• Non ci sono risultati.

Physiological responses to Megafol® treatments in tomato plants under drought stress: A phenomic and molecular approach

N/A
N/A
Protected

Academic year: 2021

Condividi "Physiological responses to Megafol® treatments in tomato plants under drought stress: A phenomic and molecular approach"

Copied!
8
0
0

Testo completo

(1)

ContentslistsavailableatScienceDirect

Scientia

Horticulturae

j o u r n a l ho me p a g e :w w w . e l s e v i e r . c o m / l o c a t e / s c i h o r t i

Physiological

responses

to

Megafol

®

treatments

in

tomato

plants

under

drought

stress:

A

phenomic

and

molecular

approach

Angelo

Petrozza

a,1

,

Antonietta

Santaniello

b,∗,1

,

Stephan

Summerer

a

,

Gianluca

Di

Tommaso

c

,

Donata

Di

Tommaso

c

,

Eleonora

Paparelli

b

,

Alberto

Piaggesi

c

,

Pierdomenico

Perata

b

,

Francesco

Cellini

a

aALSIACentroRicercheMetapontumAgrobios,s.s.Jonica106,km448,2,Metaponto,MT75010,Italy

bPlantLab,InstituteofLifeSciences,ScuolaSuperioreSant’Anna,PiazzaMartiridellaLibertà33,Pisa56127,Italy cValagroS.p.A,viaCagliari1,Atessa,CH66041,Italy

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received4February2014

Receivedinrevisedform11April2014 Accepted21May2014

Availableonline13June2014 Keywords: Droughtstress Biostimulants Megafol Tomato Scanalyzer3D

a

b

s

t

r

a

c

t

Droughtis oneof themostsignificant abioticstresses thatlimitsthe growthandproductivityof

cropplants.Weinvestigatedthephysiologicalandmolecularresponsesoftomatoplantstreatedwith

Megafol®(ValagroS.p.A),underspecificdroughtconditions.Thegoalwastoevaluatetheimpactof

Megafol®,abiostimulantcomposedofacomplexofvitamins,aminoacids,proteinsandbetaines,in

atten-uatingthenegativephysiologicalresponsesofdrought.Tomatoplantsweregrowninagreenhouse,and

physiologicalparameterswerecollectedusingScanalyzer3D(LemnaTec,GmbH),aplantphenomics

platform.Usingthistechnologyitispossibletodynamicallystudytheeffectsofbiostimulants,such

asMegafol®,onplantdevelopmentintermsofearlydetectionofphysiologicalplantstressresponses.

Theresultsshowedthatdrought-stressedplantstreatedwithMegafol®werehealthierintermsofthe

biomassproducedandchlorophyllfluorescence,thushighlightingthehighertolerancetostressofthe

treatedplants.TheeffectsofMegafol®werealsostudiedatamolecularlevelbyanalysingtheinduction

ofgenestypicallyinvolvedindroughtstressresponses.OurresultsdemonstratetheefficacyofMegafol®

toreducedrought-stressrelateddamageintomatoplants.

©2014ElsevierB.V.Allrightsreserved.

1. Introduction

Multi-spectrumanalysis(infra-redandvisible,ultravioletlight)

ofreflected orre-emittedlight fromtheplantcrown, stemand

leavesprovidesinformation onthenutritional,hydrologicaland

physio-pathologicalstateofplants,aswellasontheplant’s

abil-itytointerceptlight. Therelativesimplicityand highefficiency

ofsuchimagingtechnologyandthesubsequentdataprocessing

enablesittobesuccessfullyintegratedinexperimentsthatinvolve

manyvariables,ahighnumberofsamplingintervals,and

multi-plecomparisons.Giventhatitcanextractphenotypicdataquickly

and efficiently, multi-spectrum analysis has become an

inter-facebetweenmoleculargeneticsandplantphenotyping.Infact,

Abbreviations: ABA,abscissicacid;DHN,dehydrin;HIS,hue,saturationand intensity;LEA,lateembryogenesisabundant;NIR,nearinfra-red;RGB,red,green andblue.

∗ Correspondingauthor.Tel.:+39502216539;fax:+39502216532. E-mailaddress:a.santaniello@sssup.it(A.Santaniello).

1 Boththeauthorscontributedequallytothiswork.

phenotypicanalysisofnewlines hashistoricallybeena

bottle-neckforfundamentalgeneticstudiesinplants(FurbankandTester,

2011).

Withvisiblelightillumination,thereflectancespectrumfrom

leavesisparticularlypoor.Infactmostwavelengths(i.e.colours)

are absorbed by the pigmentsof the photosyntheticapparatus

and in particular chlorophyll. Evenwith this reduced emission

spectrum,itisstillpossibletoextractagreatdealofphenotypic

information,suchasthegreenindex,andtheseplantimagesare

valuable for measuring the many morphometric parameters of

plantssuchasheight,width,andbiomass(Rajendranetal.,2009).

Atincreasingthewavelengths,thenearinfra-red(NIR)is

impor-tant in identifyingthe chemical functional groups through the

resonancefrequenciesofbondstretching,contractingand

bend-ing. In detail, wavelength intervals from 1450 to1930nm and

around2500nmhavebeenalreadyusedtostudythedifferences

inthewatercontentlevelsofplants,quantifyingwatermolecules

throughtheOHchemicalbonds(Bergeretal.,2010).Therefore,

thisapproachallowedtomeasuretheinternalwatercontentlevels

withoutdisturbingtheplantrepeatedlyovertime(Petrozzaetal.,

2009).

http://dx.doi.org/10.1016/j.scienta.2014.05.023

(2)

Anotherfundamentalparameterlargelyusedisthechlorophyll

fluorescence,bywhichitispossibletoseesignsofstressinplants

muchearlierthanwithtraditionalphenotypicmethods.Inrecent

years,theanalysisofchlorophyllfluorescencehasbecome

ubiqui-tousinplantecophysiologystudies,andtheprincipleunderlying

thistechniqueisrelativelystraightforward.Lightenergyabsorbed

bychlorophyllmoleculescan(1)beusedtodrivephotosynthesis,or

(2)bedissipatedasheator(3)bere-emittedaslight–chlorophyll

fluorescence(Oxborough,2004).Underoptimalgrowthconditions

muchoftheenergyabsorbedfromlightisdirectedinto

photosyn-thesisand plantsemit abasal levelofchlorophyllfluorescence.

However, when the photosynthesis apparatus is under abiotic

stress,thebalanceisdisturbedandmoreenergymustbereleased

throughheatandfluorescence(Mülleretal.,2001).

Duetotherobustness,relativelylowcost,andreasonable

analy-sistime,theuseofhighthroughputplantimageanalysiscouldbea

veryinterestingtoolforstudyingplants’physiologicalresponsesto

differentenvironmentalconditions,suchasdroughtstress.Water

deficiencyis a severe environmentalstress,and hasa negative

impactoncropyieldsworldwide(Boyer,1982;Pennisi,2008).

Con-sideringthatwaterresourcesaredecreasingandclimatechangeis

expectedtoincreasetheamountofdryland,theoutlookfor

agri-cultureisdramatic(BattistiandNaylor,2009).Itispredictedthatin

2050,theglobalpopulationwillincreasefromthecurrent6.7

bil-liontoover9billion,andover3billionwillbethreatenedbywater

shortages.Anincreasingpopulationalsomeansahigherdemand

forfood:maintaininga highyieldin droughtconditions isthus

amajorpriorityasisunderstandingtheresponsesandadaptive

mechanismsofcropstowater deficit.However,the

physiologi-calmechanismsofyieldmaintenance underdroughtconditions

arepoorlyunderstood(TuberosaandSalvi,2006),sincethe

mech-anismsthatplantsusuallyusetomaintaingrowthinlow water

arecomplexandstillnotwellcharacterized.Thestrategiestocope

withwaterscarcitydifferdependingonthespeciesandgenotypes

oftheplants,aswellasonthetypeofdrought.Generally,plants

respondtodrought witha series of physiological mechanisms,

whichincludestomatalclosure,repressionofcellgrowthand

pho-tosynthesis,leadingtoanoverallreductioninplantbiomass.

Furthermore,manychangesatthecellularandmolecularlevel

occur, involvingextensiveincreases in the expressionlevels of

thosegenesthatprotecttheplantfromstressdamage(Shinozaki

andYamaguchi-Shinozaki,2007).Thesegenescanbeclassifiedinto

twomajorgroups,accordingtotheirputativefunctions.Thefirst

groupincludesearlyresponsetranscriptionalactivators,including

transcriptionfactorsandproteinkinases.Stress-related

transcrip-tionfactorsplayanimportantrole intheregulationofdrought

toleranceandmainlyincludebZIP,WRKY,MYB,andAP2/EREBP

proteins(Abeetal.,1997;FinkelsteinandLynch,2000;Marèetal.,

2004;Songetal.,2005).Thesetranscriptionfactorsrespondto

envi-ronmentalsignals,namelydroughtor highsalinity,alsothough

theinvolvementofabscisicacid.However,itmustbehighlighted

thatbothABA-dependentandindependentpathwaysoperatein

responsetodrought(ShinozakiandYamaguchi-Shinozaki,2007).

Downstreamoftheactivationofthefirstgroupofgenesoperatesa

secondgenegroup,thatincludesgenesthatcodifyfordownstream

effectorsinthestressresponsepathway,includingstructural

pro-teins,osmoregulatoryproteins,antioxidantproteins,aquaporins,

andlateembryogenesisabundant(LEA)proteins(Baillyetal.,2001;

Bretonetal.,2003;WangandYe,2006;Shinozakiand Yamaguchi-Shinozaki,2007).Sincetheyincreasemarkedlyinvegetativeorgans

duringwaterdeficits,aprotectiveroleduringwaterlimitationhas

beensuggested(Bies-Etheveetal.,2008;Popelkaetal.,2010).The

DHN(dehydrin)genesalsobelongtotheLEAproteinsfamily,which

areup-regulatedduringdroughtstress(Zhuetal.,2000)and,for

thisreason,havebeenwidelystudiedinhigherplantsinresponse

towater deficits(Ismailetal.,1999;Nylanderetal.,2001).The

mostimportant genomic information concerningtheresponses

ofdifferentplantspecies todroughtstress,collectedsofar,has

beenprovidedbygenome-wideexpressionprofilingunderwater

deficits,includingArabidopsis(Sekietal.,2001;Bray,2004;Huang

etal.,2008),rice(Rabbanietal.,2003;Hazenetal.,2005),barley (Talaméetal.,2007;Guoetal.,2009),maize(Hayano-Kanashiro

etal.,2009), sorghum(Prattetal., 2005), andpotato (

Vasquez-Robinetetal.,2008).

Despitetheagronomicandeconomicrelevanceoftomato,this

kindofinformationislacking,thereforethemechanismsthatdrive

responsestowaterdeficitsintomatohavenotbeenwell

character-izedyet,andonlyaverysmallnumberofgenesthatplayarolein

droughttolerancehavebeenidentified(Atarésetal.,2011;Pineda

etal.,2010).Tomatoisparticularlysensitivetoanumberof

envi-ronmentalstresses,especiallyextremetemperature,droughtand

salinity(Kaloo,1993).

Improvingplantresponsestostressconditionsmightbe

possi-blethroughtreatmentwithspecificproducts,madewithnatural

productsandknownasbiostimulants.Theapplicationof

biostim-ulantshasapositiveimpactonplantnutritionandplantgrowth,

andalsoprovidesanti-stresseffects(Richardsonetal.,2004).These

important qualities highlight the importance of increasing the

knowledgeregardingtheirphysiologicalfunctions,whichare

cur-rentlyunclear.

Theaimofthisstudywastocharacterizetheresponsetodrought

stressinduced in tomato plants treated withMegafol®, a

bios-timulantprovided by ValagroS.p.A that is knowntopositively

influencecropyield(Para –dikovi ´cetal.,2011),bycollecting

infor-mationregardingthephysiologicalandmolecularchangesinduced

bythestressandthepotentialpositiveeffects,intermsoftolerance,

duetothetreatment.Thephysiologicalmechanismswere

evalu-atedbyimageanalysis(Scanalyzer3DSystem,LemnaTec),using

visiblelight(RGB),florescence,andnearinfra-red(NIR)chambers.

2. Materialsandmethods

2.1. Plantmaterialandgrowingconditions

Theexperiments wereperformedin April 2012at thePlant

PhenomicslaboratoryattheALSIAResearchCenterMetapontum

Agrobios,inSouthernItaly.Tomatoplants(cvIkram,SingentaAG)

weregrowninagreenhouseundernaturalambientlight

condi-tions.Fourweeksafterseeding,afterthethirdtrueleafwasfully

expanded,plantsweretransplantedintowhitevases(16cm

diam-eter,20cmheight)fortheactualexperiment.Thevases,volume

max.4L,contained3.5Lofsoilconsistingofa 50:50mixtureof

peatmossandriversand.

Atthemomentoftransplantingintothepots,20unitsof

nitro-gen(N2),40unitsofanhydrousphosphite(P2O5),and20unitsof

potassiumoxide(K2O) wereaddedtothesoilmixture.Drought

stresswasinducedafterthethirdorfourthleaf,non-cotyledon,

hadfullyformedandcontinueduntiltheendoftheexperiment.

Plantsamplesandplantimagesweretakenstartingthreedays

priortothebeginningofthedroughtstress(Day0),between7am

and 9am. Thecontrol plants wereirrigated with 200mLevery

dayboth beforeandduringthedroughtstressexperiment.This

quantityofwater waspreviously determinedtobeoptimalfor

plantgrowthinSouthernItalyinApril,whentheexperimentwas

conducted.Droughtstresswasimposedbywithholdingirrigation.

Forthoseplantssubjectedtodroughtstress,irrigationwas

com-pletelysuspendeduntilthefirstsymptomsofwithering(atday5

ofdroughtstress)when50mLofwaterwasadministered.

Verifi-cationofdroughtstresswasconductedwithaplantleafporometer

(DecagonDevicesSC-1).Confirmationofplantstresswasobtained

(3)

plantsrevealeda5foldlowerlevelofwatertranspirationratewhen

comparedtoregularlyirrigatedplants.

Megafol® treatment was performed on Day 0, by spraying

homogenouslya2mLperlitersolutionovertheleaves.Megafol®

isamixtureofaminoacids(prolineandtryptophan),glycosides,

polysaccharides,organicnitrogenandorganiccarbon(Para –dikovi ´c

etal.,2011).Theapparatususedtospraytheplantswasa6L

agri-culturalpressuresprayer(VOLPI).

Fivedaysafterthecessationofirrigation(indicatedasS1,and

representingthedroughtstress),theplantslostallturgidityandan

emergencyirrigationof50mLwaterperplantwasadministered

(S2).Afurtherfivedaysaftertheemergencyirrigation,aperiodof

recoverywasestablishedwithawateringregimeof200mLwater

perplantperday(R).Theexperimentalschememadeuseof13

replicaplantsforeachtestandwascompletelyrandomized.

For the molecular analysis,leaves were harvested and

sub-sequentlytransferredinto liquidnitrogen.Threeleaves(central

position)wereharvestedfromeachofthethreedifferentplants.

Thethreeleaveswerepooledandrepresentasinglesampleoutof

thethreebiologicalreplicates.Plantsusedforsamplingleaveswere

excludedfromsubsequentimagingoradditionalleafsampling.Leaf

samplesweretakenonthesamedaysasimaging.Thepre-drought

sampleswereusedtoestablisha baselineofgeneexpressionof

theplants.Allsamplesweretakenatthesametimeofday(9am),

tominimizeclimaticvariation(i.e.cloudyorsunnydays),sinceat

9amtheimpactofthepresence/absenceofcloudsisminimalfor

thegreenhousemicroenvironment,beingthetimefor

warming-upofthegreenhouseduetohighsunlightlimitedtoafewhours

aftersunset.Inthismannerthehydrationstateoftheplantswas

predominantlyduetotheavailabilityofwaterinthevaseandnot

due topossibletransientincreasesintranspiration atpeak day

temperatures.

2.2. Meteorologicaldataacquisition

Boththeminimum,maximum,andaveragedailytemperatures

andthemaximumdailysolarradiationweremeasured

through-outtheexperimentalperiod.Thesamemeasurementswerealso

collectedduringtheimagingandsamplingprocesses,from7am

to9am.Meteorologicaldatawasmeasuredevery30minwitha

datalogger(WatchdogModel450,SpectrumTechnologies,Inc.)

2.3. Non-destructivemeasurements

Phenotypicmeasurementsoftheplantswerecarriedout

non-destructivelybyplantimaging.Imagesofplantsweretakenover

thecourseoftheexperimentwithaplantimagecapturingsystem

(Scanalyzer3DLemnaTecGmbH).Threeimagingchamberswith

differentlevelsofillumination,nearinfra-red (NIR),whitelight

(RGB),andfluorescence(UV),wereused.Foreachchamberthree

imagesweretaken,one fromabove theplantand twolaterally

atanorthogonalangle.TheimagescollectedintheNIRchamber

wereusedtoevaluatetheplantwatercontent.Imagesfromthe

RGBchamberwereusedtoevaluatethestateofhealthoftheplant

viacolourclassification(i.e.greenhealthytissue,yellowchlorotic

tissues,and brown necrotic tissue),as wellas for

morphomet-ricmeasurements,suchasdigitalbiovolumeandheight.Finally,

imagesfromthefluorescencechamberwereusedtoevaluatethe

stateofthephotosyntheticapparatus.

2.4. Imageanalysis

Inordertoextractphenotypicmeasurementsfromtheimages,

the planthad to beseparated from the background. This

sep-aration was carried out either by converting the image colour

spacetoHSI(hue,saturationandintensity)orusingtheintensity

channel,iftheimagecontainedasufficientcontrastbetweenthe

plant and the background. Otherwise a mathematical formula,

involvingthethreechannelsoftheRGBcolourspace,wasused

tocalculateanewgrey-scaleimagewithsufficientcontrast.This

grey-scaleimagewasthensubjectedtothresholdingtocreatea

binarymasktoextracttheplantfromtheimage.Theone

excep-tionwasfortheNIRtopviewimages,wherethemaskfromtheRGB

topviewplantimagewasresizedandtransposedtotheNIRimage.

Themeasurementofdigitalbiomass,correlatedwithfreshweight,

wascarriedoutasdescribedbyEberiusandLima-Guerra(2009).

Specifically,theareasoftheplantinthethreeorthogonalimages

fromtheRGBchamberwereappliedinthefollowingformula:



pixelsideview0◦+



pixelsideview90◦+log



pixeltopview 3



Tomeasureastressindexhistogramofthehuechannel,

pix-els(fromtheHSIcolourspace)fromtheimagesgeneratedinthe

fluorescencechamberwereusedtodeterminethehuevaluewith

thegreatestvaluefornon-stressedandthenfordroughtstressed

plants.Applyingtheformula

Ccontrol−Cstress

Ccontrol+Cstress

anindexvaluefrom−1to+1wascalculated.Thisvalueisindicative

oftheshiftinthemodalvalueofthehistogramofthefluorescence

imagepixels,wherelowervaluesrepresentashifttotherightand

highervaluesashifttotheleft.Thisshiftissignificantinthatthe

huechannelrepresentsthecolourorwavelengthofthelight,the

scalerunningfrom0to255orredtoviolet.Anindexshifttolower

valuesisrepresentativeofashiftinthehistogramtowardhigher

energyorvioletlightandindicateslowerphotosyntheticefficiency,

whichisinterpretedasgreaterstress.Histogramsfromthe

grey-scaleimagesgeneratedintheNIRchamberweredividedinto10

groups,representingadecreaseinwatercontentasthecolourvalue

increasedfrom0to255.Fortheanalysisonlythecategorywiththe

lowestvalue,orthehighestwatercontent,wasconsidered.Inall

cases,comparisonsofthecolourclassdataforthepixelsinRGB,

fluorescence,andNIRweremadewiththeuntreatedcontrol.

2.5. Statisticalanalysisofdata

Phenotypingresultswereanalyzedusingone-wayanalysisof

variance(ANOVA),andthemeanswerecomparedusingthe

Dun-can’sNewMultipleRangeTest(MRT;p<0.05).Datawerereported

inTable1.

2.6. Molecularanalysis

Total RNA was extracted from each sample using the

SpectrumTM Plant Total RNA Kit (Sigma Aldrich,St Louis, MO,

USA),accordingtothemanufacturer’sinstructions.

Electrophore-sis using a 1% agarose gel was performed for all the RNA

Table1

Phenotypingresultsoftheexperimentallytreatedplantsforthedigitalbiomassand highwatercontentindexattheendoftheexperiment,andforthestressindextwo daysaftertreatment.

Tesis Digital biomass Highwater contentindex Stress index Untreatedcontrol 383617a 0.292a 0.541a

Megafolcontrol 400213a 0.292a 0.495a

Untreateddroughtstress 279845c 0.258c 0.128c Megafoldroughtstress 309353b 0.278b 0.314b Foreachcolumnmedianvalueswithsignificantdifferences,ascalculatedbythe Duncan’sNewMultipleRangeTestwithp<0.05,indicatedbydifferentletter group-ing.

(4)

samplesto check for RNA integrity, followed by spectrophoto-metricquantification.ContaminatingDNAwasremovedusinga TURBODNA-freekit(Ambion,www.ambion.com).RNAwasthen

reverse-transcribed usingan iScriptTM cDNA synthesis kit

(Bio-Rad Laboratories, Hercules, CA; www.bio-rad.com). Expression

analysisoftomatodroughtstressmarkergenes(Solyc02g084840

andSolyc03g025810) wasperformed byreal-time PCRusing an

ABIPrism7000sequencedetectionsystem(AppliedBiosystems).

Thesegeneswereselectedbecausetheyareorthologousof

Ara-bidopsisRAB18and RD29Bgenes, respectively (Lang and Palva,

1992; Cutler et al., 2010).Both RAB18 and RD29B are strongly

upregulatedbydrought(Dingetal.,2011).QuantitativePCRwas

performedusing40ngcDNAandiQTMSYBR®GreenSupermix

(Bio-radLaboratories,Hercules,CA; www.bio-rad.com), accordingto

themanufacturer’sinstructions.SlEF1A(S.lycopersicumelongation

factor1-alpha)andSlUBQ(S.lycopersicumubiquitin)wereusedas

referencegenes.Therelativequantizationofeachindividualgene

expressionwasperformedusingthegeometricaveragingmethod

(geNorm;http://medgen.ugent.be/∼jvdesomp/genorm/).

Thefollowingspecificprimerswereused:Solyc02g084840,5

-ATGGAACTCAGGCTGGACAC-3 (forward), 5

-TCTTCCTTCTACCGC-CATGT-3 (reverse); Solyc03g025810, 5

-ACACGAGCAGCATTCAC-AAG-3 (forward), 5-GCCCATTGACACAACTTCCT-3 (reverse);

SlEF1a, 5-GCTGCTGTAACAAGATGGATGC-3 (forward), 5

-GG-GGATTTTGTCAGGGTTGTAA-3 (reverse); SlUBQ, 5

-CACCAAG-CCAAAGAAGATCA-3 (forward), 5-TCAGCATTAGGGCACTCCTT-3

(reverse).

3. Results

3.1. Environmentalconditionsduringtreatments

Theminimum,maximum,andaveragedailytemperatures

mea-sured throughout the experiment are shown in Fig. 1A, while

Fig.1Breportsthemaximumdailysolarradiation.Twodaysafter

Megafol®treatment(Day2,S1),thefirstfulldayofdroughtstress,

theclimaticconditionswereparticularlywarm,accompaniedby

highsolar radiation(500Wm−2), creating a particularlystrong

combinationofheatanddroughtstress.Otherhightemperature

daysandsolarradiationoccurredduringtherecoveryphase(R),so

thesymptomsofstresswerelesspronounced.Inaddition,the

sec-onddayaftertreatmentalsoexperiencedthegreatestdailychange

intemperature.ThesixthdayaftertheMegafol® treatmentwas

particularlycloudyand humid,thechangein temperature

dur-ingthedaywasinsignificantandthedailysolarradiationwaslow

(100Wm−2).Therelativemeteorologicaldataduringimagingand

samplingoftheplantsarereportedinFig.2.

3.2. StressIndex

Thecalculatedstressindexforalltheexperimentalplantgroups

showedstatisticallyinsignificantdifferencesuptothedayof

treat-mentanddroughtstress(Day0,Fig.3).Plantsthatweretreated

withMegafol®didnotshowadrought-dependentdecreaseinthe

stressindexwhencomparedtothecontrolsonedayafter

irriga-tionwasstopped.Ontheseconddayofdrought,thestressindex

ofMegafol® treatedplants waslower thanthatofcontrols, but

higherthantheonerecordedforuntreated,droughtstressedplants.

TheMegafol®treatedplantskeptahigherstressindexalongthe

durationof theS1phase (Fig.3)until Day4 of droughtstress,

whenthestressindexofMegafol® treatedplantswasthesame

astheoneofthe“untreateddrought”plants(Fig.3).Atthispointit

wasdecidedtoadminister50mLwatertotheseverelydehydrated

plants(S2).WiththisemergencyirrigationtheMegafol® treated

plantsrespondedbetterthantheuntreatedonesforthefollowing

Fig.1.Meteorologicaldataduringtheexperiment.Minimum,maximum,and aver-agedaily temperatures(A), andthemaximum daily solarradiation(B) were measuredthroughouttheexperimentaltimeframe.

twodays,afterwhichdifferencesbecamestatisticallyinsignificant.

Thenormallyirrigatedplants(R),whetherMegafol®treatedornot,

didnotshowstatisticaldifferencesintheirstressindex.Daily

vari-ationsinthestressindexwereduetovariationsinthedailysolar

radiation.Thisistobeexpectedasthecalculatedstressindexwas

obtainedfromchlorophyllfluorescence,andvariationsinthe

avail-ablelightwouldnaturallyaffectthephotosyntheticapparatusof

theplants.

3.3. BiomasschangesinresponsetodroughtstressandMegafol®

treatment

ThecalculateddigitalbiomassoftheplantsisshowninFig.4A.

Clearly, the plants treated with Megafol® showed a delayed

responsetothedrought stress(Day2after treatment)in

com-parisonwiththeuntreatedplants.Thisresponsemanifesteditself

asareductioninthecalculateddigitalbiomass.Notonlywasthe

responsedelayed,buttheMegafol® treatedplantsmaintaineda

greaterdigitalbiomassthroughouttherestoftheexperiment.This

indicatesthattheMegafol®treatedplantsweremoreresistantto

droughtstress.NodifferencesbetweentheMegafol®andcontrol

plantswerenotedfortheunstressedplants.Thedigitalbiomass

canbecorrelatedwiththeweightoftheplants,but isstrongly

influencedbytheprojectedareainthetwodimensionalimages.

Thesetwodimensionalimageswereusedtocalculateavolume:

whenplantsaresubjectedtodroughtstressandlooseturgor

pres-sure,areduced digital biomassresults. Thissensitivitytoplant

volumecanbeseen whenthefreshweightresults(Fig.4B)are

comparedtothecalculateddigitalbiomass(Fig.4A).Plantsthat

(5)

Fig.2.Meteorologicaldatameasuredduringtheperiodofimagingandsampling, from7amto9am.Minimum,maximum,andaveragedailytemperatures(A),and theaveragesolarradiation(B).

intheirdigitalbiomass(whetherornottreatedwithMegafol®).

Thedrought-stressedplantsshowed,instead,amuchlower

digi-talbiomass(Fig.4A)withconcomitantfreshweightlosses,when

comparedtotheircontrols.Forthedroughtstressedplants,the

higherdigitalbiomassdetectedintheMegafol®treatedplantswas

maintainedthroughouttheexperiment,evenafterirrigationofthe

plantswasreinstatedforarecoveryphase.

3.4. Megafol®influencesthehighwatercontentclassindex

Thefractionofplantareawiththehighestwatercontentclass

isreportedinFig.5.Asexpected,theirrigatedplantsshowedmuch

Fig.3. Stressindexduringtheexperiment.Thestressindex(SI)isameasureofthe stateofhealthofthephotosyntheticapparatusoftheplantsandiscalculatedwith theformula(Ccontrol−Cstress)/(Ccontrol+Cstress)whichresultsinavaluefrom−1to+1.

Fig.4.Digital(A)andfreshbiomass(B)throughouttheexperimentaltimeframe. Circles representtheuntreated (filled)anddrought stressed(empty) samples, whereastrianglesrepresenttheMegafol®controls(filled)andstress-treatedplants (empty).

higherlevelsduringthedroughtstressperiodwhichwasalready

evidentonDay1inS1.Thedroughtstressedplantsshowedsmall

butsignificantdifferenceswithorwithouttheMegafol®treatment,

althoughwiththeapplicationof50mLwater(emergency

irriga-tion,S2) a much greaterdifferencein highwater contentclass

levels wasobserved. Interestingly, the Megafol® treated plants

Fig.5.Highwatercontentindexintomatoplantsthroughouttheexperimentaltime frame.Thewatercontentisreportedasahighwatercontentindex.Thepixelsfrom thegrey-scaleimagesgeneratedintheNIRchamberweredividedintoequidistant classesaccordingtotheirintensity.Thegroupslevelsindicatetheabsorbanceof NIRlight,whichisdirectlyrelatedtothequantityofwaterintheplanttissue.For thisexperimentonlyvaluesfrom105to255wereconsideredanddividedinto10 classes.Thehighwatercontentindexwascalculatedbyaddingtherelativearea forthefirstthreeclasses,thoseofthehighestwatercontent,andisreportedasa fractionofthetotalarea.

(6)

Fig.6.PatternofexpressionofSolyc02084840(A)andSolyc03g025810(B)intomatoplantsunderdroughtstress.Ontheleftforeachgenethecomparisonbetweenstressed (emptycircles)andnon-stressedplants(filledcircles).OntherightthecomparisonbetweensamplestreatedwithMegafol®(time0timeofMegafol®treatment)beforethe

waterstressinduction(emptytriangles)andstressedwithoutbiostimulanttreatment(filledtriangles).Thepatternisanalysedduringatimecourse,splittingthetotaltime oftreatmentsintothreephases:S1–totalstopofwatering,S2–partialreplacementofwatering(50mLday−1)andRtotalwateringrecovery(200mLday−1).Thestressed

tomatoplantspre-treatedwithMegafol®showedalowergeneinduction,suggestingahardeningeffectinducedbythebiostimulant.

weremuchbetteratincreasingandmaintainingtheirleafwater

content.Thiswasprobablyduetoanincreasedmetaboliccapacity

oftheMegafol®treatment,resultinginagreaterleafarea(digital

biomassinFig.4A)andagreaterwaterdistributionintheleaves

(Fig.5).Finally,duringtherecoveryatnormalirrigation(R),the

droughtstressedplantsreachedalmostthesamefractionofhigh

watercontentclassastheunstressedplants.Attheendofthe

recov-eryphase,thewatercontentofthestressedplantsnottreatedwith

Megafol®wasslightlybutstillsignificantlylowerthantheother

experimentalconditions.

3.5. Geneexpressionanalysis

Plantsrespondactivelytostressconditionsthroughthe

per-ception of stress signals, resulting in the enhanced expression

of related genes leading to the activation cascade of

stress-responsivegenes(ShinozakiandYamaguchi-Shinozaki,2007).The

study of the behaviour of these genes might help in

under-standingthemolecularmechanismsgoverningstressresponses

andtolerancein tomato plantsafter treatmentwitha

biostim-ulantproduct, such as Megafol®. In order to study therole of

Megafol®,weanalysedintomatoplantstreatedwiththe

biostimu-lantandthensubjectedtowaterstressthetranscriptlevelsoftwo

droughtstressmarkergenes:(1)thedehydration-induciblegene

Solyc02g084840,encodingforalow-temperature-inducedprotein,

and(2)Solyc03g025810,adehydrin.Thesegenesareorthologousof

ArabidopsisRAB18andRD29Bgenes,respectively(LangandPalva,

1992;Cutleretal.,2010).Wethencomparedtheseresultswith

thoseobtainedforstressedplantswithoutpre-treatingthemwith

thebiostimulant.Intriguingly,theexpressionofbothgenes

dra-maticallyincreased(Fig.6AandB)onthethirddayofwaterstress

(S1),when the maximumstress perceptionis achieved.

Subse-quently,relativetranscriptlevelsprogressivelydecreasedduring

emergencywatering(S2),untiltheydisappearedintherecovery

phase(R).Theexpressionpatternofthetwogeneswasverysimilar

underthecontrolconditions.Overall,thelowerexpressionlevels

ofbothgenesintheMegafol®-treatedplants(Fig.6)suggestthat

theseplantswereexperiencingamuchlowerdroughtstress.On

thewhole,theseresultsconcerningtheMegafol®treatmentarein

fullagreementwiththephenomicdatadescribedabove.

4. Discussion

Biostimulantsrepresentaclassofproductsusedinagriculture

thatisattractingtheinterestofthemarketandtheresearch

com-munity(Santanielloetal.,2013).AsdefinedbyDuJardin(2012),

“plantbiostimulantsaresubstancesandmaterials,withthe

excep-tionofnutrientsandpesticide,whichwhenappliedtoplants,seeds

orgrowingsubstrateinspecificformulations,havethecapacity

tomodifyphysiologicalprocessesofplantsinawaythatprovides

potentialbenefitstogrowth,developmentand/orstressresponse”.

Althoughthescientificliteraturereportsevidencefortheefficacyof

biostimulants(Para –dikovi ´cetal.,2011),littleisknownabouttheir

(7)

the effects of biostimulants at the molecularlevel (Santaniello

etal.,2013),highlightingtheabilityofrawmaterialsthatareused

toformulatebiostimulantstoinducetheexpressionofvarioussets

ofgenes.Remarkably,amongthegenefamiliesthatwereshownto

beup-regulated,severalbelongedtofunctionalcategoriesrelated

toabioticstresstoleranceandresponsestoABA(Santanielloetal.,

2013).These evidences suggest that biostimulants may act by

priming the treated crops against abiotic stresses. To test this

hypothesis we performed the integrated molecular/phenotypic

analysis we described here.To our knowledge this is the first

experimentalevidence for themechanism behindthe function

ofbiostimulantssuchas Megafol®.Analysisoftheresultsfrom

theNIR,fluorescence,andwhitelightimaging,demonstratedthat

theMegafol® pre-treatment of theplants confersresistanceto

theeffectsofdroughtstress,inagreementwithaprimingeffect

of this treatment.In addition to drought stress resistance, the

Megafol®-treatedplantswereabletorecovermorequicklywhen

theyhadaccesstowater.Thebiostimulantappearstodirectlyand

positivelyinfluenceplantresponsetodrought,aneffectthat

per-sistsuntiltheendofthedroughtstress.Photosyntheticefficiency

anda greaterlevelofplantwatercontentunderdroughtstress

conditionsindicateanimprovedmetabolicactivityofplantsunder

difficultconditions.Thisresultsinplantswithagreaterbiomass.

Bydelayingthenegativeeffectsofdroughtstress,theMegafol®

-treatedplantsareabletousethescarcewaterresourceavailable

more efficiently. Under normal irrigation conditions, Megafol®

treatment appears to have no influence on the plant growth,

photosyntheticefficiency(stressindex),orplantwatercontent.

ThepositiveeffectsoftheMegafol®treatmentsonthestressed

plants wereconfirmedat themolecularlevel. Byanalysingthe

expressionlevelsofdroughtstressmarkergenesintomatoplants,

we observed that plants pre-treated with Megafol® showed a

lower expressionof drought-related genes even when strongly

water-stressed. Considering the functional role of the marker

genesanalysed,whichtypicallyaccumulateandup-regulate

dur-ingdroughtstress(Ismailetal.,1999),theassociationbetweenthe

accumulationofmembersoftheLEAproteinfamilyandtoleranceto

stressisreasonableandhasalreadybeenshowninseveralspecies

(Cellieretal.,1998;Lopezetal.,2003).

ThelowerexpressionofthesegenesintheMegafol®-treated

tomatoplantshighlightsthefactthattheseplantsareindeed

expe-riencinga lower level ofwater stress, asa consequence ofthe

Megafol®treatmentitself.Thisresultwasconfirmedinouranalysis

ofthestress-relatedparameters.Megafol®containsbetaineswhich

couldexplaintheresultsdescribedinthissetofexperiments.The

roleofthesemoleculesinreducingdroughtstresscellulardamage

inplantsiswelldocumented(AshrafandFoolad,2007;Hoqueetal.,

2007;Parketal.,2006;ChenandMurata,2008).Ofthevarious

pro-tectivemechanismsagainstcellulardamageinducedbydrought

stress,theaccumulationofsmallorganicmetabolitesisimportant.

Thisdiffersamongspecies,butismostlyrepresentedbypolyols,

sugars,aminoacids,betainesandrelatedcompounds.Betainesare

synthesizedinabioticstressresponsesandtheirleveliscorrelated

withtheincreasedtolerancebyplants(RhodesandHanson,1993).

Tomatoplantsdonotnaturallyaccumulatebetaines(WynJones

andStorey,1981),butthereismuchevidencethatexogenous

appli-cationsimprovethegrowthandsurvivalofnumerousspeciesunder

stress(Zhaoetal.,1992;Aliaetal.,1998;Allardetal.,1998;Mäkelä

etal.,1998;Jokinenetal.,1999;Chenetal.,2000)andintomato,

whenappliedtotheleaves,theyaretakenupreadily(Parketal.,

2006).ThebetainecomponentsofMegafol®probablyreducethe

sensitivityoftheplantstowaterdeficiency,resultinginalower

perceptionofthestresssignalandinweakenednegative

physio-logicalconsequences.Althoughadditionalresearchisnecessaryto

furtherclarifythemolecularandphysiologicalmechanismswhich

exploitbiostimulants,suchasMegafol®,toovercomehighlevels

ofabioticstress,thepresentresearchdemonstratedthat

biostimu-lantsexertaclear,measurablealleviationofabioticstressinjuries.

Acknowledgement

WewouldliketothankProf.AlbertoPardossi(UniversityofPisa,

Italy)forhisinvaluablediscussion.

References

Abe,H.,Yamaguchi-Shinozaki,K.,Urao,T.,Iwasaki,T.,Hosokawa,D.,Shinozaki,K., 1997.RoleofArabidopsisMYCandMYBhomologsindrought-andabscisic acid-regulatedgeneexpression.PlantCell9,1859–1868.

Alia,Hayashi,H.,Chen,T.H.H.,Murata,N.,1998.Transformationwithagenefor cholineoxidaseenhancesthecoldtoleranceofArabidopsisduringgermination andearlygrowth.PlantCellEnviron21,232–239.

Allard,F.,Houde,M.,Krol,M.,Ivanov,A.,Huner,N.P.A.,Sarhan,F.,1998.Betaine improvesfreezingtoleranceinwheat.PlantCellPhysiol39,1194–1202.

Ashraf,M.,Foolad,M.R.,2007.Rolesofglycinebetaineandprolineinimproving plantabioticstressresistance.EnvironExpBot59,206–216.

Atarés,A.,Moyano,E.,Morales,B.,Schleicher,P.,García-Abellán,J.O.,Antón,T., García-Sogo,B.,Perez-Martin,F.,Lozano,R.,Flores,F.B.,Moreno,V.,BolarinMdel, C.,Pineda,B.,2011.Aninsertionalmutagenesisprogrammewithanenhancer trapfortheidentificationandtaggingofgenesinvolvedinabioticstress tol-eranceinthetomatowild-relatedspeciesSolanumpennellii.PlantCellRep30, 1865–1879.

Bailly,C.,Audigier,C.,Ladonne,F.,Wagner,M.H.,Coste,F.,Corbineau,F.,Côme,D., 2001.Changesinoligosaccharidecontentandantioxidantenzymeactivitiesin developingbeanseedsasrelatedtoacquisitionofdryingtoleranceandseed quality.JExpBot52,701–708.

Battisti,D.S.,Naylor,R.L.,2009.Historicalwarningsoffuturefoodinsecuritywith unprecedentedseasonalheat.Science323,240–244.

Berger,B.,Parent,B.,Tester,M.,2010.High-throughputshootimagingtostudy droughtresponses.JExpBot61,3519–3528.

Bies-Etheve,N.,Gaubier-Comella,P.,Debures,A.,Lasserre,E.,Jobet,E.,Raynal,M., Cooke,R.,Delseny,M.,2008.Inventory,evolutionandexpressionprofiling diver-sityoftheLEA(lateembryogenesisabundant)proteingenefamilyinArabidopsis thaliana.PlantMolBiol67,107–124.

Boyer,J.S.,1982.Plantproductivityandenvironment.Science218,443–448.

Bray,E.A.,2004.Genescommonlyregulatedbywater-deficitstressinArabidopsis thaliana.JExpBot55,2331–2341.

Breton,G.,Danyluk,J.,Charron,J.B.,Sarhan,F.,2003.Expressionprofilingand bioin-formaticanalysesofanovelstress-regulatedmultispanningtransmembrane proteinfamilyfromcerealsandArabidopsis.PlantPhysiol132,64–74.

Cellier,F.,Conéjéro,G.,Breitler,J.C.,Casse,F.,1998.Molecularandphysiological responsestowaterdeficitindrought-tolerantanddrought-sensitivesunflower lines(HelianthusannuusL.):accumulationofdehydrintranscriptscorrelates withtolerance.PlantPhysiol116,319–328.

Chen,W.P.,Li,P.H.,Chen,T.H.H.,2000.Glycinebetaineincreaseschillingtolerance andreduceschilling-inducedlipidperoxidationinZeamaysL.PlantCellEnviron 23,609–618.

Chen,T.H.H.,Murata,N.,2008.Glycinebetaine:aneffectiveprotectantagainstabiotic stressinplants.TrendsPlantSci13,499–505.

Cutler,S.R.,Rodriguez,P.L.,Finkelstein,R.R.,Abrams,S.R.,2010.Abscisicacid: emer-genceofacoresignallingnetwork.AnnuRevPlantBiol61,651–679.

Ding,Y.,Fromm,M.,Avramova,Z.,2011.Multipleexposurestodrought‘train’ tran-scriptionalresponsesinArabidopsis.NatCommun3,740.

DuJardin,P.,2012.TheScienceofPlantBiostimulants–ABibliographicanalysis. EuropeanCommissionReport–Contract30-CE0455515/00-96,“Adhocstudy onbio-stimulantsproducts”.

Eberius,M.,Lima-Guerra,J.,2009.High-throughputplantphenotyping–data acqui-sition,transformationandanalysis.Bioinformatics7,259–278.

Finkelstein,R.R.,Lynch,T.J.,2000.TheArabidopsisabscisicacidresponsegeneABI5 encodesabasicleucinezippertranscriptionfactor.PlantCell12,599–609.

Furbank,R.T.,Tester,M.,2011.Phenomics-technologiestorelievethephenotyping bottleneck.TrendsPlantSci16,635–644.

Guo,P.G.,Baum,M.,Grando,S.,Ceccarelli,S.,Bai,G.H.,Li,R.H.,Korff,M.V., Varsh-ney,R.K.,Graner,A.,Valkoun,J.,2009.Differentiallyexpressedgenesbetween drought-tolerantanddrought-sensitivebarleygenotypesinresponsetodrought stressduringthereproductivestage.JExptBot60,3531–3544.

Hayano-Kanashiro,C.,Calderón-Vázquez,C.,Ibarra-Laclette,E.,Herrera-Estrella,L., Simpson,J.,2009.Analysisofgeneexpressionandphysiologicalresponsesin threeMexicanmaizelandracesunderdroughtstressandrecoveryirrigation. PLoSONE4,e7531.

Hazen,S.P.,Pathan,M.S.,Sanchez,A.,Baxter,I.,Dunn,M.,Estes,B.,Chang,H.S.,Zhu, T.,Kreps,J.A.,Nguyen,H.T.,2005.Expressionprofilingofricesegregatingfor droughttoleranceQTLsusingaricegenomearray.FunctIntegrGenomics5, 104–116.

Hoque,A.,Okuma,E.,Banu,N.A.,Nakamura,Y.,Shimoishi,Y.,Murata,Y.,2007.

Exogenous proline mitigates the detrimental effects of salt stress more thanexogenousbetainebyincreasingantioxidantenzymeactivities.JPlant Physiol164,553–561.

(8)

Huang,D.Q.,Wu,W.R.,Abrams,S.R.,Cutler,A.J.,2008.Therelationshipof drought-relatedgeneexpressioninArabidopsisthalianatohormonalandenvironmental factors.JExpBot59,2991–3007.

Ismail,A.M.,Hall,A.E.,Close,T.J.,1999.Allelicvariationofadehydringene cosegre-gateswithchillingtoleranceduringseedlingemergence.ProcNatlAcadSciUS A96,13566–13570.

Jokinen,K.,Somersalo,S.,Mäkelä,P.,Urbano,P.,Rojo,C.,González,J.M.A.,Soler,J., Usano,M.C.,Moure,J.,Moya,M.,1999.Glycinebetainefromsugarbeetenhances theyieldoffield-growntomatoes.ActaHort487,233–236.

Kaloo,G.,1993.VegetableBreeding,vol.III.CRCpressInc.,BocaRaton,Florida.

Lang,V.,Palva,E.T.,1992.Theexpressionofarab-relatedgene,rab18,isinduced byabscisicacidduringthecoldacclimationprocessofArabidopsisthaliana(L.) Heynh.PlantMolBiol20,951–962.

Lopez, C.G., Banowetz, G.M., Peterson, C.J., Kronstad, W.E., 2003. Dehydrin expressionand drought tolerancein seven wheat cultivars. CropSci 43, 577–582.

Mäkelä,P.,Jokinen,K.,Kontturi,M.,Peltonen-Sainio,P.,Pehu,E.,Somersalo,S.,1998.

Foliarapplicationofglycinebetaine–anovelproductfromsugarbeet–asan approachtoincreasetomatoyield.IndCropsProd7,139–148.

Marè,C.,Mazzucotelli,E.,Crosatti,C.,Francia,E.,Stanca,A.M.,Cattivelli,L.,2004. Hv-WRKY38:anewtranscriptionfactorinvolvedincold-anddrought-responsein barley.PlantMolBiol55,399–416.

Müller,P.,Li,X.-P.,Niyogi,K.K.,2001.Non-photochemicalquenching.Aresponseto excesslightenergy.PlantPhysiol125,1558–1566.

Nylander,M.,Svensson,J.,Palva,E.T.,Welin,B.V.,2001.Stress-inducedaccumulation andtissue-specificlocalizationofdehydrinsinArabidopsisthaliana.PlantMol Biol45,263–279.

Oxborough,K.,2004.Imagingofchlorophyllafluorescence:theoreticaland prac-ticalaspectsofanemergingtechniqueforthemonitoringofphotosynthetic performance.JExpBot55,1195–1205.

Para –dikovi ´c,N.,Vinkovi ´c,T.,Vinkovi ´cVrˇcek,I., ˇZuntar,I.,Boji ´c,M.,Medi ´c-ˇSari ´c,M., 2011.Effectofnaturalbiostimulantsonyieldandnutritionalquality:an exam-pleofsweetyellowpepper(CapsicumannuumL.)plant.JSciFoodAgric91, 2146–2152.

Park,E.-J.,Jeknic, Z., Chen,T.H.H.,2006. Exogenous applicationof glycinebe-taineincreases chilling tolerance intomato plants.Plant Cell Physiol 47, 706–714.

Pennisi,E.,2008.Plantgenetics:thebluerevolution,dropbydrop,genebygene. Science320,171–173.

Petrozza,A.,Armentano,N.,Lacertosa,A.,DiTommaso,G.,Piaggesi,A.,DiTommaso, D.,Cellini,F.,2009.Automatedscreeningofleaftreatedzucchiniplantstoassess growthandabioticstress.18thCIECSymposiumoftheInternationalScientific CentreofFertilizers.FertilitasAgrorum1,489–493.

Pineda,B.,Gimenez-Caminero,E.,Garcia-Sogo,B.,Anton,M.T.,Atarés,A.,Capel,J., Lozano,R.,Angosto,T.,Moreno,V.,2010.Geneticandphysiological characteri-zationofthearlequininsertionalmutantrevealsakeyregulatorofreproductive developmentintomato.PlantCellPhysiol51,435–447.

Popelka,M.,Tuinstra,M.,Weil,C.F.,2010.Discoveringgenesforabioticstress tol-eranceincropplants.In:Jenks,M.A.,Wood,A.J.(Eds.),GenesforPlantAbiotic Stress.Wiley-Blackwell,Iowa,pp.281–302.

Pratt,L.H.,Liang,C.,Shah,M.,Sun,F.,Wang,H.,Reid,S.P.,Gingle,A.R.,Paterson,A.H., Wing,R.,Dean,R.,Klein,R.,Nguyen,H.T.,Ma,H.M.,Zhao,X.,Morishige,D.T., Mullet,J.E.,Cordonnier-Pratt,M.M.,2005.Sorghumexpressedsequencetags identifysignaturegenesfordrought,pathogenesis,andskotomorphogenesis fromamilestonesetof16.801uniquetranscripts.PlantPhysiol139,869–884.

Rabbani,M.A.,Maruyama,K.,Abe,H.,Khan,M.A.,Katsura,K.,Ito,Y.,Yoshiwara,K., Seki,M.,Shinozaki,K.,Yamaguchi-Shinozaki,K.,2003.Monitoringexpression profilesofricegenesundercold,drought,andhigh-salinitystressesandabscisic acidapplicationusingcDNAmicroarrayandRNAgel-blotanalyses.PlantPhysiol 133,1755–1767.

Rajendran,K.,Tester,M.,Roy,S.J.,2009.Quantifyingthethreemaincomponentsof salinitytoleranceincereals.PlantCellEnviron32,237–249.

Rhodes,D.,Hanson,A.D.,1993.Quaternaryammoniumandtertiarysulfonium com-poundsinhigherplants.AnnuRevPlantPhysiolPlantMolBiol44,357–384.

Richardson,A.,Aikens,M.,Berlyn,G.,Marshall,P.,2004.Droughtstressandpaper birch(Betulapapyrifera)seedlings:effectsofanorganicbiostimulantonplant healthandstresstolerance,anddetectionofstresseffectswith instrument-based,non-invasivemethods.JArbor30,52–61.

Santaniello,A.,Giorgi,F.M.,DiTommaso,D.,DiTommaso,G.,Piaggesi,A.,Perata, P.,2013.Genomicapproachestounveilthephysiologicalpathwaysactivatedin Arabidopsistreatedwithplant-derivedrawextracts.ActaHort1009,161–174.

Seki,M.,Narusaka,M.,Abe,H.,Kasuga,M.,Yamaguchi-Shinozaki,K.,Carninci,P., Hayashizaki,Y.,Shinozaki,K.,2001.Monitoringtheexpressionpatternof1300 Arabidopsisgenesunderdroughtandcoldstressesbyusingafull-lengthcDNA microarray.PlantCell13,61–72.

Shinozaki,K.,Yamaguchi-Shinozaki,K.,2007.Genenetworksinvolvedindrought stressresponseandtolerance.JExpBot58,221–227.

Song,C.P.,Agarwal,M.,Ohta,M.,Guo,Y.,Halfter,U.,Wang,P.C.,Zhu,J.K.,2005.Role ofanArabidopsisAP2/EREBP-typetranscriptionalrepressorinabscisicacidand droughtstressresponses.PlantCell17,2384–2396.

Talamé,V.,Ozturk,N.Z.,Bohnert,H.J.,Tuberosa,R.,2007.Barleytranscriptprofiles underdehydrationshockanddroughtstresstreatments:acomparativeanalysis. JExpBot58,229–240.

Tuberosa,R.,Salvi,S.,2006.Genomics-basedapproachestoimprovedrought toler-anceofcrops.TrendsPlantSci11,405–412.

Vasquez-Robinet,C.,Mane,S.P.,Ulanov,A.V.,Watkinson,J.I.,Stromberg,V.K.,De Koeyer,D.,Schafleitner,R.,Willmot,D.B.,Bonierbale,M.,Bohnert,H.J.,Grene, R.,2008.PhysiologicalandmolecularadaptationstodroughtinAndeanpotato genotypes.JExpBot59,2109–2123.

Wang,T.T.,Ye,Z.B.,2006.DissectionofGA20-oxidasemembersaffectingtomato morphologybyRNAi-mediatedsilencing.PlantGrowthReg50,179–189.

WynJones,R.G.,Storey,R.,1981.Betaines.In:Paleg,L.G.,Aspinall,D.(Eds.),The PhysiologyandBiochemistryofDroughtResistanceinPlants.AcademicPress, Sydney,pp.171–204.

Zhao,Y.,Aspinal,D.,Paleg,L.G.,1992.Protectionofmembraneintegrityin Med-icagosativaL.byglycinebetaineagainsttheeffectsoffreezing.J.PlantPhysiol 140,541–543.

Zhu,B.,Choi,D.W.,Fenton,R.,Close,T.J.,2000.Expressionofthebarleydehydrin multigenefamilyandthedevelopmentoffreezingtolerance.MolGenGenet 246,145–153.

Riferimenti

Documenti correlati

Questo documento, riempito metodicamente, ha accompagnato ogni intervista per ogni reparto strategico. Il modello realizzato è studiato in modo da comprendere tutte le

I tre fratelli, pur nella complessità della realizzazione artistica, incarnano ciascuno un “tipo” di atteggiamento verso il mon- do e la realtà: Dimitrij è un giovane generoso

The contest of climate change and water scarcity scenarios forces the developement of proper hydrological models able to deal both with large scale and long

Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the

Il valore di questa posizione rituale non è costruito né attraverso contraddizione (“io non sono Charlie”), né attraverso contrarietà (“io non sono Charlie, io sono X”), ma

In the current research landscape of these studies, I believe that some basic ideas, which are essential for an accurate view and valuation of cultural and intellectual history,

The use of environmentally benign enabling technologies such as microwave and ultrasound irradiation either alone or combined (CMUI) and mechanochemistry in

Gain rescaling with full overlap of input–output functions (i.e., the disappearance of the difference between input– output functions [Figure 6D]) occurred only when input rescaling