• Non ci sono risultati.

Additive manufacturing for composite tooling. UV-assisted 3D printing of thermoset materials reinforced with pristine and recycled glass fibers

N/A
N/A
Protected

Academic year: 2021

Condividi "Additive manufacturing for composite tooling. UV-assisted 3D printing of thermoset materials reinforced with pristine and recycled glass fibers"

Copied!
160
0
0

Testo completo

(1)

ADDITIVE MANUFACTURING FOR

COMPOSITE TOOLING

Author: Luca Luzzatto ID: 883338 Academic Year: 2017-2018 Supervisor: Prof. Marinella Levi

Co-supervisor: Andrea Mantelli

POLITECNICO DI MILANO

School of Industrial and Information Engineering

Department of Chemistry, Materials and Chemical Engineering “Giulio Natta” Master of Science in Materials Engineering and Nanotechnology

UV-Assisted 3D Printing of Thermoset

Materials Reinforced with Pristine and

(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)

Glossary

# A B C D

(18)

F G I L M N

(19)

O

P

Q R S

(20)

T

U

(21)
(22)
(23)
(24)
(25)
(26)
(27)

1.1.1 Materials for Fiber Reinforced Polymers1

1.1.1.1 The matrix

(28)

Vinyl ester

Epoxy

Phenolic

(29)
(30)

1.1.1.2 The fibers

Glass fiber

(31)

Boron fiber

(32)
(33)

1.1.2.1 Hand lay-up

(34)

1.1.2.3 Autoclave

(35)

1.1.2.5 Bladder moulding

1.1.2.6 Resin Transfer moulding (RTM)

(36)

1.1.2.8 Pultrusion

(37)
(38)

1.2.1 History of AM

(39)
(40)
(41)
(42)

1.2.3.2 Discrete Particles

(43)
(44)

1.2.3.4 Solid Sheet

1.2.3.5 Hybrid systems

(45)

1.2.3.7 The standards: ASTM F42/ISO TC 261 • • • • • • •

(46)

1.3 When does AM make sense?

1.3.1 3D Manufacturing space

(47)

Region 2: Manufacturing of the few

(48)

Region 4: Mass complexity

Region 5: Customized for the individual

(49)

Region 7: Artisan product

(50)
(51)

1.3.2.1 Direct composite materials manufacturing

(52)
(53)

1.4 AM for composite tooling today

(54)
(55)
(56)

1.4.2 Oak Ridge National Laboratory

(57)
(58)
(59)

1.5 Photopolymers3

(60)

1.5.1.1 Free-radical photopolymerization

(61)
(62)
(63)
(64)
(65)

2.1 Thermoplastic materials

2.1.1 Carbon fiber filled polyamide

2.1.2 Polyphenylene sulphide

2.2 Resin system

(66)

2.2.2 Ethyl 2,4,6-trimethylbenzoyl phenylphosphinate

(67)

2.2.4 1,4-butanediol dimethacrylate

(68)

2.3 Fillers

2.3.1 Italdry Fil 100

2.3.2 Owens Corning 737BC

2.3.3 Rivierasca

(69)
(70)
(71)
(72)

2.5.2 3Drag – V2

(73)
(74)

2.6 Characterization techniques 2.6.1 Gel content

𝑆𝑎𝑚𝑝𝑙𝑒 𝑚𝑎𝑠𝑠 [𝑔]

(75)

𝑠𝑜𝑙𝑖𝑑 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 [%] = BFSfinal− BF BFSinitial− BF · 100 𝑠𝑜𝑙𝑣𝑒𝑑 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 [%] = 𝐹𝑓 − 𝐹𝑖 𝐵𝐶𝐹𝑖𝑛𝑖𝑡𝑖𝑎𝑙− 𝐵𝐶 · 100 2.6.2 Differential Scanning Calorimetry

2.6.3 Differential Scanning Photocalorimetry

(76)
(77)

2.6.6 DMA/TMA 𝛼𝑚𝑒𝑎𝑛 = 1 𝐿0 𝛥𝐿 𝛥𝑇 𝛼𝑡𝑎𝑛𝑔𝑒𝑛𝑡 = 1 𝐿0 (𝑑𝐿 𝑑𝑇)𝑇 𝛥𝐿 𝐿0 =𝐿1− 𝐿0 𝐿0

(78)
(79)

2.6.7 FT-IR

(80)

2.6.9 OM

Fiber size extrapolation

2.7 Vacuum Assisted Hand Lay-up 2.7.1 Materials

(81)

Epoxy resin Carbon fiber cloth

Gelcoat

(82)
(83)
(84)
(85)
(86)

3.1 Particle size distribution

(87)
(88)

0 0,2 0,4 0,6 0,8 1 0% 4% 8% 12% 16% 20% 0 50 100 150 200 Fiber length [µm] Italdry Fil 100 - Extruded

(89)

Owens Corning 737BC 0 0,2 0,4 0,6 0,8 1 0% 2% 4% 6% 8% 10% 0 50 100 150 200 250 300 350 400 Fiber length [µm]

Owens Corning 737BC - Pristine

(90)

Rivierasca

(91)
(92)

0 0,2 0,4 0,6 0,8 1 0,0% 1,5% 3,0% 4,5% 6,0% 7,5% 0 50 100 150 200 250 300 350 400 450 500 550 600 Fiber length [um]

Siemens Gamesa - Pristine

(93)

3.2 Fiber volume fraction

• •

(94)

3.3 Mechanical behaviour

(95)

𝑃𝑐 = 𝑃𝑚( 1+𝜁𝜂𝑣𝑓 1−𝜂𝑣𝑓) 𝜂 = 𝑃𝑓 𝑃𝑚− 1 𝑃𝑓 𝑃𝑚+ 𝜁 𝜁 = 2 (1 𝑑) + 40𝑣𝑓 10 𝑑

(96)
(97)
(98)
(99)
(100)
(101)
(102)
(103)
(104)
(105)
(106)
(107)
(108)

3.4 Process control 3.4.1 Gel content

(109)

3.4.2 UV-DSC

(110)

Darocur vs. TPO-L

(111)
(112)
(113)
(114)
(115)

3.5.1.1 Thermoplastic samples

(116)
(117)
(118)
(119)
(120)
(121)

3.5.2 TGA

Italdry Fil 100

(122)
(123)

3.5.3 DSC

(124)
(125)
(126)

3.6 Print quality 3.6.1 Formulations

Italdry Fil 100

Owens Corning 737 BC

(127)

Gamesa

(128)
(129)
(130)
(131)
(132)
(133)
(134)
(135)
(136)
(137)

Conclusions and Future

Developments

(138)
(139)

5.1 Conclusions

(140)

• • • • • . 5.2 Future Developments • •

(141)

(142)
(143)
(144)
(145)

6.1 Tensile tests: stress-strain charts

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7

(146)

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

(147)

0 0,1 0,2 0,3 0,4 0,5

(148)

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

(149)

0 0,5 1 1,5 2 2,5 3 3,5

(150)

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8

(151)
(152)
(153)

Bibliography

(154)
(155)
(156)
(157)
(158)
(159)

(160)

Riferimenti

Documenti correlati

 Nell'ambito del percorso (Settori della classe inseriti nelle attività affini e non in ambiti di base o caratterizzanti : FIS/01

As it is already known, some polymers, ceramics and metals have widely been used to create different types of medical devices such as prosthesis or sutures and, as a consequence,

Figures 5.9 shows some of the best results obtained with P20 solutions including the writing parameter used for each structure while figure 5.10 shows a comparison between

3m, 4m of φ32mm high pressure rubber tube, test study single layer height, width and apparent effect using mortar mix ratio in the chapter 2.2(the flow performance range 210±20

The UNISA contribution in CARENA project is to study and optimize supported and unsupported catalysts in order to match to membrane reactors aimed to methane

state quindi analizzate le prestazioni di tali schiume catalitiche nelle reazioni di reforming autotermico e di steam reforming.. I test di attività catalitica

transformation ability, after production and in response to an external stimulus [26,86-90]. Although the main changes occur in size and shape of the object, these make also

 Several years on Teaching activity as Lecturer at University of L’Aquila and formerly at Politecnico di Milano (Como’s campus) for the following courses: stoichiometry,