• Non ci sono risultati.

Uncertainty principle for Wigner Yanase Dyson information in semifinite von Neumann algebras

N/A
N/A
Protected

Academic year: 2021

Condividi "Uncertainty principle for Wigner Yanase Dyson information in semifinite von Neumann algebras"

Copied!
7
0
0

Testo completo

(1)

and Related Topics

Vol. 11, No. 1 (2008) 127–133 c

World Scientific Publishing Company

UNCERTAINTY PRINCIPLE FOR WIGNER YANASE DYSON INFORMATION IN SEMIFINITE VON NEUMANN ALGEBRAS

PAOLO GIBILISCO

Dipartimento SEFEMEQ, Facolt`a di Economia,

Universit`a di Roma “Tor Vergata”, Via Columbia 2, 00133 Rome, Italy gibilisco@volterra.uniroma2.it

TOMMASO ISOLA

Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, Via della Ricerca Scientifica, 00133 Rome, Italy

isola@mat.uniroma2.it Received 19 September 2007

Communicated by D. Petz

In Ref. 9, Kosaki proved an uncertainty principle for matrices, related to Wigner–Yanase– Dyson information, and asked if a similar inequality could be proved in the von Neumann algebra setting. In this paper we prove such an uncertainty principle in the semifinite case.

Keywords: Uncertainty principle; Wigner–Yanase–Dyson information. AMS Subject Classification: primary: 62B10, 94A17, secondary: 46L30, 46L60

1. Introduction

Let Mn:= Mn(C) (resp. Mn,sa:= Mn(C)sa) be the set of all n×n complex matrices

(resp. all n × n self-adjoint matrices). Let D1

n be the set of strictly positive density

matrices namely

D1n= {ρ ∈ Mn: Tr ρ = 1, ρ > 0} .

Definition 1.1. For A, B ∈ Mn,sa and ρ ∈ D1n, define covariance and variance as

Covρ(A, B) := Tr(ρAB) − Tr(ρA) · Tr(ρB) ,

Varρ(A) := Tr(ρA2) − Tr(ρA)2.

Then the well-known Schr¨odinger and Heisenberg uncertainty principles are given in the following:

(2)

Theorem 1.2. (Refs. 8 and 14) For A, B ∈ Mn,sa andρ∈ Dn1 one has

Varρ(A)Varρ(B) − |ReCovρ(A, B)|2≥

1 4|Tr(ρ[A, B])| 2 , that implies Varρ(A)Varρ(B) ≥ 1 4|Tr(ρ[A, B])| 2.

Recently, a different uncertainty principle has been found.9–12,15

Definition 1.3. For A, B ∈ Mn,sa, β ∈ (0, 1), and ρ ∈ Dn1 define β-correlation and

β-information as

Corrρ,β(A, B) := Tr(ρAB) − Tr(ρβAρ1−βB)

Iρ,β(A) := Corrρ,β(A, A) ≡ Tr(ρA2) − Tr(ρβAρ1−βA) .

The latter coincides with the Wigner–Yanase–Dyson information. Theorem 1.4.

Varρ(A)Varρ(B) − |ReCovρ(A, B)|2≥ Iρ,β(A)Iρ,β(B) − |ReCorrρ,β(A, B)|2.

Kosaki9 asked if the previous inequality, which makes perfect sense in a von

Neumann algebra setting, could indeed be proved. In the sequel, we provide such a proof in the semifinite case.

In closing, we mention that different generalizations of Theorem 1.4 have been recently obtained by the authors.2–7

2. Auxiliary Lemmas

In all this Section we let (M, τ ) be a semifinite von Neumann algebra with a n.s.f. trace, and denote by Proj(M) the set of orthogonal projections in M, and by ¯M the topological∗

-algebra of τ -measurable operators. We fix ρ, σ ∈ ¯Msa, with spectral

decompositions ρ =R+∞

−∞ λdeρ(λ), and σ =

R+∞

−∞ λdeσ(λ).

Finally, we denote by A the algebra generated by the sets Ω1× Ω2, for Ω1, Ω2

Borel subsets of R, and observe that σ(A), the σ-algebra generated by A, coincides with the Borel subsets of R2.

Lemma 2.1. Leta, b∈ M ∩ L2(M, τ ). Let µ

ab(Ω1× Ω2) := τ (eρ(Ω1)a∗eσ(Ω2)b),

forΩ1,Ω2Borel subsets of R. Thenµabextends uniquely to a bounded Borel measure

on R2.

Proof. For Ω ⊂ R Borel subset, x ∈ L2(M, τ ), let P (Ω)x := e

ρ(Ω)x, Q(Ω)x :=

xeσ(Ω). Then, P , Q are commuting Borel spectral measures on L2(M, τ ), and

their product P ⊗ Q(Ω1× Ω2) := P (Ω1)Q(Ω2) extends uniquely to a Borel spectral

measure on R2 (Chap. 5 of Ref. 1). Observe that µ

ab(Ω1× Ω2) = τ (P ⊗ Q(Ω1×

(3)

P

nP ⊗ Q(An)(a∗) converges in L2(M, τ ), so that τ (P ⊗ Q(∪An)(a∗) · b) is well

defined. So µab= τ (P ⊗ Q(·)(a∗) · b) is the desired extension.

Observe now that µabis a bounded Borel (complex) measure on A. Indeed, with

A∈ A,

|µab(A)|2= |τ (P ⊗ Q(A)(a∗) · b)|2≤ kP ⊗ Q(A)(a∗)kL2kbk

L2≤ kak L2kbk

L2.

Therefore, by Corollary 4.4.6 of Ref. 13, there is a unique extension of µab to a

bounded (complex) measure on σ(A), the σ-algebra generated by A, i.e. the Borel subsets of R2.

Lemma 2.2. Leta, b∈ M ∩ L2(M, τ ). Then

(i) µab= 14P4k=1(−i)kµa+ikb,a+ikb,

(ii) if σ = ρ, µaa is a real positive measure,

(iii) if a, b are self-adjoint, Reµab= Reµba.

Proof. (i) is standard.

(ii) Let Ω1, Ω2be Borel sets in R, and set ej := eρ(Ωj), j = 1, 2. Then µaa(Ω1×

Ω2) = τ (e1a∗e2a) = τ ((e2ae1)∗e2ae1) ≥ 0, and the thesis follows by uniqueness of

the extension from A to σ(A).

(iii) Let Ω1, Ω2 be Borel sets in R, and set e1 := eρ(Ω1), e2 := eσ(Ω2). Then

Reµab(Ω1× Ω2) = Reτ (e1ae2b) = Reτ (be2ae1) = Reτ (e1be2a) = Reµba(Ω1× Ω2).

Lemma 2.3. Let a, b ∈ M ∩ L2(M, τ ). Let g, h : R → C be bounded Borel

functions. Then

τ(g(ρ)a∗

h(σ)b) = Z Z

g(x)h(y)dµab(x, y) .

Proof. We use notation as in the proof of Lemma 2.1. Let s = Ph

i=1siχAi, t =

Pk

j=1tjχBj be simple Borel functions. Then

τ(s(ρ)a∗ t(σ)b) = h X i=1 k X j=1 sitjτ(χAi(ρ)a ∗ χBj(σ)b) = h X i=1 k X j=1 sitjτ(P ⊗ Q(Ai× Bj)(a∗) · b) = h X i=1 k X j=1 sitj Z Z χAi×Bjdµab= Z Z s(x)t(y)dµab(x, y) .

Now let g, h be bounded Borel functions, and {sm}, {tn} sequences of simple

Borel functions such that sm → g, tn → h and |sm| ≤ |g|, |tn| ≤ |h|. Denote

rn(x, y) := sn(x)tn(y), k(x, y) := g(x)h(y). Then, by (Theorem V.3.2 of Ref. 1),

(4)

τ(sn(ρ)a∗tn(σ)b) → τ (g(ρ)a∗h(σ)b). Moreover,RR rndµab→RR kdµab, because µab

is a bounded measure. The thesis follows.

Lemma 2.4. Leta, b∈ M ∩ L2(M, τ ), ρ ∈ L1(M, τ ) +, β∈ (0, 1). Then τ(ρβa∗ ρ1−βb) = Z Z [0,∞)2 xβy1−βdµab(x, y) .

Proof. Let n ∈ N, and set fn(x) := ( x , 0 ≤ x ≤ n , 0 , otherwise f(x) :=  x , x≥ 0 , 0 , x <0 . Then τ(fn(ρ)βa∗fn(ρ)1−βb) = Z R2 fn(x)βfn(y)1−βdµab(x, y) .

Observe now that fn(ρ)β → f(ρ)β = ρβ in L1/β(M, τ ), so that

fn(ρ)βa∗fn(ρ)1−βb→ ρβa∗ρ1−βb in L1(M, τ ), which implies

τ(fn(ρ)βa∗fn(ρ)1−βb) → τ (ρβa∗ρ1−βb) .

Moreover, in case σ = ρ, µaa is a positive measure, so that, by monotone

conver-gence, Z R2 fn(x)βfn(y)1−βdµaa(x, y) → Z Z [0,∞)2 xβy1−βdµaa(x, y) .

Therefore, the thesis holds for a = b. By polarization (Lemma 2.2(i)) the result is true in general.

Lemma 2.5. Leta, b∈ M ∩ L2(M, τ ). Then,

µ:= µaa⊗ µbb+ µbb⊗ µaa− 2Reµab⊗ Reµab

is a real positive Borel measure on R4.

Proof. Indeed, if Ω1, . . . ,Ω4 ⊂ R are measurable subsets, and Ej := eρ(Ωj) ∈

Proj(M), j = 1, 3, Ej:= eσ(Ωj) ∈ Proj(M), j = 2, 4, then

µ(Ω1× · · · × Ω4) = τ (E1a∗E2a) · τ (E3b∗E4b) + τ (E3a∗E4a) · τ (E1b∗E2b) − 2Reτ (E1a∗E2b) · Reτ (E3a∗E4b) ≥ τ (E1a∗E2a) · τ (E3b∗E4b) + τ (E3a∗E4a) · τ (E1b∗E2b) − 2|τ (E1a∗E2b)| · |τ (E3a∗E4b)| . Moreover, |τ (E1a∗E2b)| = |τ ((E2aE1)∗E2bE1)| ≤ τ ((E2aE1)∗E2aE1)1/2τ((E2bE1)∗E2bE1)1/2 = τ (E1a∗E2a)1/2· τ (E1b∗E2b)1/2.

(5)

Therefore, setting α1 := τ(E1a∗E2a)1/2, β1 := τ(E1b∗E2b)1/2, α2 :=

τ(E3a∗E4a)1/2, β2 := τ (E3b∗E4b)1/2, we have µ(Ω1× · · · × Ω4) ≥ α21β22+ α22β12−

2α1β1α2β2≥ 0, and the thesis follows by standard measure theoretic arguments.

3. The Main Result

Let (M, τ ) be a semifinite von Neumann algebra with a n.s.f. trace. Let ω be a normal state on M, and ρω∈ L1(M, τ )+ be such that ω(x) = τ (ρωx), for x ∈ M.

Then, for any A, B ∈ Msa, β ∈ (0, 1), we set

Definition 3.1.

Covω(A, B) := ω(AB) − ω(A)ω(B) ≡ τ (ρωAB) − τ (ρωA)τ (ρωB) ,

Varω(A) := Covω(A, A) ≡ ω(A2) − ω(A)2≡ τ (ρωA2) − τ (ρωA)2,

Corrω,β(A, B) := τ (ρωAB) − τ (ρβωAρ1−βω B) ,

Iω,β(A) := Corrω,β(A, A) ≡ τ (ρωA2) − τ (ρβωAρ1−βω A) .

Proposition 3.2. LetA0:= A − ω(A)I, B0:= B − ω(B)I. Then

Covω(A, B) = τ (ρωA0B0) ,

Corrω,β(A, B) = τ (ρωA0B0) − τ (ρβωA0ρ1−βω B0) .

Theorem 3.3. For anyA, B ∈ Msa, β∈ (0, 1), we have

Varω(A)Varω(B) − |ReCovω(A, B)|2≥ Iω,β(A)Iω,β(B) − |ReCorrω,β(A, B)|2.

Proof. To start with, let us assume that A, B ∈ M ∩ L2(M, τ ). Set

F := Varω(A)Varω(B) − |ReCovω(A, B)|2− Iω,β(A)Iω,β(B) + |ReCorrω,β(A, B)|2

= τ (ρωA20) · τ (ρβωB0ρ1−βω B0) + τ (ρωB02) · τ (ρβωA0ρ1−βω A0)

− τ (ρβωA0ρ1−βω A0) · τ (ρβωB0ρ1−βω B0) − 2Re τ (ρωA0B0) · Re τ (ρωβA0ρ1−βω B0)

+ (Re τ (ρβ

ωA0ρ1−βω B0))2.

Then, using Lemma 2.4 and symmetries of the integrands, we obtain F1:= τ (ρωA20) · τ (ρβωB0ρ1−βω B0) + τ (ρωB02) · τ (ρβωA0ρ1−βω A0) − τ (ρβωA0ρ1−βω A0) · τ (ρβωB0ρ1−βω B0) = Z [0,∞)4 λ1λβ3λ 1−β 4 dµA0A0⊗ µB0B0(λ1, . . . , λ4) + Z [0,∞)4 λ3λβ1λ 1−β 2 dµA0A0⊗ µB0B0(λ1, . . . , λ4) − Z [0,∞)4 λβ1λ1−β2 λβ3λ1−β4 dµA0A0⊗ µB0B0(λ1, . . . , λ4)

(6)

= 1 2 Z [0,∞)4 ((λ1+ λ2)λβ3λ 1−β 4 + λ β 1λ 1−β 2 (λ3+ λ4) − 2λβ1λ 1−β 2 λ β 3λ 1−β 4 )dµA0A0⊗ µB0B0(λ1, . . . , λ4) , F2:= 2Re τ (ρωA0B0) · Re τ (ρβωA0ρω1−βB0) − (Re τ (ρβωA0ρ1−βω B0))2 = 2 Z [0,∞)4 λ1λβ3λ 1−β 4 dRe µA0B0⊗ Re µA0B0(λ1, . . . , λ4) − Z [0,∞)4 λβ1λ1−β2 λβ3λ1−β4 dRe µA0B0⊗ Re µA0B0(λ1, . . . , λ4) = 1 2 Z [0,∞)4 ((λ1+ λ2)λβ3λ 1−β 4 + λ β 1λ 1−β 2 (λ3+ λ4) − 2λβ1λ 1−β 2 λ β 3λ 1−β 4 )d Re µA0B0⊗ Re µA0B0(λ1, . . . , λ4) .

So that, using the notation of Lemma 2.5, F = F1− F2= 1 4 Z [0,∞)4 ((λ1+ λ2)λβ3λ 1−β 4 + λ β 1λ 1−β 2 (λ3+ λ4) − 2λβ1λ 1−β 2 λ β 3λ 1−β 4 )dµ(λ1, . . . , λ4) .

Since µ is a real positive measure on [0, ∞)4, because of Lemma 2.5, and

(λ1+ λ2)λβ3λ 1−β 4 + λ β 1λ 1−β 2 (λ3+ λ4) − 2λβ1λ 1−β 2 λ β 3λ 1−β 4 = (λ1+ λ2− λβ1λ 1−β 2 )λ β 3λ 1−β 4 + λ β 1λ 1−β 2 (λ3+ λ4− λβ3λ 1−β 4 ) ≥ 0 ,

we obtain F ≥ 0, which is what we wanted to prove.

Finally, to extend the validity of the inequality from Msa∩L2(M, τ ) to Msa, let

us observe that Msa∩ L2(M, τ ) is σ-weakly dense in Msa, and a ∈ M 7→ τ (ρωab),

b ∈ M 7→ τ (ρωab), a ∈ M 7→ τ (ρβaρ1−βb), and b ∈ M 7→ τ (ρβaρ1−βb) are

σ-weakly continuous.

Remark 3.4. Observe that, reasoning as in Theorem 5 of Ref. 9, one can prove that the function

g(β) := Varω(A)Varω(B)−|ReCovω(A, B)|2−Iω,β(A)Iω,β(B)+|ReCorrω,β(A, B)|2

is monotone increasing on the interval [12,1). Therefore, the best bound in Theo-rem 3.3 is given by β = 12, i.e. by the Wigner–Yanase information.

References

1. M. S. Birman and M. Z. Solomjak, Spectral Theory of Self-Adjoint Operators in Hilbert Space(D. Reidel, 1987).

(7)

2. P. Gibilisco and T. Isola, Uncertainty principle and quantum Fisher information, in Proc. of the 2nd Int. Symp. on Information Geometry and its Applications(University of Tokyo Press, 2005), pp. 154–161.

3. P. Gibilisco and T. Isola, Uncertainty principle and quantum Fisher information, Ann. Inst. Stat. Math. 59(2007) 147–159.

4. P. Gibilisco, D. Imparato and T. Isola, Uncertainty principle and quantum Fisher information, II, J. Math. Phys. 48 (2007) 072109.

5. P. Gibilisco, D. Imparato and T. Isola, Inequalities for quantum Fisher information, to appear in Proc. Amer. Math. Soc., math-ph/0702058, 2007.

6. P. Gibilisco, D. Imparato and T. Isola, A volume inequality for quantum Fisher in-formation and the uncertainty principle, J. Statist. Phys. DOI: 10.1007/s10955-007-9454-2.

7. P. Gibilisco, D. Imparato and T. Isola, A Robertson-type uncertainty principle and quantum Fisher information, Lin. Alg. Appl. DOI: 10.1016/j.laa.2007.10.013. 8. W. Heisenberg, ¨Uber den anschaulichen inhalt der quantentheoretischen kinematik

und mechanik, Z. Phys. 43 (1927) 172–198.

9. H. Kosaki, Matrix trace inequality related to uncertainty principle, Internat. J. Math. 16(2005) 629–645.

10. S. Luo and Q. Zhang, On skew information, IEEE Trans. Inform. Th. 50 (2004) 1778–1782.

11. S. Luo and Q. Zhang, Correction to “On skew information”, IEEE Trans. Inform. Th. 51(2005) 4432.

12. S. Luo and Z. Zhang, An informational characterization of Schr¨odinger’s uncertainty relations, J. Statist. Phys. 114 (2004) 1557–1576.

13. M. M. Rao, Measure Theory and Integration (Wiley, 1987).

14. E. Schr¨odinger, About Heisenberg uncertainty relation (original annotation by An-gelow A. and Batoni M. C.), Bulg. J. Phys. 26 (2000) 193–203 [Translation of Proc. Prussian Acad. Sci. Phys. Math. Sect. 19(1930) 296–303.

15. K. Yanagi, S. Furuichi and K. Kuriyama, A generalized skew information and uncer-tainty relation, IEEE Trans. Inform. Th. 51 (2005) 4401–4404.

Riferimenti

Documenti correlati

Viability of Caco-2 cells exposed to hydrogen peroxide in the absence or presence of ascorbic acid and tocopherol in aqueous solution or co-loaded in

News broadcasting include various news events and other information are playing an important role in social and even political mental orientation; this information influence on

In some circumstances, information carried by logical constraints can be so informative that, using them in addition to the observed marginal distributions (X, Y ) and (X, Z), it

Si tratta, questo, di uno snodo estremamente importante, in quanto consente al debitore l’accesso all’estensione automatica degli effetti ai creditori non aderenti.

Ruolo dell’etilendiurea (EDU) nella protezione di piante di frassino (Fraxinus excelsior) dai danni da ozono:. aspetti fisiologici

IL PARCO – GIARDINO DI PIAZZA IV NOVEMBRE IL PERCORSO ALL’USCITA DELLA STAZIONE.. Aspetti costruttivi del centro

Una macchina (reale o virtuale) permette di definire il linguaggio macchina ad essa associato come l’insieme di tutte le istruzioni che la macchina stessa è in grado di eseguire.

Capacità : in continua evoluzione (Gbyte) floppy disk (dischetti). Supporto magnetico di tipo rimovibile Capacità :