) 90118-7.

Riferimenti

Documenti correlati

Antimicrobial (incl. gastrointestinal pathogens): a number of studies showed significant in vitro effects of essential oil, and isolated peptide as well as aqueous and organic

di a Firenze, sede operativa dell’Osservatorio Trasporti della Città metropolitana fiorentina, conferendo all’evento grande risonanza simbo- lica e mediatica, ma anche

We have explored the possibility that intrinsically disordered peptides could be used as polar heads connected to alkyl chains to generate new molecular buildings for drug

In the previous section we proposed two new CEGAR-like loops in the context of static analysis of SPLs: CEGPLR (Fig. 8) realizes SPL refinement and de- composition, based on

probability-prominent version. Based on the graph framing effects that we found in Experiments 1 and 2, we conjectured that such irrelevant manipulations in physical aspects

Escluse comunque, per le ragioni già riportate, le prime due opzioni terapeutiche (e la loro eventua- le combinazione), la terapia con aurotiosolfato so- dico in monoterapia si è

Lo scopo del presente lavoro è l’analisi degli errori commessi nell’uso degli avverbi focalizzanti anche e solo da parte degli apprendenti germanofoni di italiano L2