• Non ci sono risultati.

Multiplicity dependence of inclusive J/ψ production at midrapidity in pp collisions at s=13 TeV

N/A
N/A
Protected

Academic year: 2021

Condividi "Multiplicity dependence of inclusive J/ψ production at midrapidity in pp collisions at s=13 TeV"

Copied!
14
0
0

Testo completo

(1)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Multiplicity

dependence

of

inclusive

J/

ψ

production

at

midrapidity

in

pp

collisions

at

s

=

13 TeV

.

ALICE

Collaboration



a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory: Received 9 June 2020

Received in revised form 26 August 2020 Accepted 31 August 2020

Available online 3 September 2020 Editor: L. Rolandi

MeasurementsoftheinclusiveJ/ψyieldasafunctionofcharged-particlepseudorapiditydensitydNch/d

η

inppcollisions at√s=13 TeV withALICEattheLHCarereported.The J/ψ mesonyieldismeasured

atmidrapidity(|y|<0.9)inthe dielectronchannel,forevents selectedbasedonthe charged-particle multiplicityatmidrapidity(|

η

|<1)andatforwardrapidity(−3.7<

η

<−1.7 and2.8<

η

<5.1);both

observablesarenormalizedtotheircorrespondingaveragesinminimumbiasevents.Theincreaseofthe

normalizedJ/ψyieldwithnormalizeddNch/d

η

issignificantlystrongerthanlinearanddependentonthe

transversemomentum. Thedataare comparedtotheoreticalpredictions,whichdescribetheobserved

trendswell,albeitnotalwaysquantitatively.

©2020EuropeanOrganizationforNuclearResearch.PublishedbyElsevierB.V.Thisisanopenaccess

articleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

Hadroniccharmoniumproductionatcolliderenergiesisa com-plex and not yet fully understood process, involving hard-scale processes, i.e.the initial heavy-quarkpair production, which can be describedby meansofperturbativequantum chromodynamics (pQCD), aswell assoft-scaleprocesses, i.e.the subsequent bind-ing intoa color-neutralcharmoniumstate. Thelatterstage is ad-dressed via models which assume that it factorizes with respect to the perturbative early stage. The widely used non-relativistic QCD(NRQCD) effectivetheory [1] incorporatescontributionsfrom severalhadronizationmechanisms,likecolor-singletorcolor-octet models(seeRef. [2] forarecentreviewonmodelsandRef. [3] for acomparisonwithdataofRun1attheLHC).TheNRQCD formal-ismcombinedwithaColorGlassCondensate(CGC)descriptionof theincomingprotons [4] isa recentexampleofacomprehensive treatmentofthetransversemomentumpTandrapiditydependent

production, in particular extended down to zero transverse mo-mentum.MeasurementsofinclusiveJ/

ψ

production,asreportedin thispublication,containa non-promptcontributionfrom bottom-hadrondecaysandtheproductionofbottomquarkscanbe calcu-latedinQCDpertubatively.

The event-multiplicity dependent production of charmonium and open charm hadrons in pp and p–Pb collisions are observ-ableshavingthepotentialtogivenewinsightsonprocessesatthe partonlevelandontheinterplaybetweenthehardandsoft mech-anisms in particle production andis widely studied at the LHC. ALICEhasstudied themultiplicity dependenceinpp collisions at

 E-mailaddress:alice-publications@cern.ch.

s

=

7 TeV of inclusive J/

ψ

production at mid- and forward ra-pidity [5],andpromptJ/

ψ

(includingfeeddownfrom

ψ(

2S

)

and

χ

c),non-prompt J/

ψ

andD-meson productionatmidrapidity [6].

Thegeneralobservationisan increaseofopen andhiddencharm productionwithcharged-particle multiplicity measuredat midra-pidity.FortheJ/

ψ

production,multiplicitiesofabout4timesthe meanvalue were reached. Theresults areconsistent withan ap-proximately linearincrease ofthe normalizedyield asa function of the normalized multiplicity (both observables are normalized totheircorresponding averagesinminimumbiasevents).Forthe D-meson production, normalized event multiplicities of about 6 werereached;astrongerthanlinearincreaseofD-meson produc-tionwasobservedatthehighestmultiplicities.Observationsmade by theCMSCollaboration for

ϒ(

nS

)

production atmidrapidity at

s

=

2

.

76 TeV indicate a linear increase with the eventactivity, when measuring it at forwardrapidity, and a stronger than lin-ear increase withtheevent activitymeasured atmidrapidity [7]. AtRHIC, ameasurement ofJ/

ψ

productionasa functionof mul-tiplicitywas recentlyperformedbytheSTARCollaboration [8] for

s

=

0

.

2 TeV,showingsimilartrendsasobservedintheLHCdata. The J/

ψ

production asa function ofcharged-particle multiplicity was studied also in p–Pb collisions, exhibiting significant differ-ences for different ranges of rapidity of the J/

ψ

meson [9,10]. Aclear correlation withtheevent multiplicity (andevent shape) was experimentally established for the inclusive charged-particle production [11] aswellasforidentifiedparticles,including multi-strangehyperons [12].

Severaltheoreticalmodels, described briefly inSection 4, pre-dictacorrelationofthenormalizedJ/

ψ

productionwiththe nor-malized event multiplicity which is stronger than linear. These includeacoherentparticleproductionmodel [13],thepercolation

https://doi.org/10.1016/j.physletb.2020.135758

0370-2693/©2020 European Organization for Nuclear Research. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

(2)

Table 1

Number of selected events and corresponding integrated luminosities for the different triggers used in this anal-ysis.

MB and HM triggers EMCal triggers

MB HM EG1 EG2

Number of events 1.25×109 0

.64×109 82

.4×106 120×106 Integrated luminosity 21.6±1.1 nb−1 5.4±0.1 pb−1 7.2±0.1 pb−1 0.82±0.02 pb−1

model [14],theEPOS3eventgenerator [15],aCGC-complemented NRQCD model [16], the PYTHIA8.2 eventgenerator [17,18], and the3-PomeronCGCmodel [19].Whileforinstancemultiparton in-teractions(as implemented inPYTHIA) playan important role in charm(onium) production,it is importantto notice that the pre-dicted correlationis,inall themodelstofirst order,theresultof a (Nch-dependent) reduction of the charged-particle multiplicity.

Well known is the color string reconnection mechanism imple-mented inPYTHIA,butinitial-stateeffectsasinCGCmodelslead, withverydifferentphysics,similarlytoareductioninparticle mul-tiplicity.

InthisLetter,themeasurementsoftheinclusiveJ/

ψ

yieldasa functionofcharged-particlepseudorapiditydensityinppcollisions at

s

=

13 TeV are presented. The measurements are performed inthedielectronchannelatmidrapiditywiththeALICEdetectorat the LHC. The pT-integrated anddifferential results are presented

forminimum biasevents aswell asforevents triggeredon high multiplicity,whichextendthemultiplicityrangeupto7timesthe average multiplicity, and on the electromagnetic calorimeter sig-nals,whichallowtoaccesspTvaluesupto15-40 GeV/c.Section2

outlines the experimental setup and the data sample; Section 3

describestheanalysis,whileSection4presentstheresults;abrief summaryandoutlookaregiveninSection5.

2. Experimentanddatasample

ThereconstructionofJ/

ψ

inthee+e− decaychannelat midra-pidity is performed using the ALICE central barrel detectors, described in detail in Refs. [20,21]. The setup is located in a solenoidal magnet providing a field of 0.5 T oriented along the beamdirection.

For this analysis, a minimum bias (MB) trigger, a high mul-tiplicity (HM) trigger, and two triggers based on the deposited energyinthecombinedElectromagnetic Calorimeter(EMCal)and the Di-jetCalorimeter (DCal) [22–24] are employed.Both theMB andHMtriggers areprovidedby theV0detector,thatconsistsof two forward scintillator arrays [25] covering the pseudorapidity ranges

3

.

7

<

η

<

1

.

7 and 2

.

8

<

η

<

5

.

1. The MB trigger sig-nal consists of a coincident signal in both arrays, while the HM triggerrequiresasignalamplitudeintheV0arraysabovea thresh-oldwhichcorrespondstothe0.1%highestmultiplicityevents.The EMCal andDCalare located back-to-back in azimuthandform a two-arm electromagnetic calorimeter. While the EMCal detector covers

|

η

|

<

0

.

7 overan azimuthal angle of80◦

<

ϕ

<

187◦, the DCalcovers0

.

22

<

|

η

|

<

0

.

7 for260◦

<

ϕ

<

320◦ and

|

η

|

<

0

.

7 for 320◦

<

ϕ

<

327◦.Asaconsequenceofidenticalconstruction,both have identical granularity andintrinsic energyresolution. In this paper,EMCalandDCalwillbe referredto togetherasEMCal.The EMCaltriggerconsistsofthesumofenergyinaslidingwindowof 4

×

4 towersaboveagiventhreshold(atoweristhesmallest seg-mentation ofthe EMCal).Inthisdataset,the triggerrequiresthe presenceofaclusterwithaminimumenergyof9GeV(EG1)or4 GeV(EG2)incoincidencewiththeMBtriggercondition.

Tracksare reconstructed inthepseudorapidity range

|

η

|

<

0

.

9 using the Inner TrackingSystem (ITS) [26], which consists ofsix layers of silicon detectors around the beam pipe, and the Time Projection Chamber (TPC) [27], a large cylindrical gas detector

providing tracking and particle identification via specific ioniza-tion energyloss dE

/

dx. The first two layers of the ITS (covering

|

η

| <

2

.

0 and

|

η

| <

1

.

4), theSiliconPixelDetector (SPD),areused forthe charged-particle multiplicity measurement at midrapidity bycountingtracklets, reconstructedfrompairsofhitsin thetwo SPDlayerspointingtothecollisionvertex.

The results presented in this Letter are obtained using data recordedbyALICEduringtheLHCRun 2datatakingperiodforpp collisionsat

s

=

13 TeV.The numberofselected eventsandthe correspondingintegratedluminosities [28] arelistedinTable1for thedifferent triggersused in thisanalysis. Forthe analyzeddata set, the maximum interaction rate was 260 kHz, and the maxi-mumpileupprobabilitywasabout5

×

10−3.

3. Analysis

InthisworktheinclusiveproductionofJ/

ψ

mesonsisstudied asafunctionofthepseudorapiditydensityofchargedparticlesat midrapidity, dNch/dη.The J/

ψ

yield ina givenmultiplicity inter-val andin a given rapidity ( y) range dNJ/ψ

/

d y is normalized to

theJ/

ψ

yieldinthe INEL

>

0eventclass,



dNJ/ψ

/

d y



.The INEL

>

0

eventclasscontains all eventswithatleast1chargedparticlein

|

η

|

<

1.In thisratio,mostofthe systematicuncertainties related totrackingandparticleidentificationcancel.

3.1. Eventselection

Alleventsselectedinthisanalysisarerequiredtohavea recon-structed collision vertex within the longitudinal interval

|

zvtx

|

<

10 cm inorderto ensureuniform detectorperformance andone SPDtracklet in

|

η

|

<

1. Beam-gas events are rejectedusing tim-ing cuts with the V0 detector. Pileup events are rejected using a vertex finding algorithm based on SPD tracklets [21], allowing the removal of events with 2 vertices. Because of the relatively smallin-bunchpileup probability andthefurther eventselection performedintheanalysis,thefractionofremainingpileupis neg-ligibleintheminimumbiaseventssampleandatmost2%inthe highmultiplicitytriggeredsample.

Events are binned in multiplicity classes based on either the SPD or the V0 detector signals, as shown in Fig. 1. Events cor-respondingto the onsetofthe V0 HMtrigger are excluded;that onsetisrathersharp.Thesmearingseeninthedistributioninthe rightpanel of Fig.1 isdue tothe different thresholdsused dur-ingoperation. Toillustratethis, theV0-amplitude distributionfor asingledatatakingperiodisincludedinFig.1(rightpanel,open squares).

For the measurement of the charged-particle pseudorapidity density dNch/dη at midrapidity,

|

η

|

<

1, the SPD tracklets are used [29]. Giventhe close proximity of the SPD detector to the interactionpoint(thetwolayersareatradialdistancesof3.9and 7.6cm), its geometrical acceptance changes by up to 50% in the zvtx interval selected for analysis. In addition, the meannumber

ofSPD trackletsalso varied during the3-year Run2 datataking period dueto changes in the number of active SPD detector el-ements. In order to compensate forthese detectoreffects, a zvtx

andtime-dependentcorrectionfactorisappliedsuchthatthe mea-suredaverage multiplicity is equalized to a referencevalue. This

(3)

Fig. 1. Distribution

of the corrected SPD tracklets

Ncorr

trk (left) and V0 amplitude (right) for the MB events as well as the HM- and EMCal-triggered events used in the analysis. The vertical lines indicate the used multiplicity intervals (see Table2; the first bin spans from 0 to the position of the first line). For the HM-triggered events, the V0 amplitude distribution for a single data taking period is included for illustration (open squares).

reference was chosen to be the largest mean SPD tracklet mul-tiplicityobserved overtime andzvtx.Thisprocedure issimilar to

whatwasdonepreviouslyinRef. [5].Thecorrectionfactorforeach eventisrandomlysmearedusingaPoissondistributiontotakeinto accountevent-by-eventfluctuations.Inthecaseoftheevent selec-tion basedontheforwardmultiplicity measurement withthe V0 detector,thesignalamplitudesareequalizedtocompensatefor de-tectoraging andforthesmallacceptancevariationwiththeevent vertexposition.

The overall inefficiency,the productionof secondary particles duetointeractionswiththedetectormaterial andparticledecays lead to a difference betweenthe number ofreconstructed track-lets and the true primary charged-particle multiplicity Nch (see

details in Ref. [29]).Usingevents simulatedwiththe PYTHIA8.2 event generator [30] (Monash 2013 tune, Ref. [31]), the correla-tion between the tracklet multiplicity (after the zvtx-correction),

Ncorrtrk , and the generated primary charged particles Nch is

de-termined. The propagationof the simulated particles is done by GEANT 3 [32] with a full simulation of the detector response, followed by the same reconstruction procedure as for real data. The correction factor

β(

Ncorr

trk

)

=

Nch/Ncorrtrk to obtain the average

dNch

/

dη value corresponding to a given Ncorrtrk bin is computed

from the Ntrkcorr–Nch correlation, shown in Fig. 2 for events

sim-ulated withPYTHIA8.2 andparticle transport through GEANT 3. As thegeneratedcharged-particlemultiplicity inMonteCarlo dif-fers from data, a corrected Nch distribution is constructed from

themeasured Ncorrtrk distributionusingBayesianunfolding.Fromit, thecorrected

β

factorsareobtained.AMonteCarloclosuretestin PYTHIA 8.2withunfolding basedon EPOS-LHC eventsis used to validatetheprocedure.

Thenormalizedcharged-particlepseudorapiditydensityineach eventclassiscalculatedas:

dNch

/

d

η



dNch

/

d

η

INEL

>0

=

β

× 

Ncorrtrk



η

× 

dNch

/

d

η

INEL

>0

,

(1) where



Ncorr

trk



is the averaged value of Ncorrtrk in each

multiplic-ity class,corrected for thetrigger andvertex finding efficiencies. The former is estimated from Monte Carlo simulations and the latter with a data driven approach. They are below unity only for the low-multiplicity events. The value corresponding to INEL

>

0 events,



dNch/dη



INEL>0, was cross-checked with the

pub-lished ALICEmeasurement [29], andis found tobe in very good agreement. A similar procedure is also used for the event se-lection based on the V0 amplitude, measured as a sum of sig-nals fromchargedparticlesinthe intervals

3

.

7

<

η

<

1

.

7 and

Fig. 2. Correlation

between the number of generated primary charged particles,

Nch, and the number of reconstructed SPD tracklets, Ncorr

trk, in |η|<1, from PYTHIA 8.2 simulated collisions with detector transport through GEANT 3. The black points rep-resent the mean values of Nch.

Table 2

Average normalized charged-particle pseudorapidity density in |η|<1 for each

event class selected in Ncorr

trk measured in SPD (|η|<1; left part) and in V0 am-plitude (−3.7 <η<−1.7 and 2.8 <η<5.1; right part). The values correspond to

the data sample used for the pT-integrated analysis. Only systematic uncertainties are shown since the statistical ones are negligible. The corresponding fraction of the INEL>0 cross section for each event class is also indicated.

SPD selection V0 selection dNch/dη dNch/dηINEL>0 σ/σINEL>0 dNch/dη dNch/dηINEL>0 σ/σINEL>0 0.23±0.01 32% 0.40±0.01 37% 0.60±0.01 25% 0.76±0.01 26% 1.23±0.02 25% 1.41±0.02 25% 2.11±0.03 11% 2.26±0.03 9.0% 2.98±0.05 4.7% 3.03±0.04 2.5% 3.78±0.06 1.8% 3.92±0.06 0.5% 4.58±0.08 0.6% 4.33±0.07 0.08% 5.37±0.09 0.2% 4.96±0.08 0.01% 6.17±0.11 0.05% 7.13±0.12 0.02%

2

.

8

<

η

<

5

.

1.The resultingvaluesofthe normalizedmultiplicity fortheeventclassesconsideredintheanalysisaresummarized in Table 2 alongsidethe respective fractions of the INEL

>

0 cross section.

(4)

Fig. 3. Top:

Invariant mass distribution of electron-positron pairs for MB (left), HM (middle) and EMCal (right) triggers, together with combinatorial background estimation

from the track-rotation method (blue lines in the left and middle panels) and the full background estimation (black squares). In the lower panels, the J/ψ signal obtained

after background subtraction is shown together with the J/ψsignal shape from Monte Carlo simulations. The entries contain a correction for the relative efficiency (see text).

The vertical lines indicate the mass range for the signal counting.

3.2. J/

ψ

signalextraction

The J/

ψ

meson is measured in the dielectron decay channel at midrapidity. Electrons and positrons are reconstructed in the centralbarreldetectorsbyrequiringaminimumof70outof max-imally 159trackpointsintheTPCandavalueofthetrackfit

χ

2

over thenumber oftrackpoints smallerthan 4[27].Only tracks with atleast two associated hitsin the ITS, andone of them in the twoinnermostlayers, areaccepted.Thisrequirementensures bothagoodtrackingresolutionandtherejectionofelectronsand positronsproducedfromphotonsconvertinginthedetector mate-rial.IntheMBandHMtriggeranalysis,afurthervetoonthetracks belonging to identified photon conversion topologies is applied. Theelectronidentificationisachievedbythemeasurementofthe specific energyloss ofthe trackin theTPC, which isrequired to be compatiblewiththat expectedforelectrons within3standard deviations.Trackswithaspecificenergylossbeingconsistentwith that of thepion orproton hypothesis within 3.5standard devia-tions arerejected. Fortheanalysisofthe EMCal-triggeredevents, the energy deposition of the track in the TPC is required to be in arange between

2.25to

+

3standard deviations around the mean expected value for the electrons. In addition, at least one of the J/

ψ

decay electrons is required to be matched to a clus-terintheEMCal,withaclusterenergyabovethetriggerthreshold andan energy-to-momentum ratiointhe range0

.

8

<

E

/

p

<

1

.

3. Electrons and positrons are selected in the pseudorapidity range

|

η

|

<

0

.

9 andinthetransversemomentumrangepT

>

1 GeV/c.

The numberof reconstructedJ/

ψ

isobtained fromthe invari-ant mass distribution of all the opposite-sign (OS) pairs, which contains e+e−pairsfromJ/

ψ

decaysaswellascombinatoricsand other sources. In the MB andHM trigger analysis, the combina-torialbackgroundisestimatedusingatrackrotationprocedurein which one of thetracks is rotatedby a randomazimuthal angle multiple times to obtain a high statistics invariant mass distri-bution. Thisdistributionis then normalizedsuch thatits integral over arangeoftheinvariant masswell abovetheJ/

ψ

masspeak matchestheoneofrealOSpairs,andissubtractedfromthelatter distribution.Theremainingresidualbackground,whichcanbe at-tributedtophysicalsources,e.g.correlatedsemileptonicdecaysof heavy-quark pairs, is estimated using a second-order polynomial

function. For the analysis of the EMCal-triggered events, a fit to theOSinvariantmassdistributionisperformedusingaMCshape forthesignal addedto apolynomial todescribe thebackground. Asecond- or third-order polynomial function is used, depending onthe pT range.ThenumberofJ/

ψ

isextractedbysummingthe

dielectronyield inthebackground-subtracted invariant mass dis-tribution in the mass interval 2

.

92

<

mee

<

3

.

16 GeV/c2, which

contains approximately 2/3 of the total reconstructed yield. The yieldfallingoutsideofthecountingwindowatlowinvariantmass isduetotheelectronbremsstrahlunginthedetectormaterialand totheradiativeJ/

ψ

decay,andiscorrectedforusingMonteCarlo simulations. Also, a correction forthe yield loss due to the lim-ited triggerandvertexfinding efficiencies atlow multiplicitiesis applied.

Duetothetriggerenhancement,theyields obtainedusingthe EMCal-triggeredeventswerecorrectedbythetriggerscalingfactor, whichisobservedtobeidenticalforalleventclasses.This correc-tionis necessaryto converttheyield per EMCal-triggered events intoayieldperMB-triggeredeventandisaccomplishedbya data-drivenmethodusingtheratiooftheclusterenergydistributionin triggereddata dividedby thecluster energydistribution in mini-mumbiasdata.Theratioflattensabove thetriggerthresholdand thescalingfactoristhenobtainedby fittingaconstanttotheflat interval.

InthetoppanelsofFig.3areshowntheOSinvariantmass dis-tributionforMBevents(left),ahighmultiplicityintervalfromthe HM- (middle) and EMCal-triggered events (right), together with the estimated background distribution. The combinatorial back-ground distribution from the track rotation method is shown in the left and middle panels with the blue lines, while the total backgroundis shownasblack squaresin all thepanels. The sig-nalobtainedafterbackgroundsubtractionisdescribedwellbythe signalshapeobtainedfromMonteCarlosimulations(discussed be-low); these MC templates havebeen scaled and overlaid on the datapointsinthebottompanelsofFig.3.

The J/

ψ

measurement is performed integrated in transverse momentum and in the pT intervals 0

<

pT

<

4 GeV/c and 4

<

pT

<

8 GeV/c, using the MB and HM triggers. At higher pT, the

J/

ψ

mesons are reconstructed using the EMCal triggered events in the transverse momentum intervals 8

<

pT

<

15 GeV/c and

(5)

15

<

pT

<

40 GeV/c.It was checkedthat theacceptance and

ef-ficiency for J/

ψ

reconstruction are not dependent on the event multiplicity.Thiswasperformedusingppcollisionssimulatedwith the PYTHIA 8.2event generator withan injected J/

ψ

signal. The dielectrondecayissimulatedwiththeEvtGenpackage [33] using PHOTOS [34] todescribethefinal-stateradiation.TheJ/

ψ

mesons are assumed tobe unpolarized consistentwith measurements in ppcollisionsattheLHC [35].

Toaccountforthemultiplicitydependenceofthe pT spectrum

oftheJ/

ψ

mesons,acorrection fortherelativeefficiency,namely the efficiency for a given pT value relative to the pT-integrated

value, is applied toeach dielectronpair. Thisis containedin the invariantmassdistributionsshowninFig.3.

3.3. Systematicuncertainties

Normalizedmultiplicity: Thesystematic uncertaintyon the nor-malizedmultiplicitycontainscontributionsfromthetrigger,vertex finding, andSPDefficiencies.The firsttwo contributionsare esti-mated using alternative approaches:the trigger efficiencyis cal-culated inadata-drivenway,andforthevertexfindingefficiency Monte Carlo simulations are used. The differences to the values obtainedwiththedefaultmethodsaretakenasthesystematic un-certainties. The contribution fromthe vertexfinding efficiency is below1% (relativeuncertainty) inall eventclasses,theone from thetriggerefficiencyreachesamaximumvalueof1.3%forthe low-estmultiplicityclass.

In order toestimate uncertainties dueto the SPDtracklet re-constructionefficiency,thenumberofcorrectedtrackletsisscaled upanddownby3%,whichisthemaximumobserveddiscrepancy ofthe averagenumber ofSPDtrackletsbetweendata andMonte Carlosimulations.Thisuncertaintyamountsto3.6%inthelowest multiplicity class, and to less than 1.5% in all other classes.The uncertainty fromthe unfolding of the charged-particle multiplic-ity distribution is estimatedby varying the numberof iterations usedintheBayesianunfolding,aswellasbyusingan alternative unfolding method [36]. Theuncertainty isfound tobe negligible. All theaforementioned uncertainty sources are addedin quadra-ture, leadingtoatotal uncertaintyonthenormalizedmultiplicity of3.7%forthelowestmultiplicityclass,andtolessthan2%forall otherclasses.

NormalizedJ/

ψ

yield: Thesystematicuncertaintiesofthe normal-izedJ/

ψ

yieldareduetothesignalextraction,bin-flowcausedby thePoissoniansmearingappliedforthe zvtx-dependentcorrection

of the SPD acceptance and vertex finding, trigger and SPD effi-ciencies. For the analysis of the EMCal-triggered events, there is an additionalcomponentduetothe matchingoftracksto EMCal clustersandtheelectron identificationvia the E

/

p measurement, which hasa non-negligible multiplicity dependence.The E

/

p in-terval andthevalue of E used toselectonlyelectrons above the EMCaltriggerthresholdarevariedtodeterminethesystematic un-certainty oftheelectronidentificationwiththeEMCal,leading to valuesfrom1%to12%,dependingonthemultiplicitybin.

The uncertainty ofthe J/

ψ

signal extraction isdetermined by varyingthefunctionsusedtofitthebackground(first- or second-degreepolynomialsorexponential)andthefittingranges,withthe RMSofthe distributionofnormalizedyieldsobtainedfromthese variationsbeingtakenasasystematicuncertainty(thenormalized yield corresponds to thedefault selection). The bin-floweffect is estimatedfromthe RMSofthe resultsobtainedby repeating the analysis severaltimes withdifferent seeds forthe random num-bergenerator.Theuncertaintiesfromthesignalextractionandthe bin-floweffectarethedominantones.Theyareofcomparablesize, withvaluesbetween1%and8%dependingonthemultiplicityand pT interval. The uncertainties of the vertex finding, trigger and

Fig. 4. Normalized

inclusive

pT-integrated J/ψ yield at midrapidity as a function of normalized charged-particle pseudorapidity density at midrapidity (|η|<1) with

the event selection based on SPD tracklets at midrapidity and on V0 amplitude at forward rapidity in pp collisions at √s=13 TeV. Top: normalized J/ψyield

(diag-onal drawn for reference). Bottom: double ratio of the normalized J/ψ yield and

multiplicity. The error bars show statistical uncertainties and the boxes systematic uncertainties.

SPD tracklet efficiencies affect the estimated number of INEL

>

0 collisions,andhence theevent-averagedminimumbias J/

ψ

yield



dNJ/ψ

/

d y



,aswellastheJ/

ψ

yieldinthelowmultiplicityclasses.

TheuncertaintiesofthevertexfindingandSPDefficienciesare be-low 1% in mostclasses,while the uncertaintydue tothe trigger efficiencyreachesupto4%,dependingonthemultiplicityclass.

All the mentioned sources are added in quadrature to obtain the totalsystematic uncertainty, which,for the pT-integrated

re-sults, varies between 3% and 7% with the multiplicity class. For theselected pT intervals,the uncertaintiesare larger, varying

be-tween 3% and10% withmultiplicity and pT interval, mainly due

tothesignalextraction,whichisaffectedbystatisticalfluctuations ofthe background.The results athigh pT, employing the EMCal,

haveuncertainties upto13%,whicharelargerbecauseofthe ad-ditionalselection requirementsonthe track-clustermatching and theEMCalelectronidentificationselections.

4. Resultsanddiscussion

The top panel of Fig. 4 shows the normalized J/

ψ

yield as a functionofthenormalizedcharged-particlepseudorapiditydensity atmidrapidity,dNch/dη

/



dNch/dη



.Thedashedlinealsoshownin thefigureisalinearfunctionwiththeslopeofunity.

These results include both the MB and HM triggered events, whichallowfora coverageofupto7timestheaverage charged-particlemultiplicity,wheneventsareselectedbasedon the mea-suredmidrapidity multiplicity.Thisisasignificantextension with respecttoourprevious resultsinpp collisionsat

s

=

7 TeV [5], where only the range up to 4 was covered and with larger un-certainties. Using the event selection based on the V0 forward multiplicity (green squares), whichshould largely remove a pos-sibleauto-correlationbias,themeasurementextendsonlyupto5 timesthe



dNch/dη



.Theresultsforthetwoeventselection meth-ods are in very good agreement. In both cases, the normalized

(6)

Fig. 5. Normalized

inclusive J/

ψyield at midrapidity as a function of normalized charged-particle multiplicity in pp collisions at √s=13 TeV, for different ranges of pTof the J/ψ meson. Left: event selection based on multiplicity at midrapidity. Right: event selection based on multiplicity at forward rapidity. The error bars show statistical

uncertainties and the boxes systematic uncertainties.

J/

ψ

yield grows significantly fasterthan linearwith the normal-izedmultiplicity.

IncludedinFig.4isalsothedoubleratioofthenormalizedJ/

ψ

yield tothe normalizedmultiplicity (bottompanel).Tworegimes could be identified, with a stronger increase of the double ra-tio for events with small multiplicity and a weaker increase for high-multiplicityevents.Itisnotedthat the“energycost”forthe production of a J/

ψ

meson, characterized by a transverse mass mT

=



m2J

+

p2T

/

c2



5 GeV/c2,issimilartotheoneforparticle

productionperunitrapidityoftheunderlyingMBevent,estimated as



dNch/dη

 ·

pT



.Alinear(diagonal)correlationwith

multiplic-ity is then expected to first order and observed in PYTHIA 8.2 simulations[18].AsseeninFig.4,thedataexhibitricherfeatures thanthisbaselineexpectation.

ThedatainintervalsofpToftheJ/

ψ

mesonareshowninFig.5.

ThedataexhibitasignificantincreaseofthenormalizedJ/

ψ

yield withthenormalizedmultiplicitybetweentheJ/

ψ

pTintervals0–4

and4–8GeV/c.Thiseffectcouldbeattributedtovarious contribu-tions [18],likeassociatedJ/

ψ

productionwithotherhadronsinjet fragmentationorfrombeauty-quarkfragmentation,asthefraction ofJ/

ψ

fromb-hadrondecaysincreaseswithpT [37].

Measurements of the correlation with the event multiplicity for inclusive charged-particle production have identified similar trends [11] asfortheJ/

ψ

pTdependence.Thestrengthofthis

cor-relationissimilarforJ/

ψ

andforinclusivechargedparticles (dom-inatedby pions)for pT valuesgivingacomparable mT value. The

production ofstrange hyperonsatmidrapidity was also observed to exhibit a correlation with event multiplicity in proportion to theirmass [38];astrongcorrelationwas alsomeasuredforthe

ϒ

mesons [7].

The theoretical models currently available attribute the ob-served behavior todifferent underlying processes.In the PYTHIA 8.2eventgenerator [17],multipartoninteractions(MPI)arean im-portantfactorincharm-quarkproduction.Indeed,fromMPIsalone astrongerthanlinearscalingisexpectedforopen-charm produc-tion, as was demonstrated in Ref. [6] with PYTHIA8.157. Taking into account all sources of heavy-quark production, however, a

closeto linear increase is predicted [18]. PYTHIA8.2 reproduces well theobservationin datawitha very similar correlation with multiplicityforthetwodifferentrapidityintervalsusedfor multi-plicitymeasurement,asseen intheleft panel ofFig. 6,although theoverall slopeof thetrendis underestimated.Toillustrate the effectofnon-promptJ/

ψ

intheinclusiveproduction,inFig.6the caseofpromptJ/

ψ

mesonproductionaspredictedbyPYTHIA8.2 isshowninaddition. Asignificant reduction ofthecorrelation is observed,whichappearstobestrongerfortheSPDeventselection case.

IntheEPOS3eventgenerator [15,39],initialconditionsare gen-eratedaccordingtotheparton-basedGribov-Reggeformalism [40]. Sources of particle productionin this framework are parton lad-ders, each composed of a pQCD hard process with initial- and final-state radiation. This model already predicted the stronger than linear increase with multiplicity observed for open-charm mesons [6], originating from a collective (hydrodynamical) evo-lution of the system. The predictions from EPOS3, here without thehydrodynamic component, are similar in magnitudeto those fromPYTHIA8.In thepercolationmodel [14],spatially extended colorstringsarethesources ofparticleproductioninhigh-energy hadronic collisions. In a high-density environment they overlap; such a decrease in the effective number of strings leads to a reduction in particle production. Since the transverse size of a string is determined by its transverse mass, lighter particles are affected in a stronger way than heavier ones. This results in a linearincrease ofheavy-particle productionat low multiplicities, gradually changing to a quadratic one athigh multiplicities. The coherent particle production (CPP) model [13,41] employs phe-nomenologicalparametrizationsforlight hadronsandJ/

ψ

derived fromp–Pb collisions, andpredicts a strongerthan linear relative increase of J/

ψ

production with the normalized event multiplic-ity. In the Color Glass Condensate (CGC) approach, the NRQCD framework is employed for J/

ψ

production. This effective field theory predicts, both for J/

ψ

and D mesons, a relative increase with the normalized multiplicity that is faster than linear, both for pp and p–Pb collisions [16]. In a CGC saturation model, a

(7)

Fig. 6. Left:

Comparison of data and PYTHIA 8.2 predictions for the two methods of event selection. For PYTHIA 8.2, the case of prompt J/

ψmeson production is included

for illustration. Right: comparison of data (with SPD event selection) with model predictions from the coherent particle production model [13], the percolation model [14], the EPOS3 event generator [15], the CGC model [16], the 3-Pomeron CGC model [19], and PYTHIA 8.2 predictions. Except for the latter, none of the models include the non-prompt component.

Fig. 7. Normalized

inclusive J/

ψ yield at midrapidity as a function of normalized charged-particle pseudorapidity density at midrapidity for different pTintervals; the data are compared to theoretical model predictions from PYTHIA 8.2.

faster thanlinear trendgenerically arisesfromthe Bjorken-x de-pendent saturation scale which would suppress more the soft-particlemultiplicity,produced atlow-x,compared toJ/

ψ

produc-tion which is sensitive to larger values of x. In the 3-Pomeron fusion model[19],the correlationarisesasJ/

ψ

productionvia 3-gluon fusion processes from various Pomeron configurations are considered. The larger configurationspace forthe particularcase of the overlapping rapidity interval for J/

ψ

and charged parti-cles leads to a significantly stronger correlation. Gluon satura-tion is implemented in this model; its effect, interestingly a re-duced correlation, becomes significant for normalized multiplici-tiesabove 7.

All models predict an increase which is faster than linear, as shownintherightpanelofFig.6.Inall modelsthisiseffectively the resultofa (Nch-dependent) reductionof thecharged-particle

multiplicity,realizedthroughratherdifferentphysics mechanisms in the various approaches (color string reconnection or percola-tion,gluonsaturation,coherentparticleproduction,3-gluonfusion

in gluon ladders/Pomerons). The PYTHIA 8.2 and EPOS3 models underpredictthe data,whilethe percolationmodelslightly over-predictsthemathighmultiplicity;goodagreementisseenforthe CGC,the coherentparticle production,and the 3-Pomeron mod-els.

Theseobservationsneedtobeconsidered havinginmindthat inall models exceptPYTHIA8.2only the promptJ/

ψ

production isincluded.AsillustratedinFig.6forPYTHIA8.2,thepromptJ/

ψ

mesonproductionexhibitsaweaker relativeincrease with multi-plicitycompared totheinclusiveproduction.The agreementwith data will improvein case of EPOS3 and will degrade for all the other models, ina consistent comparison. Thatcould be realized eitheroncethedataforthepromptcomponentwillbecome avail-able oras soon asthe non-prompt component will be added to thecurrentmodelpredictions.

Thecontributionfromdecaysofbeautyhadronsincreases sig-nificantly with pT [37] and might also have a different

(8)

beautyproduction [6] isnotpreciseenoughtobeconclusive,buta studyinPYTHIA8.2 [18] showedthat thefeed-downfrombeauty hadronsinfluencestheresult.Thetrendofstrongerincreaseinthe pT intervalsabove4GeV/c seeninthedataisqualitatively

repro-ducedbyPYTHIA8.2,which,however,underestimatesthedatafor pT

<

8 GeV/c,asshowninFig.7.

5. Summaryandconclusions

Wehavepresentedacomprehensivemeasurementofinclusive production ofJ/

ψ

mesons asa function ofthe eventmultiplicity in pp collisions at

s

=

13 TeV performed withthe ALICE appa-ratus. The J/

ψ

production at midrapidity is studied using a data sample including minimum bias, high event activity, and EMCal triggered events. The event selection is performedbased on the charged-particle measurement atmidrapidity andin the forward region. The J/

ψ

yield in a given multiplicity interval normalized to the J/

ψ

yield in INEL

>

0 collisions is presented as a func-tion ofthecharged-particle multiplicitysimilarly normalized.The advantageofsucharepresentationisthatmostofthe experimen-tal systematic uncertainties cancel; also, some of the theoretical modeluncertaintiesaremitigatedforsuchnormalizedyields.

AstrongerthanlinearincreaseoftherelativeproductionofJ/

ψ

asa function ofmultiplicity is observed for pT-integratedyields;

this increase is stronger for high-pT J/

ψ

mesons. The trends are

qualitatively, and for some of the models quantitatively, repro-duced by theoretical models, buta critical appraisal of the sim-ilarity or difference between the physics mechanisms at play in variousmodelsisyettobeperformed.Morestringenttestsofthe modelsare neededtoo.Disentanglingthefeed-downfrombeauty hadrons, not included in mostof the current theoretical predic-tions, will be an important step towards shedding light on the mechanismofhadronizationofcharm(andbeauty)quarks,in par-ticularintheenvironmentofahighdensityofcolorstringscreated inhigh-multiplicity pp collisions.Data which willbe collected in Run3attheLHCwillbeasignificantadditionforsuchstudies.

Declarationofcompetinginterest

Theauthorsdeclarethattheyhavenoknowncompeting finan-cialinterestsorpersonalrelationshipsthatcouldhaveappearedto influencetheworkreportedinthispaper.

Acknowledgements

We aregratefulto E.Ferreiro,B. Kopeliovich,E.Levin, M. Sid-dikov,R.Venugopalan,K.Watanabe,andK.Wernerforsendingus thepredictionsofandclarificationsabouttheirmodels.

The ALICE Collaboration would like to thank all its engineers andtechniciansfortheirinvaluablecontributionstothe construc-tion of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collab-oration gratefully acknowledges the resources and support pro-videdbyallGridcentresandtheWorldwideLHCComputingGrid (WLCG) collaboration. The ALICE Collaboration acknowledges the following fundingagenciesfortheir supportinbuildingand run-ningthe ALICEdetector:A.I. AlikhanyanNationalScience Labora-tory(YerevanPhysicsInstitute)Foundation (ANSL),State Commit-teeofScienceandWorldFederationofScientists(WFS),Armenia; Austrian Academy of Sciences, Austrian Science Fund (FWF): [M 2467-N36] and Nationalstiftung für Forschung, Technologie und Entwicklung,Austria;MinistryofCommunicationsandHigh Tech-nologies, National Nuclear Research Center, Azerbaijan; Conselho Nacional de DesenvolvimentoCientífico e Tecnológico (CNPq), Fi-nanciadora de Estudose Projetos(Finep), Fundação de Amparoà

Pesquisa doEstado de São Paulo (FAPESP)andUniversidade Fed-eraldoRioGrandedoSul(UFRGS),Brazil;MinistryofEducationof China (MOEC),MinistryofScience & Technologyof China(MSTC) andNational NaturalScience Foundation ofChina (NSFC),China; Ministry of Science and Education and Croatian Science Foun-dation, Croatia; Centro de Aplicaciones Tecnológicas yDesarrollo Nuclear (CEADEN),Cubaenergía,Cuba;The Ministryof Education, Youth and Sports of the Czech Republic, Czech Republic; Dan-ishCouncilforIndependentResearchNaturalSciences,theVillum Fonden and Danish National Research Foundation (DNRF), Den-mark;Helsinki InstituteofPhysics (HIP),Finland; Commissariatà l’Énergie Atomique (CEA) and Institut National de Physique Nu-cléaire etdePhysique desParticules (IN2P3)andCentre National de la Recherche Scientifique (CNRS), France; Bundesministerium für Bildung und Forschung (BMBF) and GSI Helmholtzzentrum fürSchwerionenforschungGmbH,Germany;GeneralSecretariatfor ResearchandTechnology,MinistryofEducation,Researchand Re-ligions,Greece;NationalResearchDevelopmentandInnovation Of-fice,Hungary;DepartmentofAtomicEnergy,GovernmentofIndia (DAE),DepartmentofScienceandTechnology,GovernmentofIndia (DST),University Grants Commission, Governmentof India(UGC) andCouncil ofScientificandIndustrial Research(CSIR),India; In-donesian Institute of Science, Indonesia; Centro Fermi - Museo StoricodellaFisicaeCentroStudieRicercheEnricoFermiand Isti-tutoNazionalediFisicaNucleare(INFN),Italy;Institutefor Innova-tiveScienceandTechnology,NagasakiInstitute ofAppliedScience (IIST),JapaneseMinistryofEducation,Culture,Sports,Scienceand Technology(MEXT)andJapanSocietyforthePromotionofScience (JSPS)KAKENHI, Japan;ConsejoNacionalde Ciencia(CONACYT) y Tecnología, through Fondode Cooperación Internacional en Cien-ciayTecnología(FONCICYT)andDirecciónGeneraldeAsuntosdel PersonalAcademico(DGAPA,UNAM),Mexico;Nederlandse Organ-isatievoor WetenschappelijkOnderzoek(NWO),Netherlands; The ResearchCouncilofNorway, Norway;CommissiononScience and TechnologyforSustainableDevelopmentintheSouth(COMSATS), Pakistan;PontificiaUniversidadCatólicadelPerú,Peru;Ministryof Science andHigher Education,National Science Centre and WUT ID-UB,Poland;KoreaInstituteofScienceandTechnology Informa-tion and National Research Foundation of Korea (NRF), Republic of Korea;Ministry of Education and Scientific Research, Institute of Atomic Physics and Ministry of Research and Innovation and InstituteofAtomicPhysics,Romania;JointInstituteforNuclear Re-search (JINR), Ministry of Education and Science of the Russian Federation, National Research Center “Kurchatov Institute”, Rus-sianScienceFoundationandRussianFoundationforBasicResearch, Russia;Ministry ofEducation, Science,Research andSportofthe Slovak Republic, Slovakia; National ResearchFoundation ofSouth Africa,SouthAfrica;SwedishResearchCouncil(VR)andKnut& Al-iceWallenbergFoundation(KAW),Sweden;EuropeanOrganization forNuclearResearch,Switzerland;SuranareeUniversityof Technol-ogy(SUT), NationalScience andTechnology DevelopmentAgency (NSDTA) and Office of the Higher Education Commission under NRUprojectofThailand,Thailand;Turkish AtomicEnergyAgency (TAEK),Turkey;NationalAcademyofSciencesofUkraine,Ukraine; ScienceandTechnology FacilitiesCouncil (STFC),UnitedKingdom; NationalScienceFoundationoftheUnitedStatesofAmerica(NSF) andUnitedStatesDepartmentofEnergy, OfficeofNuclearPhysics (DOENP),UnitedStatesofAmerica.

References

[1]G.T.Bodwin,E.Braaten,G.Lepage,RigorousQCDanalysisofinclusive annihila-tionandproductionofheavyquarkonium,Phys.Rev.D51(1995)1125–1171, arXiv:hep-ph/9407339,Erratum:Phys.Rev.D55(1997)5853.

[2]J.-P.Lansberg,NewobservablesininclusiveproductionofQuarkonia,arXiv: 1903.09185 [hep-ph].

(9)

[3]A.Andronic,etal.,Heavy-flavourandquarkoniumproductionintheLHCera: fromproton-protontoheavy-ioncollisions,Eur.Phys.J.C76 (3)(2016)107, arXiv:1506.03981 [nucl-ex].

[4]Y.-Q. Ma, R. Venugopalan,Comprehensive description ofJ/ψ production in proton-protoncollisionsatcolliderenergies,Phys.Rev.Lett.113 (19)(2014) 192301,arXiv:1408.4075 [hep-ph].

[5]ALICECollaboration,B.Abelev,etal., J/ψproductionasafunctionofcharged particlemultiplicityinppcollisionsat√s=7 TeV,Phys.Lett.B712(2012) 165–175,arXiv:1202.2816 [hep-ex].

[6]ALICECollaboration,J.Adam,etal.,Measurementofcharmandbeauty produc-tionat centralrapidityversuscharged-particlemultiplicity inproton-proton collisionsat√s=7 TeV,J.HighEnergyPhys.09(2015)148,arXiv:1505.00664 [nucl-ex].

[7]CMSCollaboration, S.Chatrchyan,etal., Eventactivitydependence ofY(nS) productionin√sN N=5.02 TeVpPband√s=2.76 TeVppcollisions,J.High EnergyPhys.04(2014)103,arXiv:1312.6300 [nucl-ex].

[8]STARCollaboration,J.Adam,etal., J/ψ productioncrosssectionandits de-pendenceoncharged-particlemultiplicityinp+p collisionsat√s=200 GeV, Phys.Lett.B786(2018)87–93,arXiv:1805.03745 [hep-ex].

[9]ALICE Collaboration, D. Adamová, et al., J/ψ production as a function of charged-particlepseudorapiditydensityinp-Pbcollisionsat√sNN=5.02 TeV, Phys.Lett.B776(2018)91–104,arXiv:1704.00274 [nucl-ex].

[10]ALICECollaboration,S.Acharya,etal.,J/ψproductionasafunctionof charged-particlemultiplicityinp-Pbcollisionsat√sNN=8.16 TeV,arXiv:2004.12673 [nucl-ex].

[11]ALICECollaboration,S.Acharya,etal.,Charged-particleproductionasa func-tionofmultiplicityandtransversespherocityinppcollisionsat√s=5.02 and 13TeV,Eur.Phys.J.C79 (10)(2019)857,arXiv:1905.07208 [nucl-ex]. [12]ALICECollaboration,S.Acharya,etal.,Multiplicitydependenceoflight-flavor

hadronproductioninppcollisionsat√s=7 TeV,Phys.Rev.C99 (2)(2019) 024906,arXiv:1807.11321 [nucl-ex].

[13]B.Z.Kopeliovich, H.J.Pirner,I.K.Potashnikova,K. Reygers,I.Schmidt, J/ψ in high-multiplicityppcollisions:lessonsfrompAcollisions,Phys.Rev.D88 (11) (2013)116002,arXiv:1308.3638 [hep-ph].

[14]E.G.Ferreiro,C.Pajares,Highmultiplicity pp eventsand J/ψ productionat LHC,Phys.Rev.C86(2012)034903,arXiv:1203.5936 [hep-ph].

[15]K.Werner,B.Guiot,I.Karpenko,T.Pierog,Analysingradialflowfeaturesin p-Pbandp-pcollisionsatseveralTeVbystudyingidentifiedparticleproduction inEPOS3,Phys.Rev.C89 (6)(2014)064903,arXiv:1312.1233 [nucl-th]. [16]Y.-Q.Ma,P.Tribedy,R.Venugopalan,K.Watanabe,Eventengineeringstudies

for heavyflavorproduction and hadronizationin highmultiplicity hadron-hadron and hadron-nucleus collisions, Phys. Rev.D 98 (7)(2018) 074025, arXiv:1803.11093 [hep-ph].

[17]T.Sjöstrand,S.Ask,J.R.Christiansen,R.Corke,N.Desai,P.Ilten,S.Mrenna,S. Prestel,C.O.Rasmussen,P.Z.Skands,AnintroductiontoPYTHIA8.2,Comput. Phys.Commun.191(2015)159–177,arXiv:1410.3012 [hep-ph].

[18]S.G.Weber,A.Dubla,A.Andronic,A.Morsch,Elucidatingthemultiplicity de-pendenceofJ production inproton-protoncollisionswith PYTHIA8,Eur. Phys.J.C79 (1)(2019)36,arXiv:1811.07744 [nucl-th].

[19]E.Levin,I.Schmidt,M.Siddikov,Multiplicitydependenceofquarkonia produc-tionintheCGCapproach,Eur.Phys.J.C80 (6)(2020)560,arXiv:1910.13579 [hep-ph].

[20]ALICECollaboration,B.Abelev,etal.,TheALICEexperimentattheCERNLHC, J.Instrum.3(2008)S08002.

[21]ALICECollaboration,B.Abelev,etal.,PerformanceoftheALICEexperimentat theCERNLHC,Int.J.Mod.Phys.A29(2014)1430044,arXiv:1402.4476 [nucl -ex].

[22]ALICEEMCalCollaboration,U.Abeysekara,etal.,ALICEEMCalphysics perfor-mancereport,arXiv:1008.0413 [physics.ins-det].

[23] ALICE Collaboration, P. Cortese, et al., ALICE electromagnetic calorimeter tech-nical design report, Tech. Rep. CERN-LHCC-2008-014. ALICE-TDR-14, Aug 2008, https://cds.cern.ch/record/1121574.

[24] J. Allen, et al., ALICE DCal: an addendum to the EMCal technical de-sign report di-jet and hadron-jet correlation measurements in ALICE, Tech. Rep. CERN-LHCC-2010-011, ALICE-TDR-14-add-1, Jun 2010, https://cds.cern.ch/ record/1272952.

[25]ALICECollaboration,E.Abbas,etal.,PerformanceoftheALICEVZEROsystem, J.Instrum.8(2013)P10016,arXiv:1306.3130 [nucl-ex].

[26]ALICECollaboration,K.Aamodt,etal.,AlignmentoftheALICEinnertracking systemwithcosmic-raytracks,J.Instrum.5(2010)P03003,arXiv:1001.0502 [physics.ins-det].

[27]J.Alme,etal.,TheALICETPC,alarge3-dimensionaltrackingdevicewithfast readoutforultra-highmultiplicityevents,Nucl.Instrum.MethodsPhys.Res., Sect.A,Accel.Spectrom.Detect.Assoc.Equip.622(2010)316–367,arXiv:1001. 1950 [physics.ins-det].

[28] ALICE Collaboration, J. Adam, et al., ALICE luminosity determination for pp col-lisions at √s=13 TeV, ALICE-PUBLIC-2016-002, Jun 2016, https://cds.cern.ch/ record/2160174.

[29]ALICECollaboration,J.Adam,etal.,Pseudorapidityandtransverse-momentum distributionsofchargedparticlesinproton–protoncollisionsat√s=13 TeV, Phys.Lett.B753(2016)319–329,arXiv:1509.08734 [nucl-ex].

[30]T.Sjöstrand,S.Mrenna,P.Z.Skands,AbriefintroductiontoPYTHIA8.1,Comput. Phys.Commun.178(2008)852–867,arXiv:0710.3820 [hep-ph].

[31]P.Skands,S.Carrazza,J.Rojo,TuningPYTHIA8.1:theMonash2013Tune,Eur. Phys.J.C74 (8)(2014)3024,arXiv:1404.5630 [hep-ph].

[32] R. Brun et al., GEANT detector description and simulation tool, 1994, CERN-W5013, CERN-W-5013, CERN-W5013, W-5013.

[33]D.Lange,TheEvtGenparticledecaysimulationpackage,Nucl.Instrum. Meth-ods Phys. Res., Sect. A, Accel. Spectrom. Detect. Assoc. Equip. 462(2001) 152–155.

[34]E.Barberio,Z.Was,PHOTOS:auniversalMonteCarloforQEDradiative correc-tions,Version2.0,Comput.Phys.Commun.79(1994)291–308.

[35]ALICECollaboration,S.Acharya,etal.,MeasurementoftheinclusiveJ/ψ polar-izationatforwardrapidityinppcollisionsat√s=8 TeV,Eur.Phys.J.C78 (7) (2018)562,arXiv:1805.04374 [hep-ex].

[36]B. Malaescu, AnIterative,dynamically stabilizedmethod ofdata unfolding, arXiv:0907.3791 [physics.data-an].

[37]ALICECollaboration,B.Abelev,etal.,MeasurementofpromptJ/ψandbeauty hadronproduction crosssectionsatmid-rapidityinpp collisionsat√s=7 TeV,J.HighEnergyPhys.11(2012)065,arXiv:1205.5880 [hep-ex].

[38]ALICE Collaboration, S. Acharya, et al., Multiplicity dependence of (multi-) strange hadronproduction inproton-protoncollisionsat √s=13 TeV,Eur. Phys.J.C80 (2)(2020)167,arXiv:1908.01861 [nucl-ex].

[39]K. Werner,I. Karpenko, T.Pierog,M. Bleicher, K. Mikhailov,Event-by-event simulationofthethree-dimensionalhydrodynamic evolutionfrom fluxtube initialconditionsinultrarelativisticheavyioncollisions,Phys.Rev.C82(2010) 044904,arXiv:1004.0805 [nucl-th].

[40]H.J.Drescher,M.Hladik,S.Ostapchenko, T.Pierog,K.Werner,Partonbased Gribov-Regge theory, Phys. Rep.350 (2001) 93–289, arXiv:hep-ph/0007198 [hep-ph].

[41]B.Z.Kopeliovich, H.J.Pirner,I.K.Potashnikova, K. Reygers,I.Schmidt, Heavy quarkoniuminthesaturated environmentofhigh-multiplicity ppcollisions, Phys.Rev.D101 (5)(2020)054023,arXiv:1910.09682 [hep-ph].

ALICECollaboration

S. Acharya

141

,

D. Adamová

95

,

A. Adler

74

,

J. Adolfsson

81

,

M.M. Aggarwal

100

,

G. Aglieri Rinella

34

,

M. Agnello

30

,

N. Agrawal

10

,

54

,

Z. Ahammed

141

,

S. Ahmad

16

,

S.U. Ahn

76

,

Z. Akbar

51

,

A. Akindinov

92

,

M. Al-Turany

107

,

S.N. Alam

40

,

141

,

D.S.D. Albuquerque

122

,

D. Aleksandrov

88

,

B. Alessandro

59

,

H.M. Alfanda

6

,

R. Alfaro Molina

71

,

B. Ali

16

,

Y. Ali

14

,

A. Alici

10

,

26

,

54

,

N. Alizadehvandchali

125

,

A. Alkin

2

,

34

,

J. Alme

21

,

T. Alt

68

,

L. Altenkamper

21

,

I. Altsybeev

113

,

M.N. Anaam

6

,

C. Andrei

48

,

D. Andreou

34

,

A. Andronic

144

,

M. Angeletti

34

,

V. Anguelov

104

,

C. Anson

15

,

T. Antiˇci ´c

108

,

F. Antinori

57

,

P. Antonioli

54

,

N. Apadula

80

,

L. Aphecetche

115

,

H. Appelshäuser

68

,

S. Arcelli

26

,

R. Arnaldi

59

,

M. Arratia

80

,

I.C. Arsene

20

,

M. Arslandok

104

,

A. Augustinus

34

,

R. Averbeck

107

,

S. Aziz

78

,

M.D. Azmi

16

,

A. Badalà

56

,

Y.W. Baek

41

,

S. Bagnasco

59

,

X. Bai

107

,

R. Bailhache

68

,

R. Bala

101

,

A. Balbino

30

,

A. Baldisseri

137

,

M. Ball

43

,

S. Balouza

105

,

D. Banerjee

3

,

R. Barbera

27

,

L. Barioglio

25

,

G.G. Barnaföldi

145

,

L.S. Barnby

94

,

V. Barret

134

,

P. Bartalini

6

,

C. Bartels

127

,

K. Barth

34

,

E. Bartsch

68

,

F. Baruffaldi

28

,

(10)

C. Beattie

146

,

C. Bedda

63

,

N.K. Behera

61

,

I. Belikov

136

,

A.D.C. Bell Hechavarria

144

,

F. Bellini

34

,

R. Bellwied

125

,

V. Belyaev

93

,

G. Bencedi

145

,

S. Beole

25

,

A. Bercuci

48

,

Y. Berdnikov

98

,

A. Berdnikova

104

,

D. Berenyi

145

,

R.A. Bertens

130

,

D. Berzano

59

,

M.G. Besoiu

67

,

L. Betev

34

,

A. Bhasin

101

,

I.R. Bhat

101

,

M.A. Bhat

3

,

H. Bhatt

49

,

B. Bhattacharjee

42

,

A. Bianchi

25

,

L. Bianchi

25

,

N. Bianchi

52

,

J. Bielˇcík

37

,

J. Bielˇcíková

95

,

A. Bilandzic

105

,

G. Biro

145

,

R. Biswas

3

,

S. Biswas

3

,

J.T. Blair

119

,

D. Blau

88

,

C. Blume

68

,

G. Boca

139

,

F. Bock

96

,

A. Bogdanov

93

,

S. Boi

23

,

J. Bok

61

,

L. Boldizsár

145

,

A. Bolozdynya

93

,

M. Bombara

38

,

G. Bonomi

140

,

H. Borel

137

,

A. Borissov

93

,

H. Bossi

146

,

E. Botta

25

,

L. Bratrud

68

,

P. Braun-Munzinger

107

,

M. Bregant

121

,

M. Broz

37

,

E. Bruna

59

,

G.E. Bruno

33

,

106

,

M.D. Buckland

127

,

D. Budnikov

109

,

H. Buesching

68

,

S. Bufalino

30

,

O. Bugnon

115

,

P. Buhler

114

,

P. Buncic

34

,

Z. Buthelezi

72

,

131

,

J.B. Butt

14

,

S.A. Bysiak

118

,

D. Caffarri

90

,

A. Caliva

107

,

E. Calvo Villar

112

,

J.M.M. Camacho

120

,

R.S. Camacho

45

,

P. Camerini

24

,

F.D.M. Canedo

121

,

A.A. Capon

114

,

F. Carnesecchi

26

,

R. Caron

137

,

J. Castillo Castellanos

137

,

A.J. Castro

130

,

E.A.R. Casula

55

,

F. Catalano

30

,

C. Ceballos Sanchez

75

,

P. Chakraborty

49

,

S. Chandra

141

,

W. Chang

6

,

S. Chapeland

34

,

M. Chartier

127

,

S. Chattopadhyay

141

,

S. Chattopadhyay

110

,

A. Chauvin

23

,

C. Cheshkov

135

,

B. Cheynis

135

,

V. Chibante Barroso

34

,

D.D. Chinellato

122

,

S. Cho

61

,

P. Chochula

34

,

T. Chowdhury

134

,

P. Christakoglou

90

,

C.H. Christensen

89

,

P. Christiansen

81

,

T. Chujo

133

,

C. Cicalo

55

,

L. Cifarelli

10

,

26

,

L.D. Cilladi

25

,

F. Cindolo

54

,

M.R. Ciupek

107

,

G. Clai

54

,

ii

,

J. Cleymans

124

,

F. Colamaria

53

,

D. Colella

53

,

A. Collu

80

,

M. Colocci

26

,

M. Concas

59

,

iii

,

G. Conesa Balbastre

79

,

Z. Conesa del Valle

78

,

G. Contin

24

,

60

,

J.G. Contreras

37

,

T.M. Cormier

96

,

Y. Corrales Morales

25

,

P. Cortese

31

,

M.R. Cosentino

123

,

F. Costa

34

,

S. Costanza

139

,

P. Crochet

134

,

E. Cuautle

69

,

P. Cui

6

,

L. Cunqueiro

96

,

D. Dabrowski

142

,

T. Dahms

105

,

A. Dainese

57

,

F.P.A. Damas

115

,

137

,

M.C. Danisch

104

,

A. Danu

67

,

D. Das

110

,

I. Das

110

,

P. Das

86

,

P. Das

3

,

S. Das

3

,

A. Dash

86

,

S. Dash

49

,

S. De

86

,

A. De Caro

29

,

G. de Cataldo

53

,

J. de Cuveland

39

,

A. De Falco

23

,

D. De Gruttola

10

,

N. De Marco

59

,

S. De Pasquale

29

,

S. Deb

50

,

H.F. Degenhardt

121

,

K.R. Deja

142

,

A. Deloff

85

,

S. Delsanto

25

,

131

,

W. Deng

6

,

P. Dhankher

49

,

D. Di Bari

33

,

A. Di Mauro

34

,

R.A. Diaz

8

,

T. Dietel

124

,

P. Dillenseger

68

,

Y. Ding

6

,

R. Divià

34

,

D.U. Dixit

19

,

Ø. Djuvsland

21

,

U. Dmitrieva

62

,

A. Dobrin

67

,

B. Dönigus

68

,

O. Dordic

20

,

A.K. Dubey

141

,

A. Dubla

90

,

107

,

S. Dudi

100

,

M. Dukhishyam

86

,

P. Dupieux

134

,

R.J. Ehlers

96

,

V.N. Eikeland

21

,

D. Elia

53

,

B. Erazmus

115

,

F. Erhardt

99

,

A. Erokhin

113

,

M.R. Ersdal

21

,

B. Espagnon

78

,

G. Eulisse

34

,

D. Evans

111

,

S. Evdokimov

91

,

L. Fabbietti

105

,

M. Faggin

28

,

J. Faivre

79

,

F. Fan

6

,

A. Fantoni

52

,

M. Fasel

96

,

P. Fecchio

30

,

A. Feliciello

59

,

G. Feofilov

113

,

A. Fernández Téllez

45

,

A. Ferrero

137

,

A. Ferretti

25

,

A. Festanti

34

,

V.J.G. Feuillard

104

,

J. Figiel

118

,

S. Filchagin

109

,

D. Finogeev

62

,

F.M. Fionda

21

,

G. Fiorenza

53

,

F. Flor

125

,

A.N. Flores

119

,

S. Foertsch

72

,

P. Foka

107

,

S. Fokin

88

,

E. Fragiacomo

60

,

U. Frankenfeld

107

,

U. Fuchs

34

,

C. Furget

79

,

A. Furs

62

,

M. Fusco Girard

29

,

J.J. Gaardhøje

89

,

M. Gagliardi

25

,

A.M. Gago

112

,

A. Gal

136

,

C.D. Galvan

120

,

P. Ganoti

84

,

C. Garabatos

107

,

J.R.A. Garcia

45

,

E. Garcia-Solis

11

,

K. Garg

115

,

C. Gargiulo

34

,

A. Garibli

87

,

K. Garner

144

,

P. Gasik

105

,

107

,

E.F. Gauger

119

,

M.B. Gay Ducati

70

,

M. Germain

115

,

J. Ghosh

110

,

P. Ghosh

141

,

S.K. Ghosh

3

,

M. Giacalone

26

,

P. Gianotti

52

,

P. Giubellino

59

,

107

,

P. Giubilato

28

,

A.M.C. Glaenzer

137

,

P. Glässel

104

,

A. Gomez Ramirez

74

,

V. Gonzalez

107

,

143

,

L.H. González-Trueba

71

,

S. Gorbunov

39

,

L. Görlich

118

,

A. Goswami

49

,

S. Gotovac

35

,

V. Grabski

71

,

L.K. Graczykowski

142

,

K.L. Graham

111

,

L. Greiner

80

,

A. Grelli

63

,

C. Grigoras

34

,

V. Grigoriev

93

,

A. Grigoryan

1

,

S. Grigoryan

75

,

O.S. Groettvik

21

,

F. Grosa

30

,

59

,

J.F. Grosse-Oetringhaus

34

,

R. Grosso

107

,

R. Guernane

79

,

M. Guittiere

115

,

K. Gulbrandsen

89

,

T. Gunji

132

,

A. Gupta

101

,

R. Gupta

101

,

I.B. Guzman

45

,

R. Haake

146

,

M.K. Habib

107

,

C. Hadjidakis

78

,

H. Hamagaki

82

,

G. Hamar

145

,

M. Hamid

6

,

R. Hannigan

119

,

M.R. Haque

63

,

86

,

A. Harlenderova

107

,

J.W. Harris

146

,

A. Harton

11

,

J.A. Hasenbichler

34

,

H. Hassan

96

,

Q.U. Hassan

14

,

D. Hatzifotiadou

10

,

54

,

P. Hauer

43

,

L.B. Havener

146

,

S. Hayashi

132

,

S.T. Heckel

105

,

E. Hellbär

68

,

H. Helstrup

36

,

A. Herghelegiu

48

,

T. Herman

37

,

E.G. Hernandez

45

,

G. Herrera Corral

9

,

F. Herrmann

144

,

K.F. Hetland

36

,

H. Hillemanns

34

,

C. Hills

127

,

B. Hippolyte

136

,

B. Hohlweger

105

,

J. Honermann

144

,

D. Horak

37

,

A. Hornung

68

,

S. Hornung

107

,

R. Hosokawa

15

,

133

,

P. Hristov

34

,

C. Huang

78

,

C. Hughes

130

,

P. Huhn

68

,

T.J. Humanic

97

,

H. Hushnud

110

,

L.A. Husova

144

,

N. Hussain

42

,

S.A. Hussain

14

,

D. Hutter

39

,

J.P. Iddon

34

,

127

,

R. Ilkaev

109

,

H. Ilyas

14

,

M. Inaba

133

,

G.M. Innocenti

34

,

M. Ippolitov

88

,

A. Isakov

95

,

M.S. Islam

110

,

M. Ivanov

107

,

V. Ivanov

98

,

V. Izucheev

91

,

B. Jacak

80

,

N. Jacazio

34

,

54

,

P.M. Jacobs

80

,

S. Jadlovska

117

,

J. Jadlovsky

117

,

S. Jaelani

63

,

C. Jahnke

121

,

M.J. Jakubowska

142

,

M.A. Janik

142

,

T. Janson

74

,

M. Jercic

99

,

O. Jevons

111

,

M. Jin

125

,

F. Jonas

96

,

144

,

P.G. Jones

111

,

J. Jung

68

,

M. Jung

68

,

A. Jusko

111

,

P. Kalinak

64

,

A. Kalweit

34

,

V. Kaplin

93

,

S. Kar

6

,

A. Karasu Uysal

77

,

D. Karatovic

99

,

O. Karavichev

62

,

T. Karavicheva

62

,

Figura

Fig. 2. Correlation  between the number of generated primary charged particles,  N ch ,  and the number of reconstructed SPD tracklets,  N corr
Fig. 3. Top:  Invariant mass distribution of electron-positron pairs for MB (left), HM (middle) and EMCal (right) triggers, together with combinatorial background estimation  from the track-rotation method (blue lines in the left and middle panels) and the
Fig. 4. Normalized  inclusive  p T -integrated J/ ψ yield at midrapidity as a function  of normalized charged-particle pseudorapidity density at midrapidity ( | η | &lt; 1) with
Fig. 5. Normalized  inclusive J/ ψ yield at midrapidity as a function of normalized charged-particle multiplicity in pp collisions at  √ s = 13 TeV, for different ranges of  p T of  the J/ ψ meson
+2

Riferimenti

Documenti correlati

the analyzed Apulian population hospitalized for fragility fracture and in treatment for osteoporosis, the most common class of drugs used for hyperten- sion were ACE inhibitors

CONCLUSION: Our findings suggest that prolonged use of smartphones, which causes mental fatigue, can reduce the physical and technical performance of young footballers.. Therefore, it

Thus, observing the results drawn from different studies regarding the MRP1 expression in several solid tumors, we screened the pump’s expression in a variety of cancer cell lines

In this paper, we address the ROI CT reconstruction problem using an iterative algorithm formulated as a convex optimization problem with a regularized functional based on shearlets,

CFRP laminates. Shear strengthening of RC beams with NSM CFRP laminates: Experimental research and analytical formulation. Shear strengthening of RC T-section beams with low

Veblen developed the idea that an economic theory should be about the evolution of social behaviours, whilst Menger elaborate the necessity to distinguish

Gabor patch technology RevitalVision™ (RV) is a non-invasive, patient-specific treatment based on visual stimulation and facilitation of neural... connections responsible

ducendo la sua teoria che rappresenta in termini di struttura le proprietà di modo che nella teoria standard sono associate agli elementi |H| e |ʔ|, si sofferma sul problema,