• Non ci sono risultati.

On the Spectral Asymptotics of Operators on Manifolds with Ends

N/A
N/A
Protected

Academic year: 2021

Condividi "On the Spectral Asymptotics of Operators on Manifolds with Ends"

Copied!
22
0
0

Testo completo

(1)

Volume 2013, Article ID 909782,21pages

http://dx.doi.org/10.1155/2013/909782

Research Article

On the Spectral Asymptotics of Operators on Manifolds with

Ends

Sandro Coriasco and Lidia Maniccia

Dipartimento di Matematica, Universit`a degli Studi di Torino, V. C. Alberto, n. 10, I-10123 Torino, Italy

Correspondence should be addressed to Sandro Coriasco; sandro.coriasco@unito.it Received 28 September 2012; Accepted 16 December 2012

Academic Editor: Changxing Miao

Copyright Β© 2013 S. Coriasco and L. Maniccia. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We deal with the asymptotic behaviour, forπœ† β†’ +∞, of the counting function 𝑁𝑃(πœ†) of certain positive self-adjoint operators

P with double order(π‘š, πœ‡), π‘š, πœ‡ > 0, π‘š ΜΈ= πœ‡ , defined on a manifold with ends M. The structure of this class of noncompact

manifolds allows to make use of calculi of pseudodifferential operators and Fourier integral operators associated with weighted

symbols globally defined onR𝑛. By means of these tools, we improve known results concerning the remainder terms of the Weyl

Formulae for𝑁𝑃(πœ†) and show how their behaviour depends on the ratio π‘š/πœ‡ and the dimension of M.

1. Introduction

The aim of this paper is to study the asymptotic behaviour, for πœ† β†’ +∞, of the counting function

𝑁𝑃(πœ†) = βˆ‘

πœ†π‘—β‰€πœ†

1, (1)

where πœ†1 ≀ πœ†2 ≀ β‹… β‹… β‹… is the sequence of the eigenvalues, repeated according to their multiplicities, of a positive order, self-adjoint, classical, elliptic SG-pseudodifferential operator 𝑃 on a manifold with ends. Explicitly, SG-pseudodifferential operators𝑃 = 𝑝(π‘₯, 𝐷) = Op(𝑝) on R𝑛can be defined via the usual left-quantization

Pu(π‘₯) = 1

(2πœ‹)𝑛 ∫ 𝑒𝑖π‘₯β‹…πœ‰π‘ (π‘₯, πœ‰) ̂𝑒 (πœ‰) π‘‘πœ‰, 𝑒 ∈ S (R𝑛) , (2)

starting from symbols 𝑝(π‘₯, πœ‰) ∈ 𝐢∞(R𝑛 Γ— R𝑛) with the property that, for arbitrary multiindices 𝛼, 𝛽, there exist constants𝐢𝛼𝛽β‰₯ 0 such that the estimates

󡄨󡄨󡄨󡄨

σ΅„¨π·π›Όπœ‰π·π‘₯𝛽𝑝 (π‘₯, πœ‰)󡄨󡄨󡄨󡄨󡄨 ≀ πΆπ›Όπ›½βŸ¨πœ‰βŸ©π‘šβˆ’|𝛼|⟨π‘₯βŸ©πœ‡βˆ’|𝛽| (3)

hold for fixedπ‘š, πœ‡ ∈ R and all (π‘₯, πœ‰) ∈ R𝑛 Γ— R𝑛, where βŸ¨π‘¦βŸ©= √1 + |𝑦|2,𝑦 ∈ R𝑛. Symbols of this type belong to the

class denoted byπ‘†π‘š,πœ‡(R𝑛), and the corresponding operators constitute the classπΏπ‘š,πœ‡(R𝑛) = Op(π‘†π‘š,πœ‡(R𝑛)). In the sequel we will sometimes writeπ‘†π‘š,πœ‡ and πΏπ‘š,πœ‡, respectively, fixing once and for all the dimension of the (noncompact) base manifold to𝑛.

These classes of operators, introduced onR𝑛 by Cordes [1] and Parenti [2], see also Melrose [3] and Shubin [4], form a graded algebra, that is,πΏπ‘Ÿ,πœŒβˆ˜πΏπ‘š,πœ‡βŠ† πΏπ‘Ÿ+π‘š,𝜌+πœ‡. The remainder elements are operators with symbols in π‘†βˆ’βˆž,βˆ’βˆž(R𝑛) =

β‹‚(π‘š,πœ‡)∈R2π‘†π‘š,πœ‡(R𝑛) = S(R2𝑛); that is, those having kernel

in S(R2𝑛), continuously mapping SσΈ€ (R𝑛) to S(R𝑛). An operator𝑃 = Op(𝑝) ∈ πΏπ‘š,πœ‡and its symbol𝑝 ∈ π‘†π‘š,πœ‡are called SG-elliptic if there exists𝑅 β‰₯ 0 such that 𝑝(π‘₯, πœ‰) is invertible for|π‘₯| + |πœ‰| β‰₯ 𝑅 and

𝑝(π‘₯, πœ‰)βˆ’1 = 𝑂 (βŸ¨πœ‰βŸ©βˆ’π‘šβŸ¨π‘₯βŸ©βˆ’πœ‡) . (4) In such case we will usually write𝑃 ∈ πΈπΏπ‘š,πœ‡. Operators in πΏπ‘š,πœ‡ act continuously from S(R𝑛) to itself and extend as continuous operators from SσΈ€ (R𝑛) to itself and from

(2)

𝐻𝑠,𝜎(R𝑛) to π»π‘ βˆ’π‘š,πœŽβˆ’πœ‡(R𝑛), where 𝐻𝑠,𝜎(R𝑛), 𝑠, 𝜎 ∈ R, denotes

the weighted Sobolev space

𝐻𝑠,𝜎(R𝑛) = {𝑒 ∈ SσΈ€ (R𝑛) : ‖𝑒‖𝑠,𝜎 = σ΅„©σ΅„©σ΅„©σ΅„©Op (πœ‹π‘ ,𝜎) 𝑒󡄩󡄩󡄩󡄩𝐿2< ∞} ,

πœ‹π‘ ,𝜎(π‘₯, πœ‰) = βŸ¨πœ‰βŸ©π‘ βŸ¨π‘₯⟩𝜎.

(5) Continuous inclusions𝐻𝑠,𝜎(R𝑛) 󳨅→ π»π‘Ÿ,𝜌(R𝑛) hold when 𝑠 β‰₯ π‘Ÿ and 𝜎 β‰₯ 𝜌, compact when both inequalities are strict, and S (R𝑛) = β‹‚ (𝑠,𝜎)∈R2 𝐻𝑠,𝜎(R𝑛) , SσΈ€ (R𝑛) = ⋃ (𝑠,𝜎)∈R2 𝐻𝑠,𝜎(R𝑛) . (6) An elliptic SG-operator𝑃 ∈ πΏπ‘š,πœ‡admits a parametrix𝐸 ∈

πΏβˆ’π‘š,βˆ’πœ‡such that

𝑃𝐸 = 𝐼 + 𝐾1, 𝐸𝑃 = 𝐼 + 𝐾2, (7) for suitable 𝐾1, 𝐾2 ∈ πΏβˆ’βˆž,βˆ’βˆž = Op(π‘†βˆ’βˆž,βˆ’βˆž), and it turns out to be a Fredholm operator. In 1987, Schrohe [5] introduced a class of noncompact manifolds, the so-called SG-manifolds, on which it is possible to transfer from R𝑛 the whole SG-calculus. In short, these are manifolds which admit a finite atlas whose changes of coordinates behave like symbols of order (0, 1) (see [5] for details and additional technical hypotheses). The manifolds with cylindrical ends are a special case of SG-manifolds, on which also the concept of SG-classical operator makes sense; moreover, the principal symbol of an SG-classical operator 𝑃 on a manifold with cylindrical ends𝑀, in this case a triple 𝜎(𝑃) = (πœŽπœ“(𝑃), πœŽπ‘’(𝑃), πœŽπœ“π‘’(𝑃)) = (π‘πœ“, 𝑝𝑒, π‘πœ“π‘’), has an invariant meaning on𝑀, see Egorov and Schulze [6], Maniccia and Panarese [7], Melrose [3], and Section 2. We indicate the subspaces of classical symbols and operators adding the subscriptclto the notation introduced above.

The literature concerning the study of the eigenvalue asymptotics of elliptic operators is vast and covers a number of different situations and operator classes, see, for example, the monograph by Ivrii [8]. Then, we only mention a few of the many existing papers and books on this deeply investigated subject, which are related to the case we consider here, either by the type of symbols and underlying spaces, or by the techniques which are used. We refer the reader to the corresponding reference lists for more complete infor-mations. On compact manifolds, well-known results were proved by HΒ¨ormander [9] and Guillemin [10], see also the book by Kumano-go [11]. On the other hand, for operators globally defined onR𝑛, see Boggiatto et al. [12], Helffer [13], HΒ¨ormander [14], Mohammed [15], Nicola [16], and Shubin [4]. Many other situations have been considered, see the cited book by Ivrii. On manifolds with ends, Christiansen and Zworski [17] studied the Laplace-Beltrami operator associ-ated with a scattering metric, while Maniccia and Panarese [7] applied the heat kernel method to study operators similar to those considered here.

Here we deal with the case of manifolds with ends for 𝑃 ∈ πΈπΏπ‘š,πœ‡cl (𝑀), positive and self-adjoint, such that

π‘š, πœ‡ > 0, π‘š ΜΈ= πœ‡, focusing on the (invariant) meaning of the constants appearing in the corresponding Weyl formulae and on achieving a better estimate of the remainder term. Note that the situation we consider here is different from that of the Laplace-Beltrami operator investigated in [17], where continuous spectrum is present as well. In fact, in view ofTheorem 14, spec(𝑃) consists only of a sequence of real

isolated eigenvalues{πœ†π‘—} with finite multiplicity.

As recalled above, a first result concerning the asymptotic behaviour of𝑁𝑃(πœ†) for operators including those considered in this paper was proved by Maniccia and Panarese in [7], giving, forπœ† β†’ +∞, 𝑁𝑃(πœ†) = { { { { { { { { { { { { { { { 𝐢1πœ†π‘›/π‘š+ π‘œ (πœ†π‘›/π‘š) forπ‘š < πœ‡, 𝐢1

0πœ†π‘›/π‘šlogπœ† + π‘œ (πœ†π‘›/π‘šlogπœ†) for π‘š = πœ‡,

𝐢2πœ†π‘›/πœ‡+ π‘œ (πœ†π‘›/πœ‡) forπ‘š > πœ‡. (8)

Note that the constants𝐢1, 𝐢2, 𝐢10 above depend only on the principal symbol of𝑃, which implies that they have an invariant meaning on the manifold𝑀, see Sections 2 and

3. On the other hand, in view of the technique used there, the remainder terms appeared in the form π‘œ(πœ†π‘›/ min{π‘š,πœ‡}) and π‘œ(πœ†π‘›/π‘šlogπœ†) for π‘š ΜΈ= πœ‡ and π‘š = πœ‡, respectively. An improvement in this direction for operators onR𝑛had been achieved by Nicola [16], who, in the caseπ‘š = πœ‡, proved that

𝑁𝑃(πœ†) = 𝐢10πœ†π‘›/π‘šlogπœ† + 𝑂 (πœ†π‘›/π‘š) , πœ† 󳨀→ +∞, (9) while, forπ‘š ΜΈ= πœ‡, showed that the remainder term has the form

𝑂(πœ†(𝑛/ min{π‘š,πœ‡})βˆ’πœ€) for a suitable πœ€ > 0. A further improvement

of these results in the caseπ‘š = πœ‡ has recently appeared in Battisti and Coriasco [18], where it has been shown that, for a suitableπœ€ > 0,

𝑁𝑃(πœ†) = 𝐢10πœ†π‘›/π‘šlogπœ† + 𝐢20πœ†π‘›/π‘š+ 𝑂 (πœ†(𝑛/π‘š)βˆ’πœ€) ,

πœ† 󳨀→ +∞. (10) Even the constant 𝐢20 has an invariant meaning on𝑀, and both𝐢10and𝐢20are explicitly computed in terms of trace operators defined onπΏπ‘š,π‘šcl (𝑀).

In this paper the remainder estimates in the caseπ‘š ΜΈ= πœ‡ are further improved. More precisely, we first consider the power 𝑄 = 𝑃1/ max{π‘š,πœ‡}of𝑃 (see Maniccia et al. [19] for the properties

of powers of SG-classical operators). Then, by studying the asymptotic behaviour inπœ† of the trace of the operator Μ‚πœ“πœ†(βˆ’π‘„), πœ“πœ†(𝑑) = πœ“(𝑑)π‘’βˆ’π‘–π‘‘πœ†,πœ“ ∈ 𝐢∞

0 (R), defined via a Spectral Theorem

and approximated in terms of Fourier Integral Operators, we prove the following.

Theorem 1. Let 𝑀 be a manifold with ends of dimension 𝑛 and

(3)

π‘š, πœ‡ > 0, π‘š ΜΈ= πœ‡, with domain π»π‘š,πœ‡(𝑀) 󳨅→ 𝐿2(𝑀). Then, the

following Weyl formulae hold forπœ† β†’ +∞:

𝑁𝑃(πœ†) = { { { { { { { { { { { { { { { { { { { 𝐢1πœ†π‘›/π‘š+ 𝑂 (πœ†π‘›/πœ‡) + 𝑂 (πœ†(𝑛/π‘š)βˆ’(1/πœ‡)) = 𝐢1πœ†π‘›/π‘š+ 𝑂 (πœ†(𝑛/π‘š)βˆ’πœ€1) π‘“π‘œπ‘Ÿ π‘š < πœ‡, 𝐢2πœ†π‘›/πœ‡+ 𝑂 (πœ†π‘›/π‘š) + 𝑂 (πœ†(𝑛/πœ‡)βˆ’(1/π‘š)) = 𝐢2πœ†π‘›/πœ‡+ 𝑂 (πœ†(𝑛/πœ‡)βˆ’πœ€2) π‘“π‘œπ‘Ÿ π‘š > πœ‡, (11)

whereπœ€1 = min{1/πœ‡, 𝑛((1/π‘š) βˆ’ (1/πœ‡))} and πœ€2 = min{1/

π‘š, 𝑛((1/πœ‡) βˆ’ (1/π‘š))}.

The order of the remainder is then determined by the ratio ofπ‘š and πœ‡ and the dimension of 𝑀, since

𝑛 π‘šβˆ’ 1 πœ‡ ≀ 𝑛 πœ‡, for π‘š < πœ‡ ⇐⇒ 1 < πœ‡ π‘šβ‰€ 1 + 1 𝑛, 𝑛 πœ‡βˆ’ 1 π‘š ≀ 𝑛 π‘š, for π‘š > πœ‡ ⇐⇒ 1 < π‘š πœ‡ ≀ 1 + 1 𝑛. (12)

In particular, when max{π‘š, πœ‡}/ min{π‘š, πœ‡} β‰₯ 2, the remainder is always𝑂(πœ†π‘›/ max{π‘š,πœ‡}).

Examples include operators of SchrΒ¨odinger type on𝑀, that is,𝑃 = βˆ’Ξ”π‘”+ 𝑉, Δ𝑔the Laplace-Beltrami operator in 𝑀 associated with a suitable metric 𝑔, 𝑉 a smooth potential that, in the local coordinatesπ‘₯ ∈ π‘ˆπ‘βŠ† R𝑛on the cylindrical end growths as⟨π‘₯βŸ©πœ‡, with an appropriate πœ‡ > 0 related to 𝑔. Such examples will be discussed in detail, together with the sharpness of the results inTheorem 1, in the forthcoming paper [20], see also [21].

The key point in the proof ofTheorem 1is the study of the asymptotic behaviour forπœ† β†’ +∞ of integrals of the form

𝐼 (πœ†) = ∫ 𝑒𝑖(βˆ’π‘‘πœ†+πœ‘(𝑑;π‘₯,πœ‰)βˆ’π‘₯πœ‰)πœ“ (𝑑) π‘Ž (𝑑; π‘₯, πœ‰) 𝑑𝑑Lπœ‰π‘‘π‘₯, (13) whereπ‘Ž and πœ‘ satisfy certain growth conditions in π‘₯ and πœ‰ (seeSection 3for more details). The integrals𝐼(πœ†) represent in fact the local expressions of the trace of Μ‚πœ“πœ†(βˆ’π‘„), obtained through the so-called β€œgeometric optic method,” specialised to the SG situation, see, for example, Coriasco [22, 23], Coriasco and Rodino [24]. To treat the integrals 𝐼(πœ†) we proceed similarly to Grigis and SjΒ¨ostrand [25], Helffer and Robert [26], see also Tamura [27].

The paper is organised as follows.Section 2is devoted to recall the definition of SG-classical operators on a manifold with ends 𝑀. In Section 3 we show that the asymptotic behaviour of𝑁𝑃(πœ†), πœ† β†’ +∞, for a positive self-adjoint operator𝑃 ∈ πΏπ‘š,πœ‡cl (𝑀), π‘š, πœ‡ > 0, is related to the asymp-totic behaviour of oscillatory integrals of the form𝐼(πœ†). In

Section 4we conclude the proof ofTheorem 1, investigating the behaviour of𝐼(πœ†) for πœ† β†’ +∞. Finally, some technical details are collected in the Appendix.

2. SG-Classical Operators on

Manifolds with Ends

From now on, we will be concerned with the subclass of SG-operators given by those elements𝑃 ∈ πΏπ‘š,πœ‡(R𝑛), (π‘š, πœ‡) ∈ R2, which are SG-classical, that is, 𝑃 = Op(𝑝) with 𝑝 ∈

π‘†π‘š,πœ‡cl (R𝑛) βŠ‚ π‘†π‘š,πœ‡(R𝑛). We begin recalling the basic definitions

and results (see, e.g., [6,19] for additional details and proofs).

Definition 2. (i) A symbol 𝑝(π‘₯, πœ‰) belongs to the class

π‘†π‘š,πœ‡cl(πœ‰)(R𝑛) if there exist 𝑝

π‘šβˆ’π‘–,β‹…(π‘₯, πœ‰) ∈ ΜƒHπ‘šβˆ’π‘–πœ‰ (R𝑛), 𝑖 = 0, 1, . . .,

positively homogeneous functions of orderπ‘š βˆ’ 𝑖 with respect to the variableπœ‰, smooth with respect to the variable π‘₯, such that, for a0-excision function πœ”,

𝑝 (π‘₯, πœ‰) βˆ’π‘βˆ’1βˆ‘

𝑖=0πœ” (πœ‰) π‘π‘šβˆ’π‘–,β‹…(π‘₯, πœ‰) ∈ 𝑆

π‘šβˆ’π‘,πœ‡(R𝑛) ,

𝑁 = 1, 2, . . . . (14)

(ii) A symbol𝑝(π‘₯, πœ‰) belongs to the class π‘†π‘š,πœ‡cl(π‘₯)(R𝑛) if there exist 𝑝⋅,πœ‡βˆ’π‘˜(π‘₯, πœ‰) ∈ ΜƒHπœ‡βˆ’π‘˜π‘₯ (R𝑛), π‘˜ = 0, . . ., positively homogeneous functions of orderπœ‡ βˆ’ π‘˜ with respect to the variableπ‘₯, smooth with respect to the variable πœ‰, such that, for a0-excision function πœ”,

𝑝 (π‘₯, πœ‰) βˆ’π‘βˆ’1βˆ‘

π‘˜=0πœ” (π‘₯) 𝑝⋅,πœ‡βˆ’π‘˜

(π‘₯, πœ‰) ∈ π‘†π‘š,πœ‡βˆ’π‘(R𝑛) , 𝑁 = 1, 2, . . . .

(15)

Definition 3. A symbol𝑝(π‘₯, πœ‰) is SG-classical, and we write

𝑝 ∈ π‘†π‘š,πœ‡cl(π‘₯,πœ‰)(R𝑛) = π‘†π‘š,πœ‡cl (R𝑛) = π‘†π‘š,πœ‡cl , if

(i) there existπ‘π‘šβˆ’π‘—,β‹…(π‘₯, πœ‰) ∈ ΜƒHπ‘šβˆ’π‘—πœ‰ (R𝑛) such that for a 0-excision functionπœ”, πœ”(πœ‰)π‘π‘šβˆ’π‘—,β‹…(π‘₯, πœ‰) ∈ 𝑆cl(π‘₯)π‘šβˆ’π‘—,πœ‡(R𝑛) and

𝑝 (π‘₯, πœ‰) βˆ’π‘βˆ’1βˆ‘

𝑗=0πœ” (πœ‰) π‘π‘šβˆ’π‘—,β‹…

(π‘₯, πœ‰) ∈ π‘†π‘šβˆ’π‘,πœ‡(R𝑛) , 𝑁 = 1, 2, . . . ;

(16)

(ii) there exist𝑝⋅,πœ‡βˆ’π‘˜(π‘₯, πœ‰) ∈ ΜƒHπœ‡βˆ’π‘˜π‘₯ (R𝑛) such that for a 0-excision functionπœ”, πœ”(π‘₯)𝑝⋅,πœ‡βˆ’π‘˜(π‘₯, πœ‰) ∈ 𝑆cl(πœ‰)π‘š,πœ‡βˆ’π‘˜(R𝑛) and

𝑝 (π‘₯, πœ‰) βˆ’π‘βˆ’1βˆ‘

π‘˜=0

πœ” (π‘₯) 𝑝⋅,πœ‡βˆ’π‘˜βˆˆ π‘†π‘š,πœ‡βˆ’π‘(R𝑛) , 𝑁 = 1, 2, . . . .

(17) We setπΏπ‘š,πœ‡cl(π‘₯,πœ‰)(R𝑛) = πΏπ‘š,πœ‡cl = Op(π‘†π‘š,πœ‡cl ).

Remark 4. The definition could be extended in a natural way

from operators acting between scalars to operators acting between (distributional sections of) vector bundles. One should then use matrix-valued symbols whose entries satisfy the estimates (3).

Note that the definition of SG-classical symbol implies a condition of compatibility for the terms of the expansions

(4)

with respect toπ‘₯ and πœ‰. In fact, defining πœŽπ‘šβˆ’π‘—πœ“ andπœŽπœ‡βˆ’π‘–π‘’ onπ‘†π‘š,πœ‡cl(πœ‰)

andπ‘†π‘š,πœ‡cl(π‘₯), respectively, as

πœŽπœ“π‘šβˆ’π‘—(𝑝) (π‘₯, πœ‰) = π‘π‘šβˆ’π‘—,β‹…(π‘₯, πœ‰) , 𝑗 = 0, 1, . . . ,

πœŽπ‘’πœ‡βˆ’π‘–(𝑝) (π‘₯, πœ‰) = 𝑝⋅,πœ‡βˆ’π‘–(π‘₯, πœ‰) , 𝑖 = 0, 1, . . . .

(18) It is possibile to prove that

π‘π‘šβˆ’π‘—,πœ‡βˆ’π‘–= πœŽπœ“π‘’π‘šβˆ’π‘—,πœ‡βˆ’π‘–(𝑝) = πœŽπœ“π‘šβˆ’π‘—(πœŽπ‘’πœ‡βˆ’π‘–(𝑝))

= πœŽπ‘’πœ‡βˆ’π‘–(πœŽπ‘šβˆ’π‘—πœ“ (𝑝)) , 𝑗 = 0, 1, . . . , 𝑖 = 0, 1, . . . . (19) Moreover, the composition of two SG-classical operators is still classical. For𝑃 = Op(𝑝) ∈ πΏπ‘š,πœ‡cl the triple 𝜎(𝑃) = (πœŽπœ“(𝑃), πœŽπ‘’(𝑃), πœŽπœ“π‘’(𝑃)) = (π‘π‘š,β‹…, 𝑝⋅,πœ‡, π‘π‘š,πœ‡) = (π‘πœ“, 𝑝𝑒, π‘πœ“π‘’) is called the principal symbol of 𝑃. The three components are also called theπœ“-, 𝑒- and πœ“π‘’-principal symbol, respectively. This definition keeps the usual multiplicative behaviour, that is, for any𝑅 ∈ πΏπ‘Ÿ,𝜌cl ,𝑆 ∈ 𝐿𝑠,𝜎cl,(π‘Ÿ, 𝜌), (𝑠, 𝜎) ∈ R2, 𝜎(𝑅𝑆) = 𝜎(𝑆)𝜎(𝑇), with component-wise product in the right-hand side. We also set

Sym𝑝(𝑃) (π‘₯, πœ‰) = Sym𝑝(𝑝) (π‘₯, πœ‰) = 𝑝m(π‘₯, πœ‰) = πœ” (πœ‰) π‘πœ“(π‘₯, πœ‰)

+πœ” (π‘₯) (𝑝𝑒(π‘₯, πœ‰) βˆ’ πœ” (πœ‰) π‘πœ“π‘’(π‘₯, πœ‰)) ,

(20)

for a fixed0-excision function πœ”.Theorem 5allows to express the ellipticity of SG-classical operators in terms of their principal symbol.

Theorem 5. An operator 𝑃 ∈ πΏπ‘š,πœ‡π‘π‘™ is elliptic if and only if

each element of the triple𝜎(𝑃) is nonvanishing on its domain

of definition.

As a consequence, denoting by {πœ†π‘—} the sequence of eigenvalues of𝑃, ordered such that 𝑗 ≀ π‘˜ β‡’ πœ†π‘— ≀ πœ†π‘˜, with each eigenvalue repeated accordingly to its multiplicity, the counting function𝑁𝑃(πœ†) = βˆ‘πœ†π‘—β‰€πœ†1 is well defined for a SG-classical elliptic self-adjoint operator𝑃 see, for example, [16, 18,20,21]. We now introduce the class of noncompact manifolds with which we will deal.

Definition 6. A manifold with a cylindrical end is a triple

(𝑀, 𝑋, [𝑓]), where 𝑀 = M∐𝐢C is a 𝑛-dimensional smooth manifold and

(i)M is a smooth manifold, given by M = (𝑀0\ 𝐷) βˆͺ 𝐢 with a 𝑛-dimensional smooth compact manifold without boundary 𝑀0, 𝐷 a closed disc of 𝑀0, and 𝐢 βŠ‚ 𝐷 a collar neighbourhood of πœ•π· in 𝑀0;

(ii)C is a smooth manifold with boundary πœ•C = 𝑋, with 𝑋 diffeomorphic to πœ•π·;

(iii)𝑓 : [𝛿𝑓, ∞)Γ—Sπ‘›βˆ’1 β†’ C, 𝛿𝑓> 0, is a diffeomorphism, 𝑓({𝛿𝑓} Γ— Sπ‘›βˆ’1) = 𝑋 and 𝑓({[𝛿

𝑓, 𝛿𝑓+ πœ€π‘“)} Γ— Sπ‘›βˆ’1),

πœ€π‘“> 0, is diffeomorphic to 𝐢;

(iv) the symbol∐𝐢 means that we are gluingM and C, through the identification of𝐢 and 𝑓({[𝛿𝑓, 𝛿𝑓+πœ€π‘“)}Γ— Sπ‘›βˆ’1);

(v) the symbol[𝑓] represents an equivalence class in the set of functions

{𝑔 : [𝛿𝑔, ∞) Γ— Sπ‘›βˆ’1󳨀→ C : 𝑔 is a diffeomorphism, 𝑔 ({𝛿𝑔} Γ— Sπ‘›βˆ’1) = 𝑋 and 𝑔 ([𝛿𝑔, 𝛿𝑔+ πœ€π‘”) Γ— Sπ‘›βˆ’1) ,

πœ€π‘”> 0, is diffeomorphic to 𝐢} ,

(21)

where𝑓 ∼ 𝑔 if and only if there exists a diffeomorphism Θ ∈ Diff(Sπ‘›βˆ’1) such that

(π‘”βˆ’1∘ 𝑓) (𝜌, 𝛾) = (𝜌, Θ (𝛾)) , (22) for all𝜌 β‰₯ max{𝛿𝑓, 𝛿𝑔} and 𝛾 ∈ Sπ‘›βˆ’1.

We use the following notation: (i)π‘ˆπ›Ώπ‘“= {π‘₯ ∈ R𝑛: |π‘₯| > 𝛿𝑓};

(ii)C𝜏= 𝑓([𝜏, ∞)Γ—Sπ‘›βˆ’1), where 𝜏 β‰₯ 𝛿𝑓. The equivalence condition (22) implies thatC𝜏is well defined; (iii)πœ‹ : R𝑛 \ {0} β†’ (0, ∞) Γ— Sπ‘›βˆ’1 : π‘₯ 󳨃→ πœ‹(π‘₯) =

(|π‘₯|, π‘₯/|π‘₯|);

(iv)π‘“πœ‹ = π‘“βˆ˜πœ‹ : π‘ˆπ›Ώπ‘“ β†’ C is a parametrisation of the end. Let us notice that, setting𝐹 = π‘”βˆ’1πœ‹ βˆ˜π‘“πœ‹, the equivalence condition (22) implies

𝐹 (π‘₯) = |π‘₯| Θ (|π‘₯|π‘₯ ) . (23) We also denote the restriction of π‘“πœ‹ mappingπ‘ˆπ›Ώπ‘“ onto Μ‡C = C \ 𝑋 by Μ‡π‘“πœ‹.

The couple ( Μ‡C, Μ‡π‘“πœ‹βˆ’1) is called the exit chart. If A = {(Ω𝑖, πœ“π‘–)}𝑁𝑖=1is such that the subset{(Ω𝑖, πœ“π‘–)}π‘βˆ’1𝑖=1 is a finite atlas forM and (Ω𝑁, πœ“π‘) = ( Μ‡C, Μ‡π‘“πœ‹βˆ’1), then 𝑀, with the atlas A, is a SG-manifold (see [4]). An atlasA of such kind is called

admissible. From now on, we restrict the choice of atlases on

𝑀 to the class of admissible ones. We introduce the following spaces, endowed with their natural topologies,

S (π‘ˆπ›Ώ) = {𝑒 ∈ 𝐢∞(π‘ˆ 𝛿) : βˆ€π›Ό, 𝛽 ∈ N𝑛 βˆ€π›ΏσΈ€ > 𝛿 sup π‘₯βˆˆπ‘ˆπ›ΏσΈ€ σ΅„¨σ΅„¨σ΅„¨σ΅„¨σ΅„¨π‘₯ π›Όπœ•π›½π‘’ (π‘₯)󡄨󡄨󡄨󡄨 󡄨 < ∞} , S0(π‘ˆπ›Ώ) = β‹‚ π›ΏσΈ€ β†˜π›Ώ {𝑒 ∈ S (R𝑛) : supp 𝑒 βŠ† π‘ˆπ›ΏσΈ€ } , S (𝑀) = {𝑒 ∈ 𝐢∞(𝑀) : 𝑒 ∘ Μ‡π‘“πœ‹ ∈ S (π‘ˆπ›Ώπ‘“) for any exit mapπ‘“πœ‹} , SσΈ€ (𝑀) denotes the dual space of S (𝑀) .

(5)

Definition 7. The set π‘†π‘š,πœ‡(π‘ˆπ›Ώπ‘“) consists of all the symbols

π‘Ž ∈ 𝐢∞(π‘ˆ

𝛿𝑓) which fulfill (3) for(π‘₯, πœ‰) ∈ π‘ˆπ›Ώπ‘“ Γ— R

𝑛 only.

Moreover, the symbolπ‘Ž belongs to the subset SGπ‘š,πœ‡cl (π‘ˆπ›Ώπ‘“) if it admits expansions in asymptotic sums of homogeneous symbols with respect toπ‘₯ and πœ‰ as in Definitions2and 3, where the remainders are now given by SG-symbols of the required order onπ‘ˆπ›Ώπ‘“.

Note that, sinceπ‘ˆπ›Ώπ‘“is conical, the definition of homoge-neous and classical symbol onπ‘ˆπ›Ώπ‘“makes sense. Moreover, the elements of the asymptotic expansions of the classical sym-bols can be extended by homogeneity to smooth functions onR𝑛\ {0}, which will be denoted by the same symbols. It is a fact that, given an admissible atlas{(Ω𝑖, πœ“π‘–)}𝑁𝑖=1on𝑀, there exists a partition of unity{πœƒπ‘–} and a set of smooth functions {πœ’π‘–} which are compatible with the SG-structure of 𝑀, that is,

(i) suppπœƒπ‘–βŠ‚ Ω𝑖, suppπœ’π‘–βŠ‚ Ω𝑖,πœ’π‘–πœƒπ‘–= πœƒπ‘–,𝑖 = 1, . . . , 𝑁; (ii)|πœ•π›Ό(πœƒπ‘βˆ˜ Μ‡π‘“πœ‹)(π‘₯)| ≀ πΆπ›ΌβŸ¨π‘₯βŸ©βˆ’|𝛼|and|πœ•π›Ό(πœ’π‘βˆ˜ Μ‡π‘“πœ‹)(π‘₯)| ≀

πΆπ›ΌβŸ¨π‘₯βŸ©βˆ’|𝛼|for allπ‘₯ ∈ π‘ˆ

𝛿𝑓.

Moreover,πœƒπ‘andπœ’π‘can be chosen so thatπœƒπ‘βˆ˜ Μ‡π‘“πœ‹and πœ’π‘βˆ˜ Μ‡π‘“πœ‹are homogeneous of degree0 on π‘ˆπ›Ώ. We denote byπ‘’βˆ— the composition of𝑒 : πœ“π‘–(Ω𝑖) βŠ‚ R𝑛 β†’ C with the coordinate patchesπœ“π‘–, and byVβˆ—the composition ofV : Ω𝑖 βŠ‚ 𝑀 β†’ C withπœ“βˆ’1𝑖 ,𝑖 = 1, . . . , 𝑁. It is now possible to give the definition of SG-pseudodifferential operator on𝑀.

Definition 8. Let𝑀 be a manifold with a cylindrical end.

A linear operator 𝑃 : S(𝑀) β†’ SσΈ€ (𝑀) is an SG-pseudodifferential operator of order(π‘š, πœ‡) on 𝑀, and we write𝑃 ∈ πΏπ‘š,πœ‡(𝑀), if, for any admissible atlas {(Ω𝑖, πœ“π‘–)}𝑁𝑖=1 on𝑀 with exit chart (Ω𝑁, πœ“π‘):

(1) for all𝑖 = 1, . . . , 𝑁 βˆ’ 1 and any πœƒπ‘–, πœ’π‘–βˆˆ πΆβˆžπ‘ (Ω𝑖), there exist symbols𝑝𝑖(π‘₯, πœ‰) ∈ π‘†π‘š(πœ“π‘–(Ω𝑖)) such that (πœ’π‘–π‘ƒπœƒπ‘–π‘’βˆ—)βˆ—(π‘₯) = ∬ 𝑒𝑖(π‘₯βˆ’π‘¦)β‹…πœ‰π‘π‘–(π‘₯, πœ‰) 𝑒 (𝑦) 𝑑𝑦𝑑π‘₯, 𝑒 ∈ 𝐢∞(πœ“π‘–(Ω𝑖)) ;

(25)

(2) for anyπœƒπ‘, πœ’π‘of the type described above, there exists a symbol𝑝𝑁(π‘₯, πœ‰) ∈ SGπ‘š,πœ‡(π‘ˆπ›Ώπ‘“) such that

(πœ’π‘π‘ƒπœƒπ‘π‘’βˆ—)βˆ—(π‘₯) = ∬ 𝑒𝑖(π‘₯βˆ’π‘¦)β‹…πœ‰π‘π‘(π‘₯, πœ‰) 𝑒 (𝑦) 𝑑𝑦𝑑π‘₯, 𝑒 ∈ S0(π‘ˆπ›Ώπ‘“) ;

(26)

(3)𝐾𝑃, the Schwartz kernel of𝑃, is such that

πΎπ‘ƒβˆˆ 𝐢∞((𝑀 Γ— 𝑀) \ Ξ”) β‹‚ S (( Μ‡C Γ— Μ‡C) \ π‘Š) , (27) whereΞ” is the diagonal of 𝑀 Γ— 𝑀 and π‘Š = ( Μ‡π‘“πœ‹Γ—

Μ‡

π‘“πœ‹)(𝑉) with any conical neighbourhood 𝑉 of the

diagonal ofπ‘ˆπ›Ώπ‘“Γ— π‘ˆπ›Ώπ‘“.

The most important local symbol of 𝑃 is 𝑝𝑁. Our definition of SG-classical operator on𝑀 differs slightly from the one in [7].

Definition 9. Let𝑃 ∈ πΏπ‘š,πœ‡(𝑀). 𝑃 is an SG-classical operator

on𝑀, and we write 𝑃 ∈ πΏπ‘š,πœ‡cl (𝑀), if 𝑝𝑁(π‘₯, πœ‰) ∈ π‘†π‘š,πœ‡cl (π‘ˆπ›Ώπ‘“) and the operator𝑃, restricted to the manifold M, is classical in the usual sense.

The usual homogeneous principal symbolπ‘πœ“of an SG-classical operator𝑃 ∈ πΏπ‘š,πœ‡cl (𝑀) is of course well defined as a smooth function onπ‘‡βˆ—π‘€. In order to give an invariant definition of the principal symbols homogeneous inπ‘₯ of an operator 𝑃 ∈ πΏπ‘š,πœ‡cl (𝑀), the subbundle π‘‡π‘‹βˆ—π‘€ = {(π‘₯, πœ‰) ∈ π‘‡βˆ—π‘€ : π‘₯ ∈ 𝑋, πœ‰ ∈ 𝑇π‘₯βˆ—π‘€} was introduced. The notions of ellipticity can be extended to operators on𝑀 as well.

Definition 10. Let𝑃 ∈ πΏπ‘š,πœ‡cl (𝑀) and let us fix an exit map π‘“πœ‹.

We can define local objectsπ‘π‘šβˆ’π‘—,πœ‡βˆ’π‘–, 𝑝⋅,πœ‡βˆ’π‘–as

π‘π‘šβˆ’π‘—,πœ‡βˆ’π‘–(πœƒ, πœ‰) = π‘π‘π‘šβˆ’π‘—,πœ‡βˆ’π‘–(πœƒ, πœ‰) , πœƒ ∈ Sπ‘›βˆ’1, πœ‰ ∈ R𝑛\ {0} ,

𝑝⋅,πœ‡βˆ’π‘–(πœƒ, πœ‰) = 𝑝𝑁⋅,πœ‡βˆ’π‘–(πœƒ, πœ‰) , πœƒ ∈ Sπ‘›βˆ’1, πœ‰ ∈ R𝑛.

(28)

Definition 11. An operator𝑃 ∈ πΏπ‘š,πœ‡cl (𝑀) is elliptic, and we

write𝑃 ∈ πΈπΏπ‘š,πœ‡cl (𝑀), if the principal part of 𝑝𝑁 ∈ π‘†π‘š,πœ‡(π‘ˆπ›Ώπ‘“) satisfies the SG-ellipticity conditions on π‘ˆπ›Ώπ‘“ Γ— R𝑛 and the operator𝑃, restricted to the manifold M, is elliptic in the usual sense.

Proposition 12. The properties 𝑃 ∈ πΏπ‘š,πœ‡(𝑀) and 𝑃 ∈

πΏπ‘š,πœ‡π‘π‘™ (𝑀), as well as the notion of SG-ellipticity, do not depend

on the (admissible) atlas on𝑀. Moreover, the local functions 𝑝𝑒

andπ‘πœ“π‘’give rise to invariantly defined elements of𝐢∞(π‘‡π‘‹βˆ—π‘€)

and𝐢∞(π‘‡π‘‹βˆ—π‘€ \ 0), respectively.

Then, with any 𝑃 ∈ πΏπ‘š,πœ‡cl (𝑀), it is associated an invariantly defined principal symbol in three components 𝜎(𝑃) = (π‘πœ“, 𝑝𝑒, π‘πœ“π‘’). Finally, through local symbols given by

πœ‹π‘ ,πœŽπ‘— (π‘₯, πœ‰) = βŸ¨πœ‰βŸ©π‘ ,𝑗 = 1, . . . , 𝑁 βˆ’ 1, and πœ‹π‘π‘ ,𝜎(π‘₯, πœ‰) = βŸ¨πœ‰βŸ©π‘ βŸ¨π‘₯⟩𝜎, 𝑠, 𝜎 ∈ R, we get a SG-elliptic operator Π𝑠,𝜎 ∈ 𝐿𝑠,𝜎

cl(𝑀) and

introduce the (invariantly defined) weighted Sobolev spaces 𝐻𝑠,𝜎(𝑀) as

𝐻𝑠,𝜎(𝑀) = {𝑒 ∈ SσΈ€ (𝑀) : ∏

𝑠,πœŽπ‘’ ∈ 𝐿

2(𝑀)} . (29)

The properties of the spaces𝐻𝑠,𝜎(R𝑛) extend to 𝐻𝑠,𝜎(𝑀) without any change, as well as the continuity of the linear mappings𝑃 : 𝐻𝑠,𝜎(𝑀) β†’ π»π‘ βˆ’π‘š,πœŽβˆ’πœ‡(𝑀) induced by 𝑃 ∈ πΏπ‘š,πœ‡(𝑀), mentioned inSection 1.

(6)

3. Spectral Asymptotics for

SG-Classical Elliptic Self-Adjoint

Operators on Manifolds with Ends

In this section we illustrate the procedure to proveTheorem 1, similar to [13,25,27]. The result will follow from the Trace formula (39), (41), the asymptotic behaviour (42), and the Tauberian Theorem 19. The remaining technical points, in particular the proof of the asymptotic behaviour of the integrals appearing in (41), are described inSection 4and in the Appendix.

Let the operator 𝑃 ∈ πΈπΏπ‘š,πœ‡cl (𝑀) be considered as an unbounded operator𝑃 : S(𝑀) βŠ‚ 𝐻0,0(𝑀) = 𝐿2(𝑀) β†’ 𝐿2(𝑀). The following proposition can be proved by reducing to the local situation and using continuity and ellipticity of 𝑃, its parametrix, and the density of S(𝑀) in the 𝐻𝑠,𝜎(𝑀)

spaces.

Proposition 13. Every 𝑃 ∈ πΈπΏπ‘š,πœ‡π‘π‘™ (𝑀), considered as an

unbounded operator𝑃 : S(𝑀) βŠ‚ 𝐿2(𝑀) β†’ 𝐿2(𝑀), admits

a unique closed extension, still denoted by𝑃, whose domain is

D(𝑃) = π»π‘š,πœ‡(𝑀).

From now on, when we write𝑃 ∈ πΈπΏπ‘š,πœ‡cl (𝑀) we always mean its unique closed extension, defined inProposition 13. As standard, we denote by󰜚(𝑃) the resolvent set of 𝑃, that is, the set of allπœ† ∈ C such that πœ†πΌβˆ’π‘ƒ maps π»π‘š,πœ‡(𝑀) bijectively onto𝐿2(𝑀). The spectrum of 𝑃 is then spec(𝑃) = C \ 󰜚(𝑃). The next theorem was proved in [7].

Theorem 14 (Spectral theorem). Let 𝑃 ∈ πΈπΏπ‘š,πœ‡π‘π‘™ (𝑀) be

regarded as a closed unbounded operator on𝐿2(𝑀) with dense

domainπ»π‘š,πœ‡(𝑀). Assume also that π‘š, πœ‡ > 0 and π‘ƒβˆ— = 𝑃.

Then

(i)(πœ†πΌ βˆ’ 𝑃)βˆ’1 is a compact operator on𝐿2(𝑀) for every

πœ† ∈ 󰜚(𝑃). More precisely, (πœ†πΌ βˆ’ 𝑃)βˆ’1is an extension by

continuity fromS(𝑀) or a restriction from SσΈ€ (𝑀) of

an operator inπΈπΏβˆ’π‘š,βˆ’πœ‡π‘π‘™ (𝑀).

(ii) spec(𝑃) consists of a sequence of real isolated

eigenval-ues{πœ†π‘—} with finite multiplicity, clustering at infinity;

the orthonormal system of eigenfunctions {𝑒𝑗}𝑗β‰₯1 is

complete in𝐿2(𝑀) = 𝐻0,0(𝑀). Moreover, 𝑒𝑗 ∈ S(𝑀)

for all𝑗.

Given a positive self-adjoint operator 𝑃 ∈ πΈπΏπ‘š,πœ‡cl (𝑀), π‘š, πœ‡ > 0, πœ‡ ΜΈ= π‘š, we can assume, without loss of generality (considering, if necessary,𝑃 + 𝑐 in place of 𝑃, with 𝑐 ∈ R a suitably large constant),1 ≀ πœ†1 ≀ πœ†2. . .. Define the counting function𝑁𝑃(πœ†), πœ† ∈ R, as

𝑁𝑃(πœ†) = βˆ‘

πœ†π‘—β‰€πœ†

1 = # (spec (𝑃) ∩ (βˆ’βˆž, πœ†]) . (30) Clearly,𝑁𝑃is nondecreasing, continuous from the right and supported in[0, +∞). If we set 𝑄 = 𝑃1/𝑙,𝑙 = max{π‘š, πœ‡} (see [19] for the definition of the powers of 𝑃), 𝑄 turns out to be a SG-classical elliptic self-adjoint operator with

𝜎(𝑄) = (𝑝1/𝑙

πœ“ , 𝑝1/𝑙𝑒 , 𝑝1/π‘™πœ“π‘’). We denote by {πœ‚π‘—} the sequence of

eigenvalues of𝑄, which satisfy πœ‚π‘— = πœ†1/𝑙𝑗 . We can then, as above, consider𝑁𝑄(πœ‚). It is a fact that 𝑁𝑄(πœ‚) = 𝑂(πœ‚π‘›/𝑙), see [7].

From now on we focus on the case πœ‡ > π‘š > 0. The caseπ‘š > πœ‡ > 0 can be treated in a completely similar way, exchanging the role ofπ‘₯ and πœ‰. So we can start from a closed positive self-adjoint operator𝑄 ∈ πΈπΏπ‘š,1cl (𝑀) with domain D(𝑄) = π»π‘š,1(𝑀), π‘š ∈ (0, 1). For 𝑒 ∈ π»π‘š,1(𝑀), 𝑑 ∈ R, we set π‘ˆ (𝑑) 𝑒 =βˆ‘βˆž 𝑗=1𝑒 π‘–π‘‘πœ‚π‘— (𝑒, 𝑒 𝑗)𝐿2(𝑀)𝑒𝑗, (31)

and the series converges in the𝐿2(𝑀) norm (cf., e.g., [25]). Clearly, for all𝑑 ∈ R, π‘ˆ(𝑑) is a unitary operator such that

π‘ˆ (0) = 𝐼, π‘ˆ (𝑑 + 𝑠) = π‘ˆ (𝑑) π‘ˆ (𝑠) , 𝑑, 𝑠 ∈ R. (32) Moreover, if 𝑒 ∈ π»π‘˜π‘š,π‘˜(𝑀) for some π‘˜ ∈ N, π‘ˆ(𝑑)𝑒 ∈ πΆπ‘˜(R, 𝐻0,0(𝑀)) ∩ β‹… β‹… β‹… ∩ 𝐢0(R, π»π‘˜π‘š,π‘˜(𝑀)) and, for 𝑒 ∈

π»π‘š,1(𝑀), we have 𝐷

π‘‘π‘ˆ(𝑑)𝑒 βˆ’ π‘„π‘ˆ(𝑑)𝑒 = 0, π‘ˆ(0)𝑒 = 𝑒, which

implies thatV(𝑑, π‘₯) = π‘ˆ(𝑑)𝑒(π‘₯) is a solution of the Cauchy problem

(π·π‘‘βˆ’ 𝑄) V = 0, V|𝑑=0= 𝑒. (33)

Let us fixπœ“ ∈ S(R). We can then define the operator Μ‚πœ“(βˆ’π‘„) either by using the formula

Μ‚πœ“ (βˆ’π‘„) 𝑒 =βˆ‘βˆž

𝑗=1Μ‚πœ“ (βˆ’πœ‚π‘—

) (𝑒, 𝑒𝑗)𝐿2(𝑀)𝑒𝑗, (34)

or by means of the vector-valued integral(∫ πœ“(𝑑)π‘ˆ(𝑑)𝑑𝑑)𝑒 = ∫ πœ“(𝑑)π‘ˆ(𝑑)𝑒 𝑑𝑑, 𝑒 ∈ 𝐻0,0(𝑀). Indeed, there exists 𝑁0 ∈ N such that βˆ‘βˆžπ‘—=1πœ‚βˆ’π‘0

𝑗 < ∞, so the definition makes sense

and gives an operator inL(𝐿2(𝑀)) with norm bounded by β€–πœ“β€–πΏ1(R). The following lemma, whose proof can be found in

the Appendix, is an analog on𝑀 of Proposition 1.10.11 in [13].

Lemma 15. Μ‚πœ“(βˆ’π‘„) is an operator with kernel πΎπœ“(π‘₯, 𝑦) = βˆ‘π‘— Μ‚πœ“(βˆ’πœ‚π‘—)𝑒𝑗(π‘₯)𝑒𝑗(𝑦) ∈ S(𝑀 Γ— 𝑀).

Clearly, we then have ∫

π‘€πΎπœ“(π‘₯, π‘₯) 𝑑π‘₯ = βˆ‘π‘— Μ‚πœ“ (βˆ’πœ‚π‘—) . (35)

By the analysis in [22–24,28] (see also [29]), the above Cauchy problem (33) can solve moduloS(𝑀) by means of a smooth family of operators𝑉(𝑑), defined for 𝑑 ∈ (βˆ’π‘‡, 𝑇), 𝑇 > 0 suitably small, in the sense that (π·π‘‘βˆ’π‘„)βˆ˜π‘‰ is a family of smoothing operators and𝑉(0) is the identity on SσΈ€ (𝑀). More explicitly, the following theorem holds (see the Appendix for some details concerning the extension to the manifold𝑀 of the results onR𝑛proved in [22–24,28]).

(7)

Theorem 16. Define 𝑉(𝑑)𝑒 = βˆ‘π‘π‘˜=1πœ’π‘˜π΄π‘˜(𝑑)(πœƒπ‘˜π‘’), where πœƒπ‘˜

andπœ’π‘˜are as inDefinition 8, withπœ’π‘˜πœƒπ‘˜ = πœƒπ‘˜,π‘˜ = 1, . . . , 𝑁,

while theπ΄π‘˜(𝑑) are SG FIOs which, in the local coordinate open

setπ‘ˆπ‘˜= πœ“π‘˜(Ξ©π‘˜) and with V ∈ S(R𝑛), are given by

(π΄π‘˜(𝑑) V) (π‘₯) = ∫ π‘’π‘–πœ‘π‘˜(𝑑;π‘₯,πœ‰)π‘Ž

π‘˜(𝑑; π‘₯, πœ‰) Μ‚V (πœ‰) Lπœ‰. (36) Eachπ΄π‘˜(𝑑) solves a local Cauchy problem (π·π‘‘βˆ’ π‘„π‘˜) ∘ π΄π‘˜βˆˆ

𝐢∞((βˆ’π‘‡, 𝑇), πΏβˆ’βˆž,βˆ’βˆž(R𝑛)), 𝐴

π‘˜(0) = 𝐼, with π‘„π‘˜= 𝑂𝑝(π‘žπ‘˜) and

{π‘žπ‘˜} βŠ‚ π‘†πΊπ‘š,1𝑐𝑙 (R𝑛) local (complete) symbol of 𝑄 associated with {πœƒπ‘˜}, {πœ’π‘˜}, with phase and amplitude functions such that

πœ•π‘‘πœ‘π‘˜(𝑑; π‘₯, πœ‰) βˆ’ π‘žπ‘˜(π‘₯, 𝑑π‘₯πœ‘π‘˜(𝑑; π‘₯, πœ‰)) = 0, πœ‘π‘˜(0; π‘₯, πœ‰) = π‘₯πœ‰, π‘Žπ‘˜βˆˆ 𝐢∞((βˆ’π‘‡, 𝑇) , 𝑆𝐺0,0𝑐𝑙 (R𝑛)) , π‘Žπ‘˜(0; π‘₯, πœ‰) = 1. (37) Then,𝑉(𝑑) satisfies (π·π‘‘βˆ’ 𝑄) ∘ 𝑉 ∈ 𝐢∞((βˆ’π‘‡, 𝑇) , πΏβˆ’βˆž,βˆ’βˆž(𝑀)) , 𝑉 (0) = 𝐼, (38) andπ‘ˆ βˆ’ 𝑉 ∈ 𝐢∞((βˆ’π‘‡, 𝑇), πΏβˆ’βˆž,βˆ’βˆž(𝑀)).

Remark 17. Trivially, forπ‘˜ = 1, . . . , 𝑁 βˆ’ 1, π‘žπ‘˜ andπ‘Žπ‘˜ can be

considered SG-classical, since, in those cases, they actually have order βˆ’βˆž with respect to π‘₯, by the fact that π‘žπ‘˜(π‘₯, πœ‰) vanishes forπ‘₯ outside a compact set.

Remark 18. Notation like𝑏 ∈ 𝐢∞((βˆ’π‘‡, 𝑇), π‘†π‘Ÿ,𝜌(R𝑛)), 𝐡 ∈

𝐢∞((βˆ’π‘‡, 𝑇), πΏπ‘Ÿ,𝜌(𝑀)), and similar, in Theorem 16 and in

the sequel, also mean that the seminorms of the involved elements in the corresponding spaces (induced, in the men-tioned cases, by (3)), are uniformly bounded with respect to 𝑑 ∈ (βˆ’π‘‡, 𝑇).

If we writeπœ“πœ†(𝑑) = πœ“(𝑑)π‘’βˆ’π‘–π‘‘πœ†in place ofπœ“(𝑑), for a chosen πœ“ ∈ 𝐢∞

0 ((βˆ’π‘‡, 𝑇)), the trace formula (35) becomes

∫

π‘€πΎπœ“πœ†(π‘₯, π‘₯) 𝑑π‘₯ = βˆ‘ Μ‚πœ“ (πœ† βˆ’ πœ‚π‘—) . (39)

Let us denote the kernel of π‘ˆ βˆ’ 𝑉 by π‘Ÿ(𝑑; π‘₯, 𝑦) ∈ 𝐢∞((βˆ’π‘‡, 𝑇), S(𝑀 Γ— 𝑀)). Then, the distribution kernel of

∫ π‘’βˆ’π‘–π‘‘πœ†πœ“(𝑑) π‘ˆ(𝑑)𝑑𝑑 = Μ‚πœ“ πœ†(βˆ’π‘„) is πΎπœ“πœ†(π‘₯, 𝑦) =βˆ‘π‘ π‘˜=1 πœ’π‘˜(π‘₯) ∬ πœ“ (𝑑) 𝑒𝑖(βˆ’π‘‘πœ†+πœ‘π‘˜(𝑑;π‘₯,πœ‰)βˆ’π‘¦πœ‰) Γ— π‘Žπ‘˜(𝑑; π‘₯, πœ‰) 𝑑𝑑Lπœ‰πœƒπ‘˜(𝑦) + ∫ π‘’βˆ’π‘–π‘‘πœ†πœ“ (𝑑) π‘Ÿ (𝑑; π‘₯, 𝑦) 𝑑𝑑, (40)

where the local coordinates in the right-hand side depend on π‘˜ and, to simplify the notation, we have omitted the

corresponding coordinate maps. By the choices ofπœ“, πœƒπ‘˜and πœ’π‘˜we obtain βˆ‘ 𝑗 Μ‚πœ“ (πœ† βˆ’ πœ‚π‘— ) =βˆ‘π‘ π‘˜=1∭ πœ“ (𝑑) 𝑒 𝑖(βˆ’π‘‘πœ†+πœ‘π‘˜(𝑑;π‘₯,πœ‰)βˆ’π‘₯πœ‰) Γ— π‘Žπ‘˜(𝑑; π‘₯, πœ‰) πœƒπ‘˜(π‘₯) 𝑑𝑑Lπœ‰π‘‘π‘₯ + ∬ π‘’βˆ’π‘–π‘‘πœ†πœ“ (𝑑) π‘Ÿ (𝑑; π‘₯, π‘₯) 𝑑𝑑𝑑π‘₯ =βˆ‘π‘ π‘˜=1 ∭ πœ“ (𝑑) 𝑒𝑖(βˆ’π‘‘πœ†+πœ‘π‘˜(𝑑;π‘₯,πœ‰)βˆ’π‘₯πœ‰) Γ— π‘Žπ‘˜(𝑑; π‘₯, πœ‰) πœƒπ‘˜(π‘₯) 𝑑𝑑Lπœ‰π‘‘π‘₯ + 𝑂 (|πœ†|βˆ’βˆž) . (41)

Letπœ“ ∈ 𝐢∞0 ((βˆ’π‘‡, 𝑇)), 𝑇 > 0, be such that πœ“(0) = 1 and Μ‚πœ“ β‰₯ 0, Μ‚πœ“(0) > 0 (e.g., set πœ“ = πœ’ βˆ— Μ†πœ’ with a suitable πœ’ ∈ 𝐢∞

0 ((βˆ’π‘‡, 𝑇))). By the analysis of the asymptotic behaviour

of the integrals appearing in (41), described inSection 4, we finally obtain βˆ‘ 𝑗 Μ‚πœ“ (πœ† βˆ’ πœ‚π‘— ) = { { { { { { { { { { { { { 𝑛 π‘šπ‘‘0πœ†(𝑛/π‘š)βˆ’1+ 𝑂 (πœ†π‘› βˆ—βˆ’1 ) forπœ† 󳨀→ +∞, 𝑂 (|πœ†|βˆ’βˆž) for πœ† 󳨀→ βˆ’βˆž, (42)

with π‘›βˆ— = min{𝑛, (𝑛/π‘š) βˆ’ 1}. The following Tauberian theorem is a slight modification of Theorem 4.2.5 of [13] (see the Appendix).

Theorem 19. Assume that

(i)πœ“ ∈ 𝐢∞0 (R) is an even function satisfying πœ“(0) = 1, Μ‚πœ“ β‰₯ 0, Μ‚πœ“(0) > 0;

(ii)𝑁𝑄(πœ†) is a nondecreasing function, supported in [0, +∞), continuous from the right, with polynomial

growth at infinity and isolated discontinuity points of

first kind{πœ‚π‘—}, 𝑗 ∈ N, such that πœ‚π‘— β†’ +∞;

(iii) there exists𝑑0β‰₯ 0 such that βˆ‘ 𝑗 Μ‚πœ“ (πœ† βˆ’ πœ‚π‘— ) = ∫ Μ‚πœ“ (πœ† βˆ’ πœ‚) 𝑑𝑁𝑄(πœ‚) = { { { { { { { { { { { { { { { 𝑛 π‘šπ‘‘0 πœ†(𝑛/π‘š)βˆ’1+ 𝑂 (πœ†π‘› βˆ—βˆ’1 ) π‘“π‘œπ‘Ÿ πœ† 󳨀→ +∞, 𝑂 (|πœ†|βˆ’βˆž) π‘“π‘œπ‘Ÿ πœ† 󳨀→ βˆ’βˆž, (43) withπ‘š ∈ (0, 1), π‘›βˆ—= min{𝑛, (𝑛/π‘š) βˆ’ 1}. Then 𝑁𝑄(πœ†) = 𝑑0 2πœ‹πœ†π‘›/π‘š+ 𝑂 (πœ†π‘› βˆ— ) , π‘“π‘œπ‘Ÿ πœ† 󳨀→ +∞. (44)

(8)

Remark 20. The previous statement can be modified as

follows: withπœ“, 𝑁𝑄, andπ‘š as inTheorem 19, when ∫ Μ‚πœ“ (πœ† βˆ’ πœ‚) 𝑑𝑁𝑄(πœ‚) = { { { { { { { { { { { { { 𝑛 π‘šπ‘‘0 πœ†(𝑛/π‘š)βˆ’1+ 𝑂 (πœ†(𝑛/π‘š)βˆ’2) + 𝑂 (πœ†π‘›βˆ’1) for πœ† 󳨀→ +∞, 𝑂 (|πœ†|βˆ’βˆž) for πœ† 󳨀→ βˆ’βˆž, (45) withπ‘š ∈ (0, 1), then 𝑁𝑄(πœ†) = (𝑑0/2πœ‹)πœ†π‘›/π‘š+ 𝑂(πœ†(𝑛/π‘š)βˆ’1) + 𝑂(πœ†π‘›), for πœ† β†’ +∞.

4. Proof of

Theorem 1

In view ofTheorem 19andRemark 20, to complete the proof ofTheorem 1we need to show that (42) holds. To this aim, as explained previously, this section will be devoted to studying the asymptotic behaviour for|πœ†| β†’ +∞ of

𝐼 (πœ†) = ∫ 𝑒𝑖Φ(𝑑;π‘₯,πœ‰;πœ†)πœ“ (𝑑) π‘Ž (𝑑; π‘₯, πœ‰) 𝑑𝑑Lπœ‰π‘‘π‘₯, (46) where πœ“ ∈ 𝐢0∞((βˆ’π‘‡, 𝑇)), πœ“(0) = 1, π‘Ž ∈ 𝐢∞((βˆ’π‘‡, 𝑇), 𝑆0,0(R𝑛)), π‘Ž(0; π‘₯, πœ‰) = 1, and Ξ¦ (𝑑; π‘₯, πœ‰; πœ†) = πœ‘ (𝑑; π‘₯, πœ‰) βˆ’ π‘₯πœ‰ βˆ’ π‘‘πœ†, πœ‘ ∈ 𝐢∞((βˆ’π‘‡, 𝑇) , 𝑆1,1cl (R𝑛)) , (47) such that (i)πœ•π‘‘πœ‘(𝑑; π‘₯, πœ‰) = π‘ž(π‘₯, 𝑑π‘₯πœ‘(𝑑; π‘₯, πœ‰)), πœ‘(0; π‘₯, πœ‰) = π‘₯πœ‰; (ii)πΆβˆ’1βŸ¨πœ‰βŸ©β‰€ βŸ¨π‘‘π‘₯πœ‘(𝑑; π‘₯, πœ‰)βŸ©β‰€ πΆβŸ¨πœ‰βŸ©, for a suitable

constant𝐢 > 1;

(iii)π‘ž ∈ π‘†π‘š,1cl (R𝑛), 0 < π‘š < 1, SG-elliptic.

Sinceπ‘žβˆ’1(π‘₯, πœ‰) ∈ 𝑂(⟨π‘₯βŸ©βˆ’1βŸ¨πœ‰βŸ©βˆ’π‘š) for |π‘₯| + |πœ‰| β‰₯ 𝑅 > 0, it is not restrictive to assume that this estimate holds on the whole phase space, so that, for a certain constant𝐴 > 1,

π΄βˆ’1⟨π‘₯⟩ βŸ¨πœ‰βŸ©π‘šβ‰€ π‘ž (π‘₯, πœ‰) ≀ 𝐴 ⟨π‘₯⟩ βŸ¨πœ‰βŸ©π‘š. (48)

Remark 21. The assumption onπ‘žβˆ’1above amounts, at most,

to modifying π‘ž by adding and subtracting a compactly supported symbol, that is, an element ofπ‘†βˆ’βˆž,βˆ’βˆž(R𝑛). The corresponding solutionsπœ‘ and π‘Ž of the eikonal and transport equations, respectively, would then change, at most, by an element of𝐢∞((βˆ’π‘‡, 𝑇), π‘†βˆ’βˆž,βˆ’βˆž(R𝑛)), see [23, 24, 28]. It is immediate, by integration by parts with respect to t, that an integral as (46) is𝑂(|πœ†|βˆ’βˆž) for π‘Ž ∈ 𝐢∞((βˆ’π‘‡, 𝑇), π‘†βˆ’βˆž,βˆ’βˆž(R𝑛)). Then, the modifiedπ‘ž obviously keeps the same sign every-where.

For two functions𝑓, 𝑔, defined on a common subset 𝑋 ofR𝑑1and depending on parameters𝑦 ∈ π‘Œ βŠ† R𝑑2, we will

write𝑓 β‰Ί 𝑔 or 𝑓(π‘₯, 𝑦) β‰Ί 𝑔(π‘₯, 𝑦) to mean that there exists a suitable constant𝑐 > 0 such that |𝑓(π‘₯, 𝑦)| ≀ 𝑐|𝑔(π‘₯, 𝑦)| for all(π‘₯, 𝑦) ∈ 𝑋 Γ— π‘Œ. The notation 𝑓 ∼ 𝑔 or 𝑓(π‘₯, 𝑦) ∼ 𝑔(π‘₯, 𝑦) means that both𝑓 β‰Ί 𝑔 and 𝑔 β‰Ί 𝑓 hold.

Remark 22. The ellipticity ofπ‘ž yields, for πœ† < 0,

πœ•π‘‘Ξ¦ (𝑑; π‘₯, πœ‰; πœ†) = π‘ž (π‘₯, 𝑑π‘₯πœ‘ (𝑑; π‘₯, πœ‰)) βˆ’ πœ† ≻ ⟨π‘₯⟩ βŸ¨πœ‰βŸ©π‘š+ |πœ†|

(49) which, by integration by parts, implies𝐼(πœ†) = 𝑂(|πœ†|βˆ’βˆž) when πœ† β†’ βˆ’βˆž.

From now on any asymptotic estimate is to be meant for πœ† β†’ +∞.

We will make use of a partition of unity on the phase space. The supports of its elements will depend on suitably large positive constantsπ‘˜1, π‘˜2 > 1. We also assume, as it is possible,πœ† β‰₯ πœ†0, again with an appropriateπœ†0 ≫ 1. As we will see below, the values ofπ‘˜1,π‘˜2, andπœ†0depend only onπ‘ž and its associated seminorms.

Proposition 23. Let 𝐻1be any function in𝐢∞0 (R) such that

supp𝐻1βŠ† [(2π‘˜1)βˆ’1, 2π‘˜1], 0 ≀ 𝐻1≀ 1 and 𝐻1≑ 1 on [π‘˜βˆ’11 , π‘˜1],

whereπ‘˜1> 1 is a suitably chosen, large positive constant. Then

𝐼 (πœ†) = 𝑂 (πœ†βˆ’βˆž) + ∫ 𝑒𝑖Φ(𝑑;π‘₯,πœ‰;πœ†)πœ“ (𝑑) 𝐻1(⟨π‘₯⟩ βŸ¨πœ‰βŸ© π‘š πœ† ) Γ— π‘Ž (𝑑; π‘₯, πœ‰) 𝑑𝑑Lπœ‰π‘‘π‘₯. (50) Proof. Write 𝐼 (πœ†) = ∫ 𝑒𝑖Φ(𝑑;π‘₯,πœ‰;πœ†)πœ“ (𝑑) [1 βˆ’ 𝐻1(⟨π‘₯⟩ βŸ¨πœ‰βŸ© π‘š πœ† )] Γ— π‘Ž (𝑑; π‘₯, πœ‰) 𝑑𝑑Lπœ‰π‘‘π‘₯ + ∫ 𝑒𝑖Φ(𝑑;π‘₯,πœ‰;πœ†)πœ“ (𝑑) 𝐻1(⟨π‘₯⟩ βŸ¨πœ‰βŸ© π‘š πœ† ) Γ— π‘Ž (𝑑; π‘₯, πœ‰) 𝑑𝑑Lπœ‰π‘‘π‘₯, (51)

and observe that, by π΄βˆ’1⟨π‘₯βŸ©βŸ¨πœ‰βŸ©π‘š ≀ π‘ž(π‘₯, πœ‰) ≀ 𝐴⟨π‘₯βŸ©βŸ¨πœ‰βŸ©π‘š, π‘₯, πœ‰ ∈ R𝑛, we find σ΅„¨σ΅„¨σ΅„¨σ΅„¨πœ•π‘‘Ξ¦ (𝑑; π‘₯, πœ‰; πœ†)󡄨󡄨󡄨󡄨 β‰₯ πœ†2 + (π‘˜21 βˆ’ 𝐴𝐢) ⟨π‘₯⟩ βŸ¨πœ‰βŸ©π‘š when ⟨π‘₯⟩ βŸ¨πœ‰βŸ© π‘š πœ† ≀ π‘˜βˆ’11 , (52) σ΅„¨σ΅„¨σ΅„¨σ΅„¨πœ•π‘‘Ξ¦ (𝑑; π‘₯, πœ‰; πœ†)󡄨󡄨󡄨󡄨 β‰₯ (𝐴𝐢) βˆ’1 2 ⟨π‘₯βŸ©βŸ¨πœ‰βŸ© π‘š+ [(𝐴𝐢)βˆ’1 2 π‘˜1βˆ’ 1] πœ† when ⟨π‘₯⟩ βŸ¨πœ‰βŸ© π‘š πœ† β‰₯ π‘˜1. (53) Thus, ifπ‘˜1> 2𝐴𝐢 we have |πœ•π‘‘Ξ¦(𝑑; π‘₯, πœ‰; πœ†)| ∼ πœ† + ⟨π‘₯βŸ©βŸ¨πœ‰βŸ©π‘š on the support of1βˆ’π»1(⟨π‘₯βŸ©βŸ¨πœ‰βŸ©π‘š/πœ†), and the assertion follows integrating by parts with respect to𝑑 in the first integral of (51).

Remark 24. We actually chooseπ‘˜1> 4𝐴𝐢 > 2𝐴𝐢, since this

will be needed in the proof ofProposition 28; see also Section C in the Appendix.

(9)

Let us now pick𝐻2 ∈ 𝐢∞0 (R) such that 0 ≀ 𝐻2(𝜐) ≀ 1, 𝐻2(𝜐) = 1 for |𝜐| ≀ π‘˜2and𝐻2(𝜐) = 0 for |𝜐| β‰₯ 2π‘˜2, where π‘˜2 > 1 is a constant which we will choose big enough (see below). We can then write

(πœ†) = 𝑂 (πœ†βˆ’βˆž) + ∫ 𝑒𝑖Φ(𝑑;π‘₯,πœ‰;πœ†)πœ“ (𝑑) 𝐻 1(⟨π‘₯⟩ βŸ¨πœ‰βŸ© π‘š πœ† ) Γ— 𝐻2(σ΅„¨σ΅„¨σ΅„¨σ΅„¨πœ‰σ΅„¨σ΅„¨σ΅„¨σ΅„¨)π‘Ž(𝑑;π‘₯,πœ‰)𝑑𝑑Lπœ‰π‘‘π‘₯ + ∫ 𝑒𝑖Φ(𝑑;π‘₯,πœ‰;πœ†)πœ“ (𝑑) 𝐻1(⟨π‘₯⟩ βŸ¨πœ‰βŸ© π‘š πœ† ) Γ— [1 βˆ’ 𝐻2(σ΅„¨σ΅„¨σ΅„¨σ΅„¨πœ‰σ΅„¨σ΅„¨σ΅„¨σ΅„¨)]π‘Ž(𝑑;π‘₯,πœ‰)𝑑𝑑Lπœ‰π‘‘π‘₯ = 𝑂 (πœ†βˆ’βˆž) + 𝐼1(πœ†) + 𝐼2(πœ†) . (54)

In what follows, we will systematically use the notation π‘†π‘Ÿ,𝜌 = π‘†π‘Ÿ,𝜌(𝑦, πœ‚), 𝑦 ∈ Rπ‘˜, πœ‚ ∈ R𝑙, to generally denote functions depending smoothly on 𝑦 and πœ‚ and satisfying SG-type estimates of orderπ‘Ÿ, 𝜌 in 𝑦, πœ‚. In a similar fashion, π‘†π‘Ÿ,πœŒπ‘‡ = 𝐢∞((βˆ’π‘‡, 𝑇), π‘†π‘Ÿ,𝜌(𝑦, πœ‚)) will stand for some function of the same kind which, additionally, depends smoothly on 𝑑 ∈ (βˆ’π‘‡, 𝑇), and, for all 𝑠 ∈ Z+,π·π‘‘π‘ πΆβˆž((βˆ’π‘‡, 𝑇), π‘†π‘Ÿ,𝜌(𝑦, πœ‚)) satisfies SG-type estimates of orderπ‘Ÿ, 𝜌 in 𝑦, πœ‚, uniformly with respect to𝑑 ∈ (βˆ’π‘‡, 𝑇).

To estimate 𝐼1(πœ†), we will apply the stationary phase theorem. We begin by rewriting the integral𝐼1(πœ†), using the fact thatπœ‘ is solution of the eikonal equation associated with π‘ž and that π‘ž is a classical SG-symbol. Note that then πœ•π‘‘2πœ‘ ∈ 𝐢∞((βˆ’π‘‡, 𝑇), 𝑆2π‘šβˆ’1,1cl (R𝑛)) βŠ† 𝐢∞((βˆ’π‘‡, 𝑇), π‘†π‘š,1cl (R𝑛)), since πœ•π‘‘2πœ‘ (𝑑; π‘₯, πœ‰) =βˆ‘π‘› 𝑖=1 (πœ•πœ‰π‘–π‘ž) (π‘₯, 𝑑π‘₯πœ‘ (𝑑; π‘₯, πœ‰)) Γ— πœ•π‘₯𝑖(π‘ž (π‘₯, 𝑑π‘₯πœ‘ (𝑑; π‘₯, πœ‰))) . (55)

In view of the Taylor expansion ofπœ‘ at 𝑑 = 0, recalling the propertyπ‘ž(π‘₯, πœ‰) = πœ”(π‘₯)π‘žπ‘’(π‘₯, πœ‰) + π‘†π‘š,0(π‘₯, πœ‰), πœ” a fixed 0-excision function, we have, for some0 < 𝛿1< 1,

Ξ¦ (𝑑; π‘₯, πœ‰; πœ†) = βˆ’πœ†π‘‘ βˆ’ π‘₯πœ‰ + πœ‘ (0; π‘₯, πœ‰) + π‘‘πœ•π‘‘πœ‘ (0; π‘₯, πœ‰) +𝑑2 2 πœ•π‘‘2πœ‘ (𝑑𝛿1; π‘₯, πœ‰) = βˆ’πœ†π‘‘ + π‘‘π‘ž (π‘₯, πœ‰) + 𝑑2𝑆2π‘šβˆ’1,1𝑇 (π‘₯, πœ‰) = βˆ’πœ†π‘‘ + π‘‘πœ” (π‘₯) π‘žπ‘’(π‘₯, πœ‰) + π‘‘π‘†π‘š,0(π‘₯, πœ‰) + 𝑑2𝑆2π‘šβˆ’1,1𝑇 (π‘₯, πœ‰) = βˆ’πœ†π‘‘ + π‘‘πœ” (π‘₯) π‘žπ‘’(π‘₯, πœ‰) + π‘‘π‘†π‘š,0(π‘₯, πœ‰) + 𝑑2πœ” (π‘₯) 𝑆2π‘šβˆ’1,1𝑇,𝑒 (π‘₯, πœ‰) + 𝑑2𝑆2π‘šβˆ’1,0𝑇 (π‘₯, πœ‰) , (56) where the subscript 𝑒 denotes the π‘₯-homogeneous (exit) principal parts of the involved symbols, which are all SG-classical and real-valued, see [28].

Observe that|π‘₯| ∼ πœ† on the support of the integrand in 𝐼1(πœ†), so that we can, in fact, assume πœ”(π‘₯) ≑ 1 there. Indeed, recalling that, by definition,πœ” ∈ 𝐢∞(R𝑛), πœ”(𝜐) ≑ 0 for |𝜐| ≀ 𝐡, πœ”(𝜐) ≑ 1 for |𝜐| β‰₯ 2𝐡, with a fixed constant 𝐡 > 0, it is enough to observe that

σ΅„¨σ΅„¨σ΅„¨σ΅„¨πœ‰σ΅„¨σ΅„¨σ΅„¨σ΅„¨ β‰Ί 1, ⟨π‘₯⟩ βŸ¨πœ‰βŸ©π‘šβˆΌ πœ† 󳨐⇒ ⟨π‘₯⟩ ∼ πœ†, (57) which of course implies⟨π‘₯⟩∼ |π‘₯|, provided that πœ†0 ≀ πœ† is large enough. Moreover, by the ellipticity ofπ‘ž, writing π‘₯ = |π‘₯|𝜍, 𝜍 ∈ Sπ‘›βˆ’1, with the constant𝐴 > 1 of (48),

π΄βˆ’1⟨π‘₯⟩ βŸ¨πœ‰βŸ©π‘šβ‰€ π‘ž (π‘₯, πœ‰) = πœ” (π‘₯) π‘žπ‘’(π‘₯, πœ‰) + π‘†π‘š,0(π‘₯, πœ‰) ≀ 𝐴 ⟨π‘₯⟩ βŸ¨πœ‰βŸ©π‘š 󳨐⇒ π΄βˆ’1⟨π‘₯⟩ |π‘₯|βŸ¨πœ‰βŸ© π‘šβ‰€ πœ” (π‘₯) π‘ž 𝑒(𝜍, πœ‰) +π‘†π‘š,0(π‘₯, πœ‰) |π‘₯| ≀ 𝐴⟨ π‘₯⟩ |π‘₯|βŸ¨πœ‰βŸ© π‘š 󳨐⇒ π΄βˆ’1βŸ¨πœ‰βŸ©π‘šβ‰€ π‘žπ‘’(𝜍, πœ‰) ≀ π΄βŸ¨πœ‰βŸ©π‘š, 𝜍 ∈ Sπ‘›βˆ’1, πœ‰ ∈ R𝑛 (58)

taking the limit for|π‘₯| β†’ +∞. Then, setting π‘₯ = πœ†πœπœ, 𝜁 ∈ [0, +∞), 𝜍 ∈ Sπ‘›βˆ’1,πœ† β‰₯ πœ†

0≫ 1, in 𝐼1(πœ†), by homogeneity and

the previous remarks, we can write

Ξ¦ (𝑑; πœ†πœπœ, πœ‰; πœ†) = βˆ’πœ†π‘‘ + π‘‘πœ” (πœ†πœπœ) π‘žπ‘’(πœ†πœπœ, πœ‰) + π‘‘π‘†π‘š,0(πœ†πœπœ, πœ‰) + 𝑑2πœ” (πœ†πœπœ) 𝑆2π‘šβˆ’1,1𝑇,𝑒 (πœ†πœπœ, πœ‰) + 𝑑2𝑆2π‘šβˆ’1,0𝑇 (πœ†πœπœ, πœ‰) = βˆ’πœ†π‘‘ + πœ†πœπ‘‘π‘žπ‘’(𝜍, πœ‰) + πœ†πœπ‘‘2𝑆2π‘šβˆ’1,1𝑇,𝑒 (𝜍, πœ‰) + π‘‘π‘†π‘š,0(πœ†πœπœ, πœ‰) + 𝑑2𝑆2π‘šβˆ’1,0 𝑇 (πœ†πœπœ, πœ‰) = πœ† [βˆ’π‘‘ + πœπ‘‘π‘žπ‘’(𝜍, πœ‰) + πœπ‘‘2𝑆𝑇,𝑒2π‘šβˆ’1,1(𝜍, πœ‰)] + 𝐺1(πœ†; 𝑑, 𝜁; 𝜍, πœ‰) = πœ†πΉ1(𝑑, 𝜁; 𝜍, πœ‰) + 𝐺1(πœ†; 𝑑, 𝜁; 𝜍, πœ‰) , (59) and find, in view of the compactness of the support of the integrand (see the proof ofProposition 25 below) and the hypotheses 𝐼1(πœ†) = πœ†π‘›βˆ« π‘’π‘–πœ†πΉ1(𝑑,𝜁;𝜍,πœ‰)𝑒𝑖𝐺1(πœ†;𝑑,𝜁;𝜍,πœ‰)πœ“ (𝑑) Γ— π‘Ž (𝑑; πœ†πœπœ, πœ‰) 𝐻1(βŸ¨πœ†πœβŸ© βŸ¨πœ‰βŸ© π‘š πœ† ) Γ— 𝐻2(σ΅„¨σ΅„¨σ΅„¨σ΅„¨πœ‰σ΅„¨σ΅„¨σ΅„¨σ΅„¨)πœπ‘›βˆ’1π‘‘π‘‘π‘‘πœLπœ‰π‘‘πœ = πœ†π‘› (2πœ‹)π‘›βˆ« π‘’π‘–πœ†πΉ1(𝑋,π‘Œ)π‘ˆ1(𝑋, π‘Œ; πœ†) π‘‘π‘‹π‘‘π‘Œ, (60)

(10)

Proposition 25. Choosing the constants π‘˜1, πœ†0 > 1 large

enough and𝑇 > 0 suitably small, one has, for any π‘˜2 > 1 and

for a certain sequence𝑐𝑗,𝑗 = 0, 1, . . .,

𝐼1(πœ†) ∼+βˆžβˆ‘

𝑗=0

π‘π‘—πœ†π‘›βˆ’1βˆ’π‘—, (61)

that is,𝐼1(πœ†) = 𝑐0πœ†π‘›βˆ’1+ 𝑂(πœ†π‘›βˆ’2), with

𝑐0= 1

(2πœ‹)π‘›βˆ’1∫Rπ‘›βˆ«Sπ‘›βˆ’1

𝐻2(σ΅„¨σ΅„¨σ΅„¨σ΅„¨πœ‰σ΅„¨σ΅„¨σ΅„¨σ΅„¨)

π‘žπ‘’(𝜍, πœ‰)π‘›π‘‘πœπ‘‘πœ‰. (62)

Proof. It is easy to see that, on the support ofπ‘ˆ1, the phase

function𝐹1(𝑋, π‘Œ) admits a unique, nondegenerate, stationary point𝑋0 = 𝑋0(π‘Œ) = (0, π‘žπ‘’(𝜍, πœ‰)βˆ’1), that is, 𝐹1,𝑋󸀠 (𝑋0(π‘Œ), π‘Œ) = 0 for all π‘Œ such that (𝑋, π‘Œ) ∈ supp π‘ˆ1, provided that𝑇 >

0 is chosen suitably small (see, e.g., [25, page 136]), and the Hessian det(𝐹󸀠󸀠

1,𝑋(𝑋0(π‘Œ), π‘Œ)) equals βˆ’π‘žπ‘’(𝜍, πœ‰)2< 0. Moreover,

the amplitude function

π‘ˆ1(𝑋, π‘Œ; πœ†) = πœ“ (𝑑) 𝐻1(βŸ¨πœ†πœβŸ© βŸ¨πœ‰βŸ©

π‘š

πœ† ) 𝐻2(σ΅„¨σ΅„¨σ΅„¨σ΅„¨πœ‰σ΅„¨σ΅„¨σ΅„¨σ΅„¨) Γ— π‘Ž (𝑑; πœ†πœπœ, πœ‰) πœπ‘›βˆ’1𝑒𝑖𝐺(πœ†;𝑑,𝜁;𝜍,πœ‰)

(63)

is compactly supported with respect to the variables𝑋 and π‘Œ and satisfies, for all𝛾 ∈ Z2+,

π·π›Ύπ‘‹π‘ˆ1(𝑋, π‘Œ; πœ†) β‰Ί 1 (64)

for all𝑋, π‘Œ, πœ† β‰₯ πœ†0. In fact,

(1)πœ“ ∈ 𝐢0∞((βˆ’π‘‡, 𝑇)), 𝜍 ∈ Sπ‘›βˆ’1, supp[𝐻2(|πœ‰|)] βŠ† {πœ‰ : |πœ‰| ≀ 2π‘˜2}, and (2π‘˜1)βˆ’1≀ βŸ¨πœ‰βŸ©π‘šβˆš 1 πœ†2 + 𝜁2≀ 2π‘˜1 󳨐⇒ 0 < √ 1 4π‘˜2 1⟨2π‘˜2⟩2π‘š βˆ’ 1 πœ†2 0 ≀ 𝜁 ≀ 2π‘˜1, (65) whereπœ†0> 2π‘˜1⟨2π‘˜2βŸ©π‘š;

(2) all the factors appearing in the expression of π‘ˆ1 are uniformly bounded, together with all their 𝑋-derivatives, for𝑋 ∈ 𝑆𝑋 = supp πœ“ Γ— [𝜁0, 𝜁1], π‘Œ ∈ π‘†π‘Œ= Sπ‘›βˆ’1Γ— {πœ‰ : |πœ‰| ≀ 2π‘˜

2}, and πœ† β‰₯ πœ†0.

Of course, (2) trivially holds for the cutoff functions πœ“(𝑑) and 𝐻2(|πœ‰|), and for the factor πœπ‘›βˆ’1. Since π‘Ž(𝑑; π‘₯, πœ‰) ∈

𝑆0,0𝑇 (π‘₯, πœ‰), on 𝑆𝑋× π‘†π‘Œwe have, for all𝛾 ∈ Z2+andπœ† β‰₯ πœ†0> 1,

π·π›Ύπ‘‹π‘Ž (𝑑; πœ†πœπœ, πœ‰) β‰Ί βŸ¨πœ†πœβŸ©βˆ’π›Ύ2πœ†π›Ύ2βŸ¨πœ‰βŸ©π‘š β‰Ί 1

((1/πœ†2) + 𝜁2)𝛾2/2

< 1 πœπ›Ύ2 β‰Ί 1.

(66)

Moreover, since𝐺1∈ π‘†π‘š,0𝑇 (π‘₯, πœ‰) is actually in π‘†βˆ’βˆž,0𝑇 (π‘₯, πœ‰) βŠ‚ 𝑆0,0𝑇 (π‘₯, πœ‰) on 𝑆𝑋 Γ— π‘†π‘Œ, the same holds for exp(𝑖𝐺1), by an

application of the Fa`a di Bruno formula for the derivatives of compositions of functions, so also this factor fulfills the desired estimates. Finally, another straightforward computa-tion shows that, for all𝛾2∈ Z+andπœ† β‰₯ πœ†0> 1,

𝐷𝛾2

𝜁𝐻1(βŸ¨πœ†πœβŸ© βŸ¨πœ‰βŸ© π‘š

πœ† ) β‰Ί 1 (67)

on 𝑆𝑋 Γ— π‘†π‘Œ. The proposition is then a consequence of the stationary phase theorem (see [30, Proposition 1.2.4], [31, Theorem 7.7.6]), applied to the integral with respect to 𝑋 = (𝑑, 𝜁). In particular, the leading term is given by πœ†π‘›/(2πœ‹)π‘›βˆ’1 times the integral with respect to π‘Œ of πœ†βˆ’1| det

(𝐹1,𝑋󸀠󸀠 (𝑋0(π‘Œ), π‘Œ))|βˆ’1/2π‘ˆ1(𝑋0(π‘Œ), π‘Œ; πœ†), that is 𝐼1(πœ†) = πœ† π‘›βˆ’1 (2πœ‹)π‘›βˆ’1∫Rπ‘›βˆ«Sπ‘›βˆ’1 1 π‘žπ‘’(𝜍, πœ‰) πœ“ (0) Γ— 𝐻1(βŸ¨πœ†/π‘žπ‘’(𝜍, πœ‰)⟩ βŸ¨πœ‰βŸ© π‘š πœ† ) Γ— 𝐻2(σ΅„¨σ΅„¨σ΅„¨σ΅„¨πœ‰σ΅„¨σ΅„¨σ΅„¨σ΅„¨) π‘žπ‘’(𝜍, πœ‰)π‘›βˆ’1π‘Ž (0; πœ†πœ π‘žπ‘’(𝜍, πœ‰), πœ‰) π‘‘πœπ‘‘πœ‰ + 𝑂 (πœ†π‘›βˆ’2) = πœ†π‘›βˆ’1 (2πœ‹)π‘›βˆ’1∫Rπ‘›βˆ«Sπ‘›βˆ’1𝐻1( βŸ¨πœ†/π‘žπ‘’(𝜍, πœ‰)⟩ βŸ¨πœ‰βŸ©π‘š πœ† ) Γ— 𝐻2(σ΅„¨σ΅„¨σ΅„¨σ΅„¨πœ‰σ΅„¨σ΅„¨σ΅„¨σ΅„¨) π‘žπ‘’(𝜍, πœ‰)π‘›π‘‘πœπ‘‘πœ‰ + 𝑂 (πœ†π‘›βˆ’2) = πœ†π‘›βˆ’1 (2πœ‹)π‘›βˆ’1∫Rπ‘›βˆ«Sπ‘›βˆ’1 𝐻2(σ΅„¨σ΅„¨σ΅„¨σ΅„¨πœ‰σ΅„¨σ΅„¨σ΅„¨σ΅„¨) π‘žπ‘’(𝜍, πœ‰)π‘›π‘‘πœπ‘‘πœ‰ + 𝑂 (πœ†π‘›βˆ’2) , (68) recalling thatπœ“(0) = 1, π‘Ž(0; π‘₯, πœ‰) = 1 for all π‘₯, πœ‰ ∈ R𝑛.

Indeed, having chosenπ‘˜1 > 2𝐴, πœ†0 > 2π‘˜1⟨2π‘˜2βŸ©π‘š, (58) implies π‘˜βˆ’11 < π΄βˆ’1 < βŸ¨πœ†/π‘žπ‘’(𝜍, πœ‰)⟩ βŸ¨πœ‰βŸ© π‘š πœ† = √(βŸ¨πœ‰βŸ©π‘š πœ† ) 2 + ( βŸ¨πœ‰βŸ©π‘š π‘žπ‘’(𝜍, πœ‰)) 2 < √4π‘˜12 1 + 𝐴2< π‘˜ 1, (69)

uniformly for𝜍 ∈ Sπ‘›βˆ’1, πœ‰ ∈ supp[𝐻2(|πœ‰|)], πœ† β‰₯ πœ†0. This concludes the proof.

Let us now consider𝐼2(πœ†). We follow a procedure close to that used in the proof of Theorem7.7.6 of [31]. However, since here we lack the compactness of the support of the amplitude with respect to π‘₯, we need explicit estimates to show that all the involved integrals are convergent, so we give the argument in full detail in what follows.

(11)

We initially proceed as in the analysis of𝐼1(πœ†) mentioned previously. In view of the presence of the factor1 βˆ’ 𝐻2(|πœ‰|) in the integrand, we can now assume|πœ‰| β‰₯ π‘˜2 > max{𝐡, 1}, 𝐡 > 0 the radius of the smallest ball in R𝑛including supp(1 βˆ’

πœ”), so that π‘ž(π‘₯, πœ‰) = πœ”(πœ‰)π‘žπœ“(π‘₯, πœ‰) + π‘†π‘šβˆ’1,1(π‘₯, πœ‰) = π‘ž

πœ“(π‘₯, πœ‰) +

π‘†π‘šβˆ’1,1(π‘₯, πœ‰). Then, with some 0 < 𝛿

2< 1, Ξ¦ (𝑑; π‘₯, πœ‰; πœ†) = βˆ’πœ†π‘‘ βˆ’ π‘₯πœ‰ + πœ‘ (0; π‘₯, πœ‰) + π‘‘πœ•π‘‘πœ‘ (0; π‘₯, πœ‰) +𝑑22 πœ•π‘‘2πœ‘ (𝑑𝛿2; π‘₯, πœ‰) = βˆ’πœ†π‘‘ + π‘‘π‘ž (π‘₯, πœ‰) + 𝑑2𝑆2π‘šβˆ’1,1𝑇 (π‘₯, πœ‰) = βˆ’πœ†π‘‘ + π‘‘π‘žπœ“(π‘₯, πœ‰) + π‘‘π‘†π‘šβˆ’1,1(π‘₯, πœ‰) + 𝑑2𝑆2π‘šβˆ’1,1𝑇 (π‘₯, πœ‰) . (70) Settingπœ‰ = (πœ†πœ)1/π‘šπœ, 𝜁 ∈ [0, +∞), 𝜍 ∈ Sπ‘›βˆ’1,πœ† β‰₯ πœ†0, we can rewrite𝐼2(πœ†) as 𝐼2(πœ†) = π‘šπ‘›(2πœ‹)πœ†π‘›/π‘šπ‘› Γ— ∫ π‘’π‘–πœ†(βˆ’π‘‘+πœπ‘‘π‘žπœ“(π‘₯,𝜍)+π‘‘πœ†βˆ’1π‘†π‘šβˆ’1,1(π‘₯,(πœ†πœ)1/π‘šπœ)+𝑑2πœ†βˆ’1𝑆2π‘šβˆ’1,1𝑇 (π‘₯,(πœ†πœ)1/π‘šπœ)) Γ— πœ“ (𝑑) π‘Ž (𝑑; π‘₯, (πœ†πœ)1/π‘šπœ) Γ— 𝐻1(⟨π‘₯⟩ ⟨(πœ†πœ) 1/π‘šπœβŸ©π‘š πœ† ) Γ— [1 βˆ’ 𝐻2((πœ†πœ)1/π‘š)] 𝜁(𝑛/π‘š)βˆ’1π‘‘π‘‘π‘‘πœπ‘‘πœπ‘‘π‘₯ = π‘šπ‘›(2πœ‹)πœ†π‘›/π‘šπ‘›βˆ« π‘’π‘–πœ†πΉ2(𝑋,π‘Œ;πœ†)π‘ˆ 2(𝑋, π‘Œ; πœ†) π‘‘π‘‹π‘‘π‘Œ, (71) 𝑋 = (𝑑, 𝜁), π‘Œ = (𝜍, π‘₯), where we have set

𝐹2(𝑋, π‘Œ; πœ†) = βˆ’ 𝑑 + πœπ‘‘π‘žπœ“(π‘₯, 𝜍) + π‘‘πœ†βˆ’1π‘†π‘šβˆ’1,1(π‘₯, (πœ†πœ)1/π‘šπœ) + 𝑑2πœ†βˆ’1𝑆2π‘šβˆ’1,1𝑇 (π‘₯, (πœ†πœ)1/π‘šπœ) π‘ˆ2(𝑋, π‘Œ; πœ†) = πœ“ (𝑑) 𝐻1(⟨π‘₯⟩ ⟨(πœ†πœ) 1/π‘šπœβŸ©π‘š πœ† ) Γ— [1 βˆ’ 𝐻2((πœ†πœ)1/π‘š)] Γ— π‘Ž (𝑑; π‘₯, (πœ†πœ)1/π‘šπœ) 𝜁(𝑛/π‘š)βˆ’1. (72) On the support ofπ‘ˆ2, we have

⟨π‘₯⟩ ⟨(πœ†πœ)1/π‘šπœβŸ©π‘š πœ† ∼ 1, (πœ†πœ)1/π‘šβ‰» 1 󳨐⇒ ⟨(πœ†πœ)1/π‘šπœβŸ©π‘š= ⟨(πœ†πœ)1/π‘šβŸ©π‘šβˆΌ πœ†πœ, (73) so that ⟨π‘₯⟩ πœ†πœ πœ† ∼ 1 ⇐⇒ 𝜁 ∼ ⟨π‘₯βŸ©βˆ’1, |π‘₯| < ⟨π‘₯⟩ ≀ 2π‘˜1(π‘˜2)βˆ’π‘šπœ† = Μƒπœ˜πœ†. (74)

For any fixedπ‘Œ ∈ Sπ‘›βˆ’1Γ— R𝑛, we then have𝑋 belonging to a compact set, uniformly with respect toπœ† β‰₯ πœ†0, say suppπœ“ Γ— [π‘βˆ’1⟨π‘₯βŸ©βˆ’1, π‘βŸ¨π‘₯βŸ©βˆ’1], for a suitable 𝑐 > 1.

Remark 26. Incidentally, we observe that a rough estimate of

πœ†π‘›/π‘šπΌ 2(πœ†) is ∫ π‘’π‘–πœ†πΉ2(𝑋,π‘Œ;πœ†)π‘ˆ 2(𝑋, π‘Œ; πœ†) 𝑑𝑋 β‰Ί ⟨π‘₯βŸ©βˆ’(𝑛/π‘š)+1βˆ«π‘βŸ¨π‘₯⟩ βˆ’1 π‘βˆ’1⟨π‘₯βŸ©βˆ’1π‘‘πœ β‰Ί ⟨π‘₯⟩ βˆ’π‘›/π‘š 󳨐⇒ πœ†π‘›/π‘šβˆ« π‘’π‘–πœ†πΉ2(𝑋,π‘Œ;πœ†)π‘ˆ 2(𝑋, π‘Œ; πœ†) π‘‘π‘‹π‘‘π‘Œ β‰Ί πœ†π‘›, πœ† 󳨀→ +∞. (75)

An even less precise result would be the boundπœ†π‘›/π‘š, using the convergence of the integral with respect toπ‘₯ in the whole R𝑛, given byβˆ’(𝑛/π‘š) + 𝑛 < 0.

The next lemma is immediate, and we omit the proof.

Lemma 27. 𝑆𝑠,𝜎

𝑇 (π‘₯, (πœ†πœ)1/π‘šπœ) = 𝑆𝑇𝑠,𝜎(π‘₯, (πœ†πœ)1/π‘š) for any 𝜁 ∈

[0, +∞), π‘₯ ∈ R𝑛,𝜍 ∈ Sπ‘›βˆ’1,πœ† β‰₯ πœ†0,π‘š ∈ (0, 1), and, for all

𝛾 ∈ Z2

+,

𝐷𝛾𝑋𝑆𝑠,πœŽπ‘‡ (π‘₯, (πœ†πœ)1/π‘š) = πœβˆ’π›Ύ2𝑆𝑠,𝜎

𝑇 (π‘₯, (πœ†πœ)1/π‘š) . (76)

The main result of this section is as follows.

Proposition 28. If π‘˜1, π‘˜2, πœ†0> 1 are chosen large enough, one

has 𝐼2(πœ†) = 𝑛 π‘š 𝑑0πœ†(𝑛/π‘š)βˆ’1+ 𝑂 (πœ†π‘›βˆ’1) + 𝑂 (πœ†(𝑛/π‘š)βˆ’2) . (77) Explicitly, 𝑑0=(2πœ‹)1π‘›βˆ’1∫Rπ‘›βˆ«Sπ‘›βˆ’1 1 π‘žπœ“(π‘₯, 𝜍)𝑛/π‘š π‘‘πœπ‘‘π‘₯. (78) We will prove Proposition 28through various interme-diate steps. First of all, arguing as in the proof of (58), exchanging the role ofπ‘₯ and πœ‰, we note that, for all π‘₯ ∈ R𝑛, 𝜍 ∈ Sπ‘›βˆ’1,

π΄βˆ’1⟨π‘₯⟩ ≀ π‘žπœ“(π‘₯, 𝜍) ≀ 𝐴 ⟨π‘₯⟩ , (79)

(12)

𝐹2,𝑋󸀠 (𝑋, π‘Œ; πœ†) = (πœ•π‘‘πΉ2(𝑋, π‘Œ; πœ†) πœ•πœπΉ2(𝑋, π‘Œ; πœ†) ) = ( βˆ’1 + 𝜁 𝜁0 + πœ†βˆ’1π‘†π‘šβˆ’1,1(π‘₯, (πœ†πœ)1/π‘š) + π‘‘πœ†βˆ’1𝑆2π‘šβˆ’1,1𝑇 (π‘₯, (πœ†πœ)1/π‘š) 𝑑 (π‘žπœ“(π‘₯, 𝜍) + πœ†βˆ’1πœβˆ’1π‘†π‘šβˆ’1,1(π‘₯, (πœ†πœ)1/π‘š) +π‘‘πœ†βˆ’1πœβˆ’1𝑆2π‘šβˆ’1,1 𝑇 (π‘₯, (πœ†πœ)1/π‘š)) ) , (80) 𝑋 = (𝑑, 𝜁) ∈ 𝑆𝑋 = supp πœ“ Γ— [π‘βˆ’1⟨π‘₯βŸ©βˆ’1, π‘βŸ¨π‘₯βŸ©βˆ’1], π‘Œ = (𝜍, π‘₯) ∈ π‘†π‘Œ = Sπ‘›βˆ’1 Γ— R𝑛, πœ† β‰₯ πœ†

0, where we have used

Lemma 27. By the symbolic calculus, remembering thatπœ†πœ β‰₯ π‘˜π‘š

2 > 1 on supp π‘ˆ2, we can rewrite the expressions mentioned

previously as πœ•π‘‘πΉ2(𝑋, π‘Œ; πœ†) = βˆ’ 1 +𝜁𝜁 0 + 𝜁(πœ†πœ) βˆ’1π‘†π‘šβˆ’1,1(π‘₯, (πœ†πœ)1/π‘š) + π‘‘πœ(πœ†πœ)βˆ’1𝑆2π‘šβˆ’1,1𝑇 (π‘₯, (πœ†πœ)1/π‘š) = βˆ’ 1 +𝜁𝜁 0 + 𝜁[(πœ†πœ) 1/π‘š]βˆ’π‘šπ‘†π‘šβˆ’1,1(π‘₯, (πœ†πœ)1/π‘š) + π‘‘πœ[(πœ†πœ)1/π‘š]βˆ’π‘šπ‘†2π‘šβˆ’1,1𝑇 (π‘₯, (πœ†πœ)1/π‘š) = βˆ’ 1 + 𝜁 𝜁0 + πœπ‘†βˆ’1,1(π‘₯, (πœ†πœ)1/π‘š) + π‘‘πœπ‘†π‘šβˆ’1,1𝑇 (π‘₯, (πœ†πœ)1/π‘š) , πœ•πœπΉ2(𝑋, π‘Œ; πœ†) = 𝑑 (π‘žπœ“(π‘₯, 𝜍) + π‘†βˆ’1,1(π‘₯, (πœ†πœ)1/π‘š) +π‘‘π‘†π‘šβˆ’1,1𝑇 (π‘₯, (πœ†πœ)1/π‘š)) . (81)

It is clear that𝜁 ∼ ⟨π‘₯βŸ©βˆ’1 impliesπœπ‘†βˆ’1,1(π‘₯, (πœ†πœ)1/π‘š) = π‘†βˆ’1,0 (π‘₯, (πœ†πœ)1/π‘š) and πœπ‘†π‘šβˆ’1,1𝑇 (π‘₯, (πœ†πœ)1/π‘š) = π‘†π‘šβˆ’1,0𝑇 (π‘₯, (πœ†πœ)1/π‘š), so that we finally have

πœ•π‘‘πΉ2(𝑋, π‘Œ; πœ†) = βˆ’ 1 + 𝜁 𝜁0 + π‘†βˆ’1,0(π‘₯, (πœ†πœ)1/π‘š) + π‘‘π‘†π‘šβˆ’1,0𝑇 (π‘₯, (πœ†πœ)1/π‘š) , πœ•πœπΉ2(𝑋, π‘Œ; πœ†) = 𝑑 (π‘žπœ“(π‘₯, 𝜍) + π‘†βˆ’1,1(π‘₯, (πœ†πœ)1/π‘š) + π‘‘π‘†π‘šβˆ’1,1𝑇 (π‘₯, (πœ†πœ)1/π‘š)) . (82)

We now prove that, modulo an𝑂(|πœ†|βˆ’βˆž) term, we can consider an amplitude such that, on its support, the ration 𝜁/𝜁0is very close to1. To this aim, take 𝐻3∈ 𝐢∞0 (R) such that

0 ≀ 𝐻3(𝜐) ≀ 1, 𝐻3(𝜐) = 1 for |𝜐| ≀ (3/2)πœ€ and 𝐻3(𝜐) = 0 for

|𝜐| β‰₯ 2πœ€, with an arbitrarily fixed, small enough πœ€ ∈ (0, 1/2), and set 𝑉1(𝑋, π‘Œ; πœ†) = π‘ˆ2(𝑋, π‘Œ; πœ†) β‹… [1 βˆ’ 𝐻3(𝜁𝜁 0 βˆ’ 1)] , 𝑉2(𝑋, π‘Œ; πœ†) = π‘ˆ2(𝑋, π‘Œ; πœ†) β‹… 𝐻3(𝜁𝜁 0 βˆ’ 1) , 𝐽1(πœ†) = ∫ π‘’π‘–πœ†πΉ2(𝑋,π‘Œ;πœ†)𝑉 1(𝑋, π‘Œ; πœ†) π‘‘π‘‹π‘‘π‘Œ, 𝐽2(πœ†) = ∫ π‘’π‘–πœ†πΉ2(𝑋,π‘Œ;πœ†)𝑉 2(𝑋, π‘Œ; πœ†) π‘‘π‘‹π‘‘π‘Œ. (83)

Proposition 29. With the choices of 𝑇, π‘˜1, πœ†0, for any πœ€ ∈

(0, 1/2), one can find π‘˜2 > 1 large enough such that 𝐽1(πœ†) = 𝑂(πœ†βˆ’βˆž).

Proof. Since0 < π‘š < 1, in view of (3), (74), and (79), we can

chooseπ‘˜2> 1 so large that, for an arbitrarily fixed πœ€ ∈ (0, 1/2), for anyπœ† β‰₯ πœ†0,𝜁 ∈ (0, +∞) satisfying |πœ‰| = (πœ†πœ)1/π‘šβ‰₯ π‘˜2,

inπœ•π‘‘πΉ2(𝑋, π‘Œ; πœ†) , 󡄨󡄨󡄨󡄨 σ΅„¨π‘†βˆ’1,0(π‘₯, (πœ†πœ)1/π‘š)󡄨󡄨󡄨󡄨󡄨 ≀ 2πœ€, 󡄨󡄨󡄨󡄨 σ΅„¨π‘‘π‘†π‘‡π‘šβˆ’1,0(π‘₯, (πœ†πœ)1/π‘š)󡄨󡄨󡄨󡄨󡄨 ≀ πœ€2, 󡄨󡄨󡄨󡄨 σ΅„¨σ΅„¨σ΅„¨σ΅„¨πœ0π‘‘πœπ‘‘ π‘†βˆ’1,0(π‘₯, (πœ†πœ)1/π‘š)󡄨󡄨󡄨󡄨 =󡄨󡄨󡄨󡄨 σ΅„¨σ΅„¨σ΅„¨σ΅„¨σ΅„¨πœ0πœβˆ’1π‘†βˆ’1,0(π‘₯, (πœ†πœ)1/π‘š))󡄨󡄨󡄨󡄨󡄨 ≀ π‘˜0< 1, (84a) inπœ•πœπΉ2(𝑋, π‘Œ; πœ†) , 󡄨󡄨󡄨󡄨 σ΅„¨π‘†βˆ’1,1(π‘₯, (πœ†πœ)1/π‘š) + π‘‘π‘†π‘šβˆ’1,1𝑇 (π‘₯, (πœ†πœ)1/π‘š)󡄨󡄨󡄨󡄨󡄨 ≀ π΄βˆ’1 2 ⟨π‘₯⟩ , (84b)

(13)

uniformly with respect to(𝑋, π‘Œ) ∈ 𝑆𝑋× π‘†π‘Œ βŠ‡ supp π‘ˆ2(β‹…; πœ†). Then,𝐹2 is nonstationary on supp𝑉1, since there we have |(𝜁/𝜁0) βˆ’ 1| β‰₯ (3/2)πœ€, while

󡄨󡄨󡄨󡄨

σ΅„¨π‘†βˆ’1,0(π‘₯, (πœ†πœ)1/π‘š) + π‘‘π‘†π‘šβˆ’1,0𝑇 (π‘₯, (πœ†πœ)1/π‘š)󡄨󡄨󡄨󡄨󡄨 ≀ πœ€, (85)

which impliesπœ•π‘‘πΉ2(𝑋, π‘Œ; πœ†) ≻ 1. Observing that, on supp 𝑉1, πœ•π‘‘πΉ2(𝑋, π‘Œ; πœ†) = 𝑆0,0

𝑇 (π‘₯, (πœ†πœ)1/π‘š), as well as 𝑉1(𝑋, π‘Œ; πœ†) =

𝑆0,0𝑇 (π‘₯, (πœ†πœ)1/π‘š), the assertion follows by repeated integrations by parts with respect to𝑑, using the operator

𝐿𝑑=πœ†πœ• 1

𝑑𝐹2(𝑋, π‘Œ; πœ†)𝐷𝑑󳨐⇒ 𝐿1𝑒

π‘–πœ†πΉ2(𝑋,π‘Œ;πœ†)

= π‘’π‘–πœ†πΉ2(𝑋,π‘Œ;πœ†),

(86)

and recallingRemark 26.

Proposition 30. With the choices of πœ€, 𝑇 > 0, π‘˜1, π‘˜2, πœ†0 > 1,

one can assume, modulo an𝑂(πœ†π‘›βˆ’1) term, that the integral with

respect toπ‘₯ in 𝐽2(πœ†) is extended to the set {π‘₯ ∈ R𝑛 : ⟨π‘₯⟩ ≀ πœ˜πœ†},

with

𝜘 = (1 βˆ’ πœ€2) [𝐴(2π‘˜2)π‘š]βˆ’1. (87)

Proof. Indeed if𝜘 < Μƒπœ˜ = 2π‘˜1βŸ¨π‘˜2βŸ©βˆ’π‘š, we can split𝐽2(πœ†) into

the sum ∫ πœ˜πœ†β‰€βŸ¨π‘₯βŸ©β‰€Μƒπœ˜πœ†βˆ«Sπ‘›βˆ’1∫ 𝑒 π‘–πœ†πΉ2𝑉 2π‘‘π‘‹π‘‘πœπ‘‘π‘₯ + ∫ ⟨π‘₯βŸ©β‰€πœ˜πœ†βˆ«Sπ‘›βˆ’1∫ 𝑒 π‘–πœ†πΉ2𝑉 2π‘‘π‘‹π‘‘πœπ‘‘π‘₯, (88)

since the inequality𝜘 < Μƒπœ˜ is true when π‘˜2is sufficiently large. Observing that, on suppπ‘ˆ2,

⟨π‘₯⟩ ∼ πœ† 󳨐⇒ βŸ¨πœ‰βŸ©π‘š= ⟨π‘₯⟩ βŸ¨πœ‰βŸ©

π‘š

πœ† πœ†

⟨π‘₯⟩∼ 1 󳨐⇒ σ΅„¨σ΅„¨σ΅„¨σ΅„¨πœ‰σ΅„¨σ΅„¨σ΅„¨σ΅„¨ ≀ π‘˜3, (89) switching back to the original variables, the first integral in (88) can be treated as 𝐼1(πœ†), and gives, in view of

Proposition 25, an𝑂(πœ†π‘›βˆ’1) term, as stated.

Now we can show that 𝐹2(𝑋, π‘Œ; πœ†) admits a unique, nondegenerate stationary pointπ‘‹βˆ—0 = π‘‹βˆ—0(π‘Œ, πœ†) belonging to supp𝑉2for⟨π‘₯βŸ©β‰€ πœ˜πœ†. Under the same hypotheses, π‘‹βˆ—0 lies in a circular neighbourhood of𝑋0 = (0, 𝜁0) = (0, π‘žπœ“(π‘₯, 𝜍)βˆ’1) of arbitrarily small radius.

Proposition 31. With πœ€ ∈ (0, 1/2), 𝑇 > 0, π‘˜1, π‘˜2, πœ†0 > 1

fixed previously,𝐹2,𝑋󸀠 (𝑋, π‘Œ; πœ†) vanishes on supp 𝑉2only for𝑋 =

π‘‹βˆ—

0(π‘Œ; πœ†) = (0, 𝜁0βˆ—(π‘Œ; πœ†)), that is, 𝐹2,𝑋󸀠 (π‘‹βˆ—0(π‘Œ; πœ†), π‘Œ; πœ†) = 0 for allπ‘Œ such that (𝑋, π‘Œ; πœ†) ∈ supp 𝑉2. Moreover,

det(𝐹2,𝑋󸀠󸀠 (π‘‹βˆ—0(π‘Œ; πœ†) , π‘Œ)) ∼ ⟨π‘₯⟩2, σ΅„¨σ΅„¨σ΅„¨σ΅„¨π‘‹βˆ— 0(π‘Œ; πœ†) βˆ’ 𝑋0(π‘Œ)󡄨󡄨󡄨󡄨 =σ΅„¨σ΅„¨σ΅„¨σ΅„¨πœ0βˆ—(π‘Œ; πœ†) βˆ’ 𝜁0(π‘Œ)󡄨󡄨󡄨󡄨 ≀ π΄πœ€2 ⟨π‘₯βŸ©βˆ’1 (90) holds on supp𝑉2.

Proof. We have to solve

0 = βˆ’ 1 +𝜁𝜁 0 + 𝑆 βˆ’1,0(π‘₯, (πœ†πœ)1/π‘š) + π‘‘π‘†π‘šβˆ’1,0𝑇 (π‘₯, (πœ†πœ)1/π‘š) 0 = 𝑑 (π‘žπœ“(π‘₯, 𝜍) + π‘†βˆ’1,1(π‘₯, (πœ†πœ)1/π‘š) +π‘‘π‘†π‘šβˆ’1,1𝑇 (π‘₯, (πœ†πœ)1/π‘š)) , (91) (𝑋, π‘Œ; πœ†) ∈ supp 𝑉2. By (79) and (84a) and (84b), with the choices ofπœ€, 𝑇 > 0, π‘˜1, π‘˜2, πœ†0, the coefficient of𝑑 in the second equation does not vanish at any point of supp𝑉2. Then𝑑 = 0, and𝜁 must satisfy

βˆ’ 1 + 𝜁

𝜁0 + π‘†βˆ’1,0(π‘₯, (πœ†πœ)1/π‘š) = 0

⇐⇒ 𝜁 = 𝜁0(1 + π‘†βˆ’1,0(π‘₯, (πœ†πœ)1/π‘š))

= 𝐺 (𝜁; π‘Œ; πœ†) .

(92)

Since, by the choice ofπ‘˜2,|πœ•πœπΊ(𝜁; π‘Œ; πœ†)| ≀ π‘˜0< 1, uniformly with respect toπ‘Œ ∈ Sπ‘›βˆ’1Γ— {π‘₯ ∈ R𝑛 : ⟨π‘₯⟩ ≀ πœ˜πœ†}, πœ† β‰₯ πœ†0,𝐺 has a unique fixed pointπœβˆ—0 = 𝜁0βˆ—(π‘Œ; πœ†), smoothly depending on the parameters; see the Appendix for more details. Since

πœ•2𝑑𝐹2(𝑋, π‘Œ; πœ†) = π‘†π‘šβˆ’1,0𝑇 (π‘₯, (πœ†πœ)1/π‘š) , πœ•π‘‘πœ•πœπΉ2(𝑋, π‘Œ; πœ†) = π‘žπœ“(π‘₯, 𝜍) (1 + 𝜁0πœβˆ’1(π‘†βˆ’1,0(π‘₯, (πœ†πœ)1/π‘š) +π‘‘π‘†π‘šβˆ’1,0 𝑇 (π‘₯, (πœ†πœ)1/π‘š))) , πœ•2𝜁𝐹2(𝑋, π‘Œ; πœ†) = π‘‘πœβˆ’1(π‘†βˆ’1,1(π‘₯, (πœ†πœ)1/π‘š) +π‘‘π‘†π‘‡π‘šβˆ’1,1(π‘₯, (πœ†πœ)1/π‘š)) , (93)

we can assume thatπœ†πœ β‰₯ π‘˜π‘š2 and the choices of the other parameters imply, on supp𝑉2,

πœ•π‘‘2𝐹2(𝑋, π‘Œ; πœ†) β‰Ί πœ€2, πœ•π‘‘πœ•πœπΉ2(𝑋, π‘Œ; πœ†) ∼ ⟨π‘₯⟩ , πœ•πœ2𝐹2(𝑋, π‘Œ; πœ†) β‰Ί πœ€

2⟨π‘₯⟩2.

(94)

Riferimenti

Documenti correlati

Basandoci sulle diverse definizioni, quindi il concetto Γ¨: β€œmettersi alla prova”. Dunque esiste un legame tra gioco e vita reale, perchΓ© come ci mettiamo alla prova in un gioco, lo

contraente richieda la risoluzione del contratto per inadempimento della controparte, ed il contraente asserita- mente inadempiente richieda anch’esso una pronuncia di risoluzione -

The Italian economic policy of the fifties sees the tormented overcoming of the liberalism of the first republican legislature thanks to figures like that of Ezio Vanoni

Gli embrioni da tagliare al criostato, quando arrivano allo stadio voluto, in questo lavoro si sono usati a stadio 42, vengono fissati per 1-2 ore in paraformaldeide

The simplest model to describe attitude is to schematize a spacecraft with a flat plate and consider its normal n as the vector pointing to the target.. With no loss of

With the same approach depicted in the previ- ous paragraph for the global spectrum we fitted 1T models for the cluster component plus the spectral components needed to model the

The effect of the butanol isomers on carbon particulate matter formation was studied by substituting up to 20% of the total carbon of ethylene, fed to premixed flames with

The inbreeding coefficient based on ROH (FROH) was estimated by the ratio between the total ROH length and the size of the genome in each animal. Unlike inbreeding estimated based