• Non ci sono risultati.

Exact microstate counting for dyonic black holes in AdS4

N/A
N/A
Protected

Academic year: 2021

Condividi "Exact microstate counting for dyonic black holes in AdS4"

Copied!
5
0
0

Testo completo

(1)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Exact

microstate

counting

for

dyonic

black

holes

in

AdS

4

Francesco Benini

a

,

b

,

Kiril Hristov

c

,

Alberto Zaffaroni

d

,

e

,

aSISSA,INFN,SezionediTrieste,viaBonomea265,34136Trieste,Italy bBlackettLaboratory,ImperialCollegeLondon,LondonSW72AZ,UnitedKingdom cINRNE,BulgarianAcademyofSciences,TsarigradskoChaussee72,1784Sofia,Bulgaria dDipartimentodiFisica,UniversitàdiMilano-Bicocca,I-20126Milano,Italy eINFN,sezionediMilano-Bicocca,I-20126Milano,Italy

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory: Received23April2017 Accepted25May2017 Availableonline7June2017 Editor: N.Lambert

We present a counting ofmicrostates ofa class ofdyonic BPS black holes in AdS4 which precisely reproduces their Bekenstein–Hawking entropy. The counting is performed in the dual boundary description, thatprovidesanon-perturbativedefinition ofquantumgravity,intermsofatwisted and mass-deformedABJMtheory.Weevaluate itstwistedindexandproposeanextremization principleto extracttheentropy,whichreproducestheattractormechanismingaugedsupergravity.

©2017TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

Supersymmetricblackholes instringtheory constitute impor-tantmodelstotestfundamental questionsaboutquantumgravity in a relatively simple setting.The main question we would like toaddresshereistheoriginoftheblackhole(BH)entropy,which statisticallyisexpectedtocountthenumberofdegenerateBH con-figurations. String theory provides a microscopic explanation for theentropyofaclassofasymptoticallyflatblackholes [1].Much lessisknown aboutasymptotically AdSonesin fourormore di-mensions.

InprincipleAdS/CFT [2]provides anon-perturbativedefinition ofquantumgravityinasymptotically AdSspace,asadual bound-ary quantum field theory (QFT). The BH microstates appear as particular states in the boundary description. The difficulty with thisapproach is theneed to performcomputations ina strongly coupledQFT,butthedevelopment ofexactnon-perturbative tech-niques makes progress possible. We recently reported [3] on a particular example of magnetically charged BPS black holes in AdS4 [4] with a known field theory dual—topologically twisted

ABJM theory.Using the technique ofsupersymmetric localization wewereabletocalculateinanindependentwaythe(regularized) numberof groundstatesof thetheory and successfullymatchit withtheleadingmacroscopicentropyoftheblackholes.

In this Letter we discuss a function Z

(

ua

)

that encodes the

quantumentropiesofstaticdyonicBPSblackholesinAdS4,

com-*

Correspondingauthor.

E-mailaddresses:fbenini@sissa.it(F. Benini),khristov@inrne.bas.bg(K. Hristov), alberto.zaffaroni@mib.infn.it(A. Zaffaroni).

putednon-perturbativelyfromthedualQFTdescription,andshow that its leading behavior reproducesthe Bekenstein–Hawking en-tropy

[5,6]

.

In particular we show that, at leading order, the entropy of BPS blackholeswithmagneticcharges

p

a,electriccharges

q

aand

asymptotictoAdS4

×

S7 canbeobtainedbyextremizingthe

quan-tity

I

=

log Z(ua

)

i



aua

q

a (1)

with respect to a set of complexified chemical potentials ua for

the globalU

(

1

)

flavorsymmetries oftheboundary theory. Z

(

ua

)

isthetopologicallytwistedindex

[7]

oftheABJMtheory

[8]

which explicitlydependsonthemagneticcharges

p

a (see

[9,10]

forother

examples). Theentropyis givenby S

=

I(ˆ

u

)

evaluatedatthe ex-tremum,withaconstraintonthechargesthat S berealpositive.

As wewillsee,theextremizationof

I

isequivalent tothe at-tractormechanismforAdS4blackholesingaugedsupergravity.We

alsoargue,generalizing

[3]

,thattheextremizationof

I

selectsthe exactR-symmetryofthesuperconformalquantummechanicsdual totheAdS2 horizonregion.We noticestrongsimilaritiesbetween

our formalism and those based on Sen’s entropy functional [11]

andtheOSVconjecture

[12]

.

2. Theblackholes

WeconsiderdyonicBPSBHsthatcanbeembeddedinM-theory andareasymptotictoAdS4

×

S7.Theyaremoreeasilydescribedas

solutions inthe STU model,a four-dimensional

N =

2 gauged su-pergravitywiththree vectormultiplets,whichisaconsistent

trun-http://dx.doi.org/10.1016/j.physletb.2017.05.076

0370-2693/©2017TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

cationbothofM-theoryonS7,andofthe4dmaximal

N =

8 S O

(

8

)

gaugedsupergravity [13].The modelcontains fourAbelianvector fields(oneisthegraviphoton)correspondingtotheU

(

1

)

4

S O

(

8

)

isometriesofS7.

In4d

N =

2 supergravities withnV vector multiplets, one can

usethestandard machineryofspecialgeometry

[14–16]

.The La-grangian

L

of the theory is completely specified by the prepo-tential

F(

X

)

,whichis ahomogeneous holomorphic functionof

sections X, and the vector of Fayet–Iliopoulos (FI) terms

G =

(

g

,

g



)

. The symplectic index



=

0

,

1

,

. . . ,

nV runs over the

graviphotonandthenV vectorsinvectormultiplets.Thescalars zi

invectormultiplets,withi

=

1

,

. . . ,

nV,parametrizeaspecial

Käh-lermanifold

M

andX aresectionsofasymplecticHodgevector

bundle on

M

. The formalism is covariant withrespect to sym-plectic Sp

(

2nV

+

2

)

transformations. Indicating as

(

A

,

A

)

the

2nV

+

2 componentsofasymplecticvector A,thescalarproductis



A

,

B



=

AB

AB.One definesthecovariantly-holomorphic

sections

V

=

eK(z,z¯)/2



X

(

z

)

F



(

z

)



(2)

on

M

, where

K

is the Kähler potential and

F



≡ ∂



F

. They

satisfy D¯ı

V ≡



¯ı

12

¯ı

K



V =

0.The Kählerpotential isthen de-terminedby



V,

V

= −

i.

Theansatzfordyonicblackholesisoftheform

ds2

= −

e2U(r)dt2

+

e2U(r)



dr2

+

V

(

r

)

2ds2g



(3)

where



g isa Riemann surface ofgenus

g,

andthe scalarfields zi areassumedtoonlyhaveradialdependence.Wecanwritethe

metricon



glocallyas ds2g

=

d

θ

2

+

fκ2

(θ )

d

ϕ

2

,

(θ )

=

sin

θ

κ

=

1

θ

κ

=

0 sinh

θ

κ

= −

1 (4)

where

κ

=

1 forS2,

κ

=

0 forT2,and

κ

= −

1 for



g with

g

>

1. Thescalarcurvatureis2

κ

andthevolumeis

Vol(g

)

=

2

π η

,

η

=

2

|g −

1

|

for

g

=

1

1 for

g

=

1

.

(5)

Themagneticandelectricchargesoftheblackholeare

g F

=

Vol(g

)

p

,

g G

=

Vol(g

)

q

,

(6)

where G

=

8

π

GN

δ(

L

dvol4

)/δ

F and GN is the Newton

con-stant.ThisparticularnormalizationensuresthattheBPSequations areindependentof

g

(besidesalinearconstraint).Thechargesare collectedinthevector

Q

= (

p

,

q



)

.Thevector

G

ofFIterms

con-trolsthegauginganddeterminesthechargesofthegravitiniunder thegauge fields.In a frame withpurely electricgauging g,the

latticeofelectro-magneticchargesis

η

gp

∈ Z ,

η

4GNg

q

∈ Z

(7)

not summed over



.It turns out that theBPS equationsfix the morestringentcondition



G

,

Q

 = −

κ

,

(8)

thatwecallthelinearconstraint.

It hasbeen noticed in [17] that the BPS equations of gauged supergravityforthenear-horizongeometry canbeputintheform

of“attractorequations”.Onedefinesthecentralchargeoftheblack hole

Z

andthesuperpotential

L

:

Z

= 

Q

,

V

 =

eK/2



qX

p

F





L

= 

G

,

V

 =

eK/2



gX

g

F





.

(9)

TheBPSequationsforthenear-horizongeometry

ds2nh

= −

r 2 R2Adt 2

+

R2A r2 dr 2

+

R2 Sds2g (10)

with constant scalar fields zi imply the following two equations [17]:

Z −

iR2 S

L

=

0 andDj



Z −

iR2 S

L



=

0,whereDj

= ∂

j

+

12

j

K

,

besides



G,

Q

= −

κ

.Theseequationscanberewrittenas

j

Z

L

=

0

,

i

Z

L

=

R 2 S

.

(11)

Inotherwords,thescalarszi atthehorizontakeavaluesuchthat

thequantity

i

Z/L

hasacriticalpointon

M

andthenitsvalue isproportionaltotheBekenstein–Hawkingblackholeentropy.

NoticethataconditiontohaveBHswithsmoothhorizonisthat

i

Z/L

berealpositiveatthecriticalpoint.Sincethecritical-point equationsalreadyfix the valuesofthe scalars,thiscondition be-comes a second (non-linear)constrainton thecharges. Therefore the domain ofallowed electro-magneticcharges has real dimen-sion2nV (beforeimposingquantization).Thereareother

inequali-tiestobesatisfiedbythecharges,forinstancetoensurethatalso

R2Abepositive.

InthecaseofveryspecialKählergeometry,i.e. thatthe prepo-tentialtakestheform

F =

di jkXiXjXk

/

X0 orsymplectic

transfor-mations thereof,generalsolutions to the near-horizon BPS equa-tionsaswellasfullBHsolutionshavebeenfoundin

[18–20]

.That analysis guarantees that all near-horizon solutions can be com-pletedintofullBHsolutions.

Ourfocusis ontheSTU model,which hasnV

=

3 and

prepo-tential

F

= −

2i

X0X1X2X3

,

(12)

withpurely electricgauging g

g, g

=

0. Thenthe AdS4

vac-uumhasradiusL2

=

1

/

2g2.NotethatalldyonicBHsolutionswith

electriccharges havecomplex profilesfor thescalars, i.e. the ax-ionsareturnedon.

3. Thedualfieldtheory

M-theoryonAdS4

×

S7 hasadualholographicdescriptionasa

three-dimensionalsupersymmetricgaugetheory,theABJMtheory

[8],whichprovidesanon-perturbativedefinitionthereof.In

N =

2 notation, the ABJM theory is a U

(

N

)

1

×

U

(

N

)

−1 Chern–Simons

theory (the subscripts are the levels) with bi-fundamental chiral multiplets Ai and Bj, i

,

j

=

1

,

2, transforming in the

(

N

,

N

)

and

(

N

,

N

)

representationsofthe gauge group,respectively, andwith superpotential W

=

ε

ik

ε

jlTr A

iBjAkBl. The theory has

N =

8

su-perconformalsymmetryandS O

(

8

)

R-symmetry.Theidentification betweengravitationalandQFTparametersis

L2 GN

=

1 2g2G N

=

2

2 3 N 3/2

.

(13)

The“topologicallytwistedindex”ofan

N =

2 three-dimensional theoryisitssupersymmetricEuclideanpartition functiononS2

×

S1 with a topological twist on S2 [7]. Its higher-genus general-ization, namely the twisted partition function on



g

×

S1, has

(3)

been constructed aswell [21,22]. They depend on a set of inte-germagneticfluxes

p

aandcomplexfugacitiesya,alongtheCartan

generatorsoftheflavorsymmetrygroup.

In the present case, to make the enhanced symmetry more manifest,weintroduce anindexa

=

1

,

2

,

3

,

4 thatsimultaneously runsover the four ABJM chiral fields andthe four Abelian sym-metriesU

(

1

)

4

S O

(

8

)

.Thisisdonebyintroducingabasisoffour R-symmetries Ra,each actingwithcharge 2 onone ofthechiral

fieldsandzeroontheothers.Then themagneticfluxesidentifya

U

(

1

)

subgroupofS O

(

8

)

usedtotwist,andarerequiredby super-symmetrytosatisfy

a

p

a

=

2g

2.Thecomplexfugacities ya

=

exp iua must satisfy



aya

=

1 (

aua

2

π

Z

) andencode

back-groundvaluesforthe flavor symmetries.Writing ua

=

a

+

i

β

σ

a

(where

β

isthelengthof S1),wecanidentify

a withflavorflat

connectionsand

σ

a withrealmasses.

TheHamiltoniandefinitionoftheindexis

[7]

Z

(

ua

, p

a

)

=

Tr

(

1)Fei 3

a=1 aJae−βH

,

(14) where Ja

=

12

(

Ra

R4

)

are thethreeindependent flavor

symme-triesandH isthetwistedHamiltonianonS2,explicitlydependent on the magnetic charges

p

a and the real masses

σ

a. Due to the

supersymmetryalgebra Q2

=

H

3

a=1

σ

aJa,theindex Z

(

ua

,

p

a

)

is a meromorphic function of ya. For simplicity, we will keep

the dependence on

p

a implicit and use the shorthand notation

σ

J

=

a3=1

σ

aJa.We stress that, in general, (14) iswell-defined

onlyforcomplexua while theindexfor

σ

a

=

0 is definedby

an-alyticcontinuation.Wewouldliketoseehowwe canextractthe BHentropiesfromZ .

4. Statisticalinterpretation

ThepartitionfunctionZ

(

u

)

describesasupersymmetric ensem-blewhichiscanonicalwithrespecttothemagneticcharges(i.e. all stateshavethesame,fixed,magneticcharges)butgrandcanonical withrespecttothe electriccharges(i.e. itisa sumover all elec-tric charge sectors, with fixed chemical potentials ua). A similar

viewpointinBHphysics isadvocatedin

[23]

.Wecan decompose

Z asa sumover sectorswithfixed charges

q

a under Ra

/

2 (then

thelatticeofchargesissuchthatboth Ja

,

Ra

∈ Z

,uptoapossible

zero-pointshiftinthevacuum): Z

(

u

)

=



qe

i 3a=1ua(qa−q4)Z

q

.

(15)

WewouldliketoidentifySq

≡ R

elog Zqwiththeleadingentropy ofa BH offixed electriccharges

q

a.We take thereal partto

re-movetheeffectofapossibleoverallsign.Animportantassumption isthat

(

1

)

F inthetrace

(14)

doesnotcausedangerous cancela-tionsatleadingorder.

WecanFouriertransformthepreviousexpressionwithrespect tothethreeindependent

a toobtain



q4 Zq

=

d3

a

(2

π

)

3ei 3b=1 b(qb−q4)Z

(

u

) ,

(16)

whereprimemeansthatthesumistakenatfixedinteger

q

a

− q

4.

As we willsee,for supergravityBHs both the electriccharges

q

a

andlog Z areoforderN3/2,thereforetheprevious expressioncan beevaluatedatlargeN usingasaddlepointapproximation:



q4 Zq

=

exp



log Z(u

ˆ

)

i



3 a=1u

ˆ

a

(q

a

− q

4

)



(17)

atleadingorder,whereu

ˆ

a isasolutionforua to

ua



log Z

(

u

)

i



3 b=1ub

(q

b

− q

4

)



=

0 (18)

witha

=

1

,

2

,

3.Thissaddlepointingeneralgivescomplexvalues for u

ˆ

a.The sumon the LHSof (17)will alsobe dominated by a

specific value of

q

4,corresponding totheelectricR-charge ofthe

blackhole.Forthatvalue: Sq

= R

e



log Z(u

ˆ

)

i



3 a=1u

ˆ

a

(q

a

− q

4

)



.

(19)

We can restore the permutation symmetry betweenthe charges, partoftheWeylgroupofS O

(

8

)

,byintroducing

I

(

u

)

log Z(u

)

i



4

a=1ua

q

a

.

(20)

Eqn. (18) is equivalent to extremization of

I

andthe entropy is givenby Sq

= R

e

I(ˆ

u

)

.

ThisargumentdoesnotdeterminetheR-chargeoftheBH, es-sentiallybecausetheindex Z

(

u

)

lacks achemical potentialforit. Howeverfromtheattractorequations

(11)

itfollowsthat,forgiven magneticcharges

p

aandflavorelectriccharges

q

a

− q

4,thereisat

mostonevalue of

q

4 leadingtoalargesmoothBH.Ourargument

then gives an unambiguousprediction forthe leading entropyof thatBH.

5. RGflowinterpretation

We can extract more information fromthe index ifwe inter-prettheBHasanholographicRGflow.Thenear-horizongeometry of BPS black holes contains an AdS2 factor permeated by

con-stant electric flux,where thesuper-isometry algebra isenhanced to

su(1

,

1

|

1

)

. Thus we can think of the BH solution as a holo-graphic RG flow from the 3d theory on S2 to an ensemble of

su(1

,

1

|

1

)

-invariantstates ina1dsystem. The bosonicsubalgebra is

sl(2

,

R)

×u(

1

)

c wherethesecondfactoristheIRsuperconformal

R-symmetry, whichissome linearcombinationofU

(

1

)

4

S O

(

8

)

. In the near-horizon canonical ensemble this implies that all BH stateshave zeroU

(

1

)

c charge (byan argumentsimilar tothat in [24,25]).Wewillassumethattherearenoothercontributions out-sidethehorizon.

The asymptotic behavior of electrically charged BH solutions withaxionsturnedonsuggeststhatthedualABJMtheory isalso deformedbyrealmasses

σ

a.Ingeneral,theyliftapossiblevacuum

degeneracyoftheHamiltonianH .ThepresenceofAdS2with

con-stant electricflux, though, indicates that there shouldbe alarge vacuumdegeneracyforamodified Hamiltonian Hnh inwhichthe

energy of states gets an extra contribution linear in the charge:

Hnh

(

σ

)

=

H

(

σ

)

σ

. From thesupersymmetry algebra Q2

=

Hnh

we concludethat Hnh

0, and the index gets contribution only

fromitsgroundstates.Wecanrewritetheindexin

(14)

as Z

( ,

σ

)

=

TreiπRtrial( )e−βσJ

,

(21) where Tr

=

TrHnh=0. We introduced a trial R-current Rtrial

( )

R0

+

J

/

π

thatparametrizesthemixingoftheR-symmetrywith

theflavor symmetries,with R0 areferenceR-symmetrysuch that eiπR0

= (−

1

)

F.

We want to argue, generalizing [3], that the superconfor-mal R-symmetry Rc of the Hamiltonian Hnh can be found by

extremizing Z

( ,

σ

)

for fixed values of

σ

a. Let

ˆ

a be the

value such that Rtrial

( ˆ

)

=

Rc. One computes

log Z

/∂

a



ˆ a

=

i



Jae−βσJ

/

e−βσJ



, using that at zero temperature the density

matrixisuniformlydistributedoverthegroundstatesof Hnh,and

that Rc

=

0 inthosestatesasarguedabove.Theexpressiononthe

rightisimaginary, implyingthat

ˆ

a aredetermined by

extremiz-ingtheindexwithrespectto

a atfixed

σ

a:

R

e log Z

( ,

σ

)

a



(4)

This is the generalization of the

I

-extremization principle pro-posed in [3]. Assuming the large N factorization



J e−βσJ



=



J



e−βσJ



,wealsohave

I

m log Z

( ,

σ

)

a





ˆ

=

i



Ja

 ≡

i

(q

a

− q

4

) ,

(23)

where



Ja



isthe charge ofthe vacuumdensitymatrix.This

de-terminesthe relationbetweenthe flavorcharges

q

a

− q

4 and

σ

a.

SinceZ

( ,

σ

)

isaholomorphicfunctionofua

=

a

+

i

β

σ

a,wecan

summarizetheresultinthecomplexequation

log Z(u

)

ua





ˆ u

=

i

(q

a

− q

4

) ,

(24)

whichdeterminesboth

ˆ

aand

σ

a asfunctionsof

q

a.

Fromeqn.

(21)

,atthecriticalpoint

Z

( ˆ

,

σ

)

=

e−βσJTr1

=

e− 4a=1βσaqaeSq

.

(25)

The real partof the logarithm of this expression reproduces the resultofthestatisticalargument,namely

Sq

= R

e



log Z(u

ˆ

)

i



4 a=1u

ˆ

a

q

a



.

(26)

An advantage ofthis derivation isthat we can argue,at leastat leading order, that eSq is the number of groundstates, without dangeroussignsthatcouldcausecancelations.

Wecanalsowrite theentropyinaslightlydifferentformand makeaconjectureforthevalueofthefourthcharge.Sinceu only

ˆ

dependson thedifferences

q

a

− q

4 and

aua

2

π

Z

,we can

al-ways shift the integer charges

q

a and write the entropy in the

permutationallysymmetricandholomorphicform

Sq

=

log Z(u

ˆ

)

i



4

a=1u

ˆ

a

q

a

=

I

(

u

ˆ

) ,

(27)

up to

O(

N0

)

termswhich are invisible inthe large N limit. The determinationofthelogarithmissuchthatlog Z isrealfor

σ

a

=

0

and extended by continuity. The requirement that (27) be real positivefixes thefourthcharge. Interestingly,thisis preciselythe constraint

(11)

thatcomesfromsupergravity.

6. ExplicitmatchforABJM

ThelargeN expressionfortheindexofABJMwasfoundin

[3,

21]forthe caseofrealua, andwe can extenditto thecomplex

planeusingholomorphy:

log Z

=

N 3/2 3

2u1u2u3u4



4 a=1

p

a ua

.

(28)

Thisisvalidfor

aua

=

2

π

and0

<

R

eua

<

2

π

.The

I

-extremi-zationprinciple

(24)

isequivalenttotheextremizationof

I

QFT

=



4 a=1



N3/2 3

2u1u2u3u4

p

a ua

i

q

aua



.

(29)

Thentheentropyisgivenby Sq

=

I

QFT

(

u

ˆ

)

,withtheconstrainton

thechargesthat

I

QFT

(

u

ˆ

)

bepositive.

Insupergravity,theBHentropyisdeterminedby

SBH

=

Area 4GN

= −

i

Z

L

2

π η

4GN

I

SUGRA (30)

using(12),and

I

SUGRA shouldbe extremizedwithrespectto X.

We canidentifythe index



= {

0

,

1

,

2

,

3

}

witha

= {

1

,

2

,

3

,

4

}

, as

well as2

π

Xa

/

bXb

=

ua sincethey havethesamedomainand

constraint:

I

SUGRA

=

η

4gGN



4 a=1



u1u2u3u4 pa ua

iqaua



.

(31)

Identifyingtheintegersin

(7)

withthecharges

p

a,

q

a,respectively,

andusing

(13)

weobtainaperfectmatch

I

QFT

=

I

SUGRA.Thefield

theoryextremizationprinciplecorrespondstothesupergravity at-tractormechanism:theyleadtothesameentropyandnon-linear constraintonthecharges.

Acknowledgements

WethankJ.deBoer,A.Gnecchi,N.HalmagyiandS.Murthyfor instructive clarifications. FB is supported by the MIUR-SIR grant RBSI1471GJ.AZissupportedbytheMIUR-FIRBgrantRBFR10QS5J.

References

[1] A.Strominger, C. Vafa,Microscopic origin of the Bekenstein–Hawking en-tropy, Phys. Lett. B 379 (1996) 99–104, http://dx.doi.org/10.1016/0370-2693(96)00345-0.

[2] J.M.Maldacena,The largeNlimit ofsuperconformalfieldtheoriesand su-pergravity,Int.J.Theor.Phys.38(1999)1113–1133,http://dx.doi.org/10.1023/ A:1026654312961.

[3] F.Benini,K.Hristov,A.Zaffaroni,BlackholemicrostatesinAdS4from super-symmetriclocalization,J. HighEnergyPhys.05(2016)054,http://dx.doi.org/ 10.1007/JHEP05(2016)054.

[4] S.L.Cacciatori, D. Klemm,Supersymmetric AdS4 blackholes and attractors, J. HighEnergyPhys.01(2010)085,http://dx.doi.org/10.1007/JHEP01(2010)085. [5] J.D.Bekenstein,Black holesand entropy,Phys. Rev.D7(1973) 2333–2346,

http://dx.doi.org/10.1103/PhysRevD.7.2333.

[6] S.W.Hawking,Particlecreationbyblackholes,Commun.Math.Phys.43(1975) 199–220,http://dx.doi.org/10.1007/BF02345020.

[7] F.Benini,A.Zaffaroni,Atopologicallytwistedindexforthree-dimensional su-persymmetrictheories,J. HighEnergyPhys.07(2015)127,http://dx.doi.org/ 10.1007/JHEP07(2015)127.

[8] O.Aharony,O. Bergman,D.L. Jafferis,J. Maldacena, N=6 superconformal Chern–Simons-mattertheories,M2-branesandtheirgravityduals,J. High En-ergyPhys.10(2008)091,http://dx.doi.org/10.1088/1126-6708/2008/10/091. [9] S.M.Hosseini,A.Zaffaroni,Large N matrixmodelsfor 3d N=2 theories:

twistedindex,freeenergyandblackholes,J. HighEnergyPhys.08(2016)064, http://dx.doi.org/10.1007/JHEP08(2016)064.

[10] S.M.Hosseini, N.Mekareeya, Large N topologicallytwistedindex: necklace quivers,dualities,andSasaki–Einsteinspaces,J. HighEnergyPhys.08(2016) 089,http://dx.doi.org/10.1007/JHEP08(2016)089.

[11] A.Sen,EntropyfunctionandAdS2/CFT1correspondence,J. HighEnergyPhys. 11(2008)075,http://dx.doi.org/10.1088/1126-6708/2008/11/075.

[12] H. Ooguri, A. Strominger, C. Vafa, Black hole attractors and the topologi-calstring,Phys.Rev.D70(2004)106007,http://dx.doi.org/10.1103/PhysRevD. 70.106007.

[13] M.J.Duff,J.T.Liu,Anti-deSitterblackholesingaugedN=8 supergravity,Nucl. Phys.B554(1999)237–253,http://dx.doi.org/10.1016/S0550-3213(99)00299-0. [14] B. de Wit, A. Van Proeyen, Potentials and symmetries of general gauged

N=2 supergravity: Yang–Mills models, Nucl. Phys. B245(1984) 89–117, http://dx.doi.org/10.1016/0550-3213(84)90425-5.

[15] A.Strominger,Specialgeometry,Commun.Math.Phys. 133(1990)163–180, http://dx.doi.org/10.1007/BF02096559.

[16] L.Andrianopoli,etal.,N=2 supergravityandN=2 superYang–Millstheory ongeneralscalarmanifolds:symplecticcovariance,gaugingsandthe momen-tummap,J. Geom.Phys.23(1997)111–189, http://dx.doi.org/10.1016/S0393-0440(97)00002-8.

[17] G. Dall’Agata, A.Gnecchi, Flow equationsand attractors for blackholes in

N=2 U(1)gaugedsupergravity,J. HighEnergyPhys.03(2011)037,http://dx. doi.org/10.1007/JHEP03(2011)037.

[18] N.Halmagyi,BPSblackholehorizonsinN=2 gaugedsupergravity,J. High EnergyPhys.02(2014)051,http://dx.doi.org/10.1007/JHEP02(2014)051. [19] N.Halmagyi,StaticBPSblackholesinAdS4withgeneraldyoniccharges,J. High

EnergyPhys.03(2015)032,http://dx.doi.org/10.1007/JHEP03(2015)032. [20] S.Katmadas,StaticBPSblackholesinU(1)gaugedsupergravity,J. HighEnergy

Phys.09(2014)027,http://dx.doi.org/10.1007/JHEP09(2014)027.

[21]F.Benini, A.Zaffaroni,Supersymmetricpartitionfunctions onRiemann sur-faces,arXiv:1605.06120.

(5)

[22] C. Closset, H. Kim, Comments on twisted indices in 3d supersymmetric gaugetheories,J. HighEnergyPhys.08(2016)059,http://dx.doi.org/10.1007/ JHEP08(2016)059.

[23] S.W.Hawking, S.F.Ross,Dualitybetweenelectric andmagneticblackholes, Phys.Rev.D52(1995)5865–5876,http://dx.doi.org/10.1103/PhysRevD.52.5865.

[24] A.Sen,Arithmeticofquantumentropyfunction,J. HighEnergyPhys.08(2009) 068,http://dx.doi.org/10.1088/1126-6708/2009/08/068.

[25] A.Dabholkar,J.Gomes,S.Murthy,A.Sen,Supersymmetricindexfromblack holeentropy,J. High Energy Phys.04 (2011)034,http://dx.doi.org/10.1007/ JHEP04(2011)034.

Riferimenti

Documenti correlati

The identification of the putative candidate gene in this region was achieved following substantial increase of the initial mapping pop- ulation of 134 individuals (Emeriewen et

Flow rates computed using FLO-2D at four different points (see Figure 2 ) for an input flow step function with 50 m 3 /s increments (maximum input rate 600 m 3 /s) in the

Lo studio della senescenza dei nMCM, trattati con il mezzo condizionato dei nMCF stressati dalla DOX, è stato eseguito per valutare il possibile coinvolgimento dei

Then, the emitted luminescence photons can either activate specific molecules incorporated in the nanoparticle shell, called photosensitizers, which in the presence of

anglicizzazione (o ispanizzazione, gallicizzazione, ecc.) in italiano è troppo marcato e non è consono al genio della lingua, cioè al suo carattere originario. Quando

studied other variables at generator level that could be used instead of the b-quark direction: the generated B hadron direction and MC level jet direction when the jets are

Nella seconda parte è stata puntata la lente sui tre grandi temi emersi durante il dibattito, il tema della guerra giusta, intesa come guerra legittima/legale, il tema della

Il progetto di bilancio di esercizio e la Relazione sulla gestione devono essere comunicati, da parte dell’organo di gestione, al Collegio sindacale (e al soggetto incaricato