• Non ci sono risultati.

A new case of 13q12.2q13.1 microdeletion syndrome contributes to phenotype delineation.

N/A
N/A
Protected

Academic year: 2021

Condividi "A new case of 13q12.2q13.1 microdeletion syndrome contributes to phenotype delineation."

Copied!
6
0
0

Testo completo

(1)

Case Report

A New Case of 13q12.2q13.1 Microdeletion Syndrome

Contributes to Phenotype Delineation

Giorgia Mandrile,

1,2

Eleonora Di Gregorio,

3,4

Alessandro Calcia,

3

Alessandro Brussino,

3

Enrico Grosso,

4

Elisa Savin,

4

Daniela Francesca Giachino,

1,2

and Alfredo Brusco

3,4

1Medical Genetics Unit, “San Luigi Gonzaga” University Hospital, University of Torino, Regione Gonzole 10, 10143 Orbassano, Italy

2Department of Clinical & Biological Sciences, University of Torino, 10143 Orbassano, Italy

3Department of Medical Sciences, University of Torino, Via Santena 19, 10126 Torino, Italy

4Medical Genetics, “Citt`a della Salute e della Scienza” University Hospital, 10126 Torino, Italy

Correspondence should be addressed to Giorgia Mandrile; giorgia.mandrile@unito.it and Alfredo Brusco; alfredo.brusco@unito.it Received 4 August 2014; Accepted 2 November 2014; Published 23 November 2014

Academic Editor: Evica Rajcan-Separovic

Copyright © 2014 Giorgia Mandrile et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A recently described genetic disorder has been associated with 13q12.3 microdeletion spanning three genes, namely, KATNAL1,

LINC00426, and HMGB1. Here, we report a new case with similar clinical features that we have followed from birth to 5 years

old. The child carried a complex rearrangement with a double translocation: 46,XX,t(7;13)(p15;q14),t(11;15)(q23;q22). Array-CGH identified a de novo microdeletion at 13q12.2q13.1 spanning 3–3.4 Mb and overlapping 13q12.3 critical region. Clinical features resembling those reported in the literature confirm the existence of a distinct 13q12.3 microdeletion syndrome and provide further evidence that is useful to characterize its phenotypic expression during the 5 years of development.

1. Introduction

Array-CGH has gained increased recognition as a first-tier technique to identify and characterize the genetic determi-nants of intellectual disability (ID) syndromes. Following its introduction, the detection rate of molecular cytogenetic alterations has increased by up to 15% in unselected patients with ID [1,2]. The possibility of comparing patient pheno-types with overlapping rearrangements has led to the identifi-cation of several novel microdeletion/microdupliidentifi-cation syn-dromes [2]. A 13q12.3 microdeletion syndrome has recently been described involving a∼300 kb critical region spanning only three genes, namely, KATNAL1, HMGB1, and the non-coding RNA LINC00426 [3].

Here, we describe a Caucasian patient with a de novo complex chromosomal rearrangement [t(7;13) and t(11;15)] including a 3–3.4 Mb microdeletion on 13q12.2q13.1, overlap-ping with the 13q12.3 microdeletion syndrome region. This

subject displays the characteristic dysmorphic features high-lighted in the recently reported cases, as well as psychomotor developmental delay and markedly delayed speech.

2. Clinical Report

The proband was the third daughter of a 41-year-old mother and a 42-year-old father. Both parents and siblings were healthy. Prenatal ultrasounds did not reveal any foetal malformations. Prenatal karyotype analysis by standard GTG banding, performed due to advanced maternal age, showed a de novo double translocation [46,XX,t(7;13) (p15;q14),t(11;15)(q23;q22)] (Figure 1(a)); UPD was ruled out for chromosomes 7, 11, and 15. Birth occurred through elective caesarean section at the 38th week of gestation (APGAR 7/8). Birth parameters were at the 50th centile according to the Italian growth curves (length: 50 cm (50th cent); weight: 2.79 kg (50th cent); head circumference: 34.5 cm (50th cent)).

Case Reports in Genetics

Volume 2014, Article ID 470830, 5 pages http://dx.doi.org/10.1155/2014/470830

(2)

46,XX,t(7;13)(p15;q14),t(11;15)(q23;q22)

(a)

chr.13q12.2q13.1

(b)

13q12.3 microdeletion critical region

chr13:29067457-32582340|DECIPHER-ID:249924 dn chr13:29226273-31540272|DECIPHER-ID:2582282 pat

chr13:29851616-31096630|DECIPHER-ID:4587 un

chr13:30770760-31844755|DECIPHER-ID:279188 dn chr13:30774028-31810638|DECIPHER-ID:266456 dn

chr13:30768420-32166016|DECIPHER-ID:2154 dn patient 2, in Bartholdi et al. 2014 chr13:30805425-32533892|DECIPHER-ID:248887 dn patient 3, in Bartholdi et al. 2014 chr13:30880255-32462466| patient 1 dn, in Bartholdi et al. 2014 chr13:28963865-31955272|DECIPHER-ID:263218 dn-our patient

UBL3 TEX26-AS1

LINC00545 FLT1

SLC7A1

MTUS2 KATNAL1 USPL1

ALOX5AP LINC00426 B3GALTL RXFP2 HSPH1 SLC46A3 POMP MTUS2-AS1 LINC00544 LINC00297 LINC00572 HMGB1 LINC00398 TEX26 MEDAG chr13 29 M 30 M 31 M 32 M Refseq genes (c)

Figure 1: Karyotype, array-CGH analysis and schematic representation of the deleted region with reported DECIPHER cases. (a) The G-band karyotype of the patient. Black arrows indicate translocated chromosomes. (b) Chromosome 13 array-CGH results [arr 13q12.2q13.1 (28,875,081x2, 28,963,865-31,955,272x1, 32,313,799x2)dn]. (c) A scheme of the deleted region with distances in Mb and the Refseq genes are reported (GRCh37/hg19). The region deleted in our patient (code: 263218, orange bar) and the overlapping reported deletions (red bars) as

shown by the Decipher database (http://decipher.sanger.ac.uk/, version 5.1) are reported. Above each bar the extension of the rearrangement

and the mode of inheritance is reported (dn: de novo; pat: paternal origin, and un: unknown).

We excluded cerebral malformations by brain ultrasound analysis and ocular defects by carrying out a fundus oculi exam. ECG examination showed a long QT (QTc: 470 ms), which was not reconfirmed at 17 days. Dysmorphisms included large wide set eyes, long philtrum, thin upper lip, and large ears (Figure 2). An angioma was present on the thorax and another was found on the top of the head.

From infancy to the last follow-up at 5 years old, growth parameters were consistently below target levels. At 5 years, the measured parameters of the child were as follows: height: 100 cm (3rd cent); weight: 13 kg (<3rd cent/−2.8 SD); head circumference: 49 cm (10th cent). She displayed psychomotor delay: at 8 months she was unable to sit unsupported and at 18 months, after physiotherapy treatment, she still required

support for walking. Lallation began at 16 months and language development was markedly impaired (at 5 years she pronounced very few words that included phonological alterations). The Griffiths test performed at 20 months old revealed a mental age of 14.4 months.

Examination at 2 years old revealed a normal EEG but brain MRI showed mild hypomyelination of the subcortical regions and thinning of the corpus callosum. Urinary and plasmatic aminoacid screenings were normal.

Postnatal array-CGH 44 K (Agilent, Santa Clara, CA) performed at 1 year old identified a 3–3.4 Mb microdele-tion on chromosome 13q12.2q13.1, close to the translocamicrodele-tion breakpoint on chromosome 13 (Figure 1(b)). The deletion was shown to span from position 28,963,865 to 31,955,272

(3)

12 weeks 8 months 3 years 5 years

Figure 2: Proposita at 12 weeks, 8 months, 3 years, and 5 years old.

(minimal region) (NCBI Build 37/hg19), to contain 20 tran-scripts (15 coding genes), and did not overlap with com-mon copy number variants (Database of Genomic Variants,

http://projects.tcag.ca/variation/) (Figure 1(c)). The deletion

was confirmed by real-time quantitative PCR assay designed to target exon 4 of the microtubule-associated tumour sup-pressor candidate 2 gene (MTUS2, NM 001033602.2). The same assay was used to confirm the de novo origin of this rearrangement.

3. Discussion

The 13q12.3 microdeletion syndrome was recently described in three patients presenting with intellectual disability, micro-cephaly, and eczema/atopic dermatitis [3]. Here, we describe a fourth patient with strikingly similar dysmorphic features, confirming the presence of a recognizable phenotype.

Common clinical features included reduced head circum-ference, triangular face, high frontal hairline, large ears, wide set eyes, fullness of eyelids, malar flattening, a prominent nose with underdeveloped alae nasi and low insertion col-umella, thin upper lip vermilion, and a pointed chin. Our patient had one episode of cutaneous rash, but a specific diagnosis of atopic dermatitis was not made. All patients have shown delayed speech development and moderate intel-lectual deficit. In three out of four patients recurrent upper airway respiratory infections were reported. Other features shared by the described patients (namely, recurrent vomiting, failure to thrive, allergies, abnormal vision, oligodontia, or truncal obesity) were not observed in our proband.

Several other deletions and duplications that partially or totally overlap the present one, which are associated with a particular phenotype, are reported in the Decipher database

(https://decipher.sanger.ac.uk/) (Figure 1(c)and Table 1). In

particular, four deletions are partially or totally included in the deletion of this case study (DECIPHER cases num-bers 249924, 282282, 4587, 266456, and 279188) and these patients show intellectual disability, language delay, micro-cephaly, and facial dysmorphisms. Moreover, behavioural abnormalities similar to the ones described by Bartholdi et al. were reported in two cases (Table 1). The minimal shared region between these deletions and the deletion reported in our patient includes the three genes KATNAL1 (MIM 614764), LOC100188949, and HMGB1 (MIM 163905) [3]. A causal role can be easily suggested for HMGB1 only, which encodes a ubiquitous nonhistone chromoso-mal protein expressed in brain (Allen Mouse Brain Atlas,

http://mouse.brain-map.org/). This is a possible

dosage-sensitive gene involved in the inflammatory response that may contribute to neuronal excitability and seizures [4,5].

Three other genes within the deleted region in our patient, but not found to be involved in the patients investigated by Bartholdi et al., are associated with OMIM phenotypes: (i) UDP-Gal:beta-GlcNAc beta-1,3-galactosyltransferase-like (B3GALTL, MIM 610308), which is mutated in the autosomal recessive Peters plus syndrome (MIM 261540), characterized by anterior eye-chamber abnormalities, disproportionate short stature, and developmental delay [6]; (ii) arachidonate 5-lipoxygenase-activating protein (ALOX5AP, MIM 603700) gene, whose sequence variants confer increased susceptibility to stroke (MIM 603700) [7]; (iii) proteasome maturation

(4)

T a ble 1: P heno ty p ic fe at u re s o f D ec ip her p at ien ts w it h a delet io n th at o verl aps w it h o u r cas e. D eci p h er co de 26 32 18 (o ur cas e) 24 9 92 4 28 22 82 4 58 7 26 6 45 6 279 188 Pat ie n t 1 [ 3 ] From (b p ) To (b p ) Si ze (Mb) In her it ance 28,9 63 ,86 5 31 ,95 5,2 72 (3.4) Den ov o 29 ,0 67 ,457 32 ,58 2,3 4 0 (3.5 1) De n ov o 29 ,226,2 73 31 ,5 4 0,2 72 (2.3 1) Pat er n al ∗ 29 ,8 51 ,6 16 31 ,0 9 6,8 30 (1.2 5) Un k n o w n 30,7 74,0 28 31 ,8 10,6 38 (1.0 4 ) De n ov o 30,7 70,7 6 0 31 ,8 4 4,7 55 (1.07) De n ov o 30,880,2 55 32 ,4 62 ,4 6 (1.58) De n ov o A ge (yr s) 5 15 11 ? 2 0 19 H eig h t 3r d cen t G ro w th re t. 3r d–10t h cen t W eig h t Ob esi ty 25t h–5 0 th cen t M icr o cep ha ly O F C: 10t h cen t + + + n.a. E ars L arge L arge W ide se t, la rg e ey es + − ++ Puff y ey elids + ++ E yes, o th er s N o rmal visio n D .p .f H yp er met ro p ia N arr o w n asal b ridg e ++ + Un d er d ev el o p ed alae n asi + ++ Lo w in se rti o n co lu mel la ++ + Thin ve rm ilio n upp er lip + ++ Olig o d o n ti a − + Tho rax Mi ld p ec tus ex ca va tu m Pe ct u s ex ca va tu m At o p ic der m at it is O n e epi so d e of cu ta n eo u s ra sh ++ Sk in Tw o haema n gi o m as Sp ott y h yp er p igm Oth er s M eta ta rs u s add u ct us; hy p o go n ad is m 2-3 to e syndac ty ly Cut an eou s fin ge r syndac ty ly Hip d ys p la si a; cr yp to rc hidism Int el le ct u al defici t + + +++++ L an gua ge de la y + + + + + Be h av io u ra l ab no rm ali ties − AD HD H yp erac ti vi ty H yp erac ti vi ty Hy p o to n ia + N eur o logical fe at u re s H yp er reflexia N o te :A D H D: at te n tio n d efici t h yp erac ti vi ty dis o rd er .n .a.: no t ava ila b le .d el: d eletio n. A st er isk indica te s tha t the fa th er o f pa tien t 28 22 82 w as aff ec ted. h yp er p igm: h yp er p igmen fi ss u re s; P h an ot yp e o f 24 9 924 w as n o t av ai la b le ;G row th re t. :g row th re ta rd at io n .

(5)

protein (POMP, MIM 613386) gene, which is associated with the recessive phenotype keratosis linearis with ichthyosis congenita and sclerosing keratoderma (MIM 601952) [8]. The clinical features of these diseases are not clearly related to our patient’s phenotype, in line with the recessive nature of the associated syndromes. Comparison of our patient with the four reported in Decipher did not suggest any phenotypic effect of the additional deleted genes in the 13q12.2q13.1 region. Moreover, we cannot exclude the occurrence of posi-tion effect or gene disrupposi-tion at any of the breakpoints of this complex karyotype and the deletion span may contribute to the phenotypic differences. Thus, the gene(s) responsible for the phenotypic differences with reference to the individuals in the study of Bartholdi et al. presently remains elusive.

The relevance of the 13q12q13 deletion, currently sup-ported by the phenotypic similarity and de novo deletion origin of the three DECIPHER cases, the three individuals reported by Bartholdi et al., and our affected subject will be confirmed by identifying additional cases, in particular those carrying point mutations in HMGB1 or another gene in this region.

Abbreviations

CGH: Comparative genome hybridization CCR: Complex chromosomal rearrangements UPL: Universal probe library

UPD: Uniparental disomy ECG: Electrocardiogram EEG: Electroencephalogram MRI: Magnetic resonance imaging.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgments

The authors are grateful to the patient and her family for agreeing to take part in this study. This work was sup-ported by the Regione Piemonte Ricerca Sanitaria Finalizzata and MURST60%. This study makes use of data gener-ated by the DECIPHER Consortium. A full list of centres who contributed to the generation of the data is available

fromhttp://decipher.sanger.ac.uk/and via email from

deci-pher@sanger.ac.uk. Funding for the project was provided by the Wellcome Trust. Dissemination of information. The case reported here has been entered in the “DECIPHER” database

(http://decipher.sanger.ac.uk/) with the code number 263218.

References

[1] D. T. Miller, M. P. Adam, S. Aradhya et al., “Consensus state-ment: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies,” The American Journal of Human Genetics, vol. 86, no. 5, pp. 749–764, 2010.

[2] L. E. L. M. Vissers, B. B. A. de Vries, and J. A. Veltman, “Genomic microarrays in mental retardation: from copy number variation to gene, from research to diagnosis,” Journal of Medical Genetics, vol. 47, no. 5, pp. 289–297, 2010.

[3] D. Bartholdi, A. Stray-Pedersen, S. Azzarello-Burri et al., “A newly recognized 13q12.3 microdeletion syndrome character-ized by intellectual disability, microcephaly, and eczema/atopic dermatitis encompassing the HMGB1 and KATNAL1 genes,”

American Journal of Medical Genetics Part A, vol. 164, no. 5, pp.

1277–1283, 2014.

[4] M. Maroso, S. Balosso, T. Ravizza et al., “Toll-like receptor 4 and high-mobility group box-1 are involved in ictogenesis and can be targeted to reduce seizures,” Nature Medicine, vol. 16, no. 4, pp. 413–419, 2010.

[5] L. Apetoh, F. Ghiringhelli, A. Tesniere et al., “Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy,” Nature Medicine, vol. 13, no. 9, pp. 1050–1059, 2007.

[6] S. A. J. L. Oberstein, M. Kriek, S. J. White et al., “Peters Plus syndrome is caused by mutations in B3GALTL, a putative glyco-syltransferase,” The American Journal of Human Genetics, vol. 79, no. 3, pp. 562–566, 2006.

[7] R. Ji, J. Jia, X. Ma, J. Wu, Y. Zhang, and L. Xu, “Genetic variants in the promoter region of the ALOx5AP gene and susceptibility of ischemic stroke,” Cerebrovascular Diseases, vol. 32, no. 3, pp. 261–268, 2011.

[8] J. Dahlqvist, J. Klar, N. Tiwari et al., “A single-nucleotide

dele-tion in the POMP 5󸀠UTR causes a transcriptional switch and

altered epidermal proteasome distribution in KLICK genoder-matosis,” The American Journal of Human Genetics, vol. 86, no. 4, pp. 596–603, 2010.

(6)

Submit your manuscripts at

http://www.hindawi.com

Stem Cells

International

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Behavioural

Neurology

Endocrinology

International Journal of

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

BioMed

Research International

Oncology

Journal of

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Oxidative Medicine and Cellular Longevity

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

PPAR Research

Immunology Research

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Journal of

Obesity

Journal of

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Computational and Mathematical Methods in Medicine

Ophthalmology

Journal of Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Research and Treatment

AIDS

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Parkinson’s

Disease

Evidence-Based Complementary and Alternative Medicine Volume 2014 Hindawi Publishing Corporation

Riferimenti

Documenti correlati

Compounds with a N-piperidin acrylamide moiety showed a greater antipyroptotic effect than propanamide derivates; no compounds showed a significant cytotoxicity.

The topics covered include the structure and mechanics of metallic nanocontacts, ab initio-based ballistic electron transport as described by the Landauer-B¨ uttiker scatter-

esperienze di collaborazione scientifica con alcune università e centri di ricerca in cina | multiple experiences in scientific collaboration with universities and research

Il consumo di carburante risparmiabile tramite riduzione di massa ed implementazione di effetti secondari viene calcolato mediante la stessa espressione analitica

To the extent that microeconomic studies observe critical and sensitive periods in the life cycle of individuals, indicating, for instance, that some skills are more easily

Perché, come mi hai insegnato tu, si finisce sempre quel che si inizia, nonostante tutto.. Queste pagine per dirti: ce

quanto segue: e cioè che non spetta al Governo il potere di adottare l’art. TIGANO, Corte dei Conti e attività amministrativa, op cit., pagg.. 259/1958 ha

Non casuale, in questo senso, è la sua ambientazione nelle isole Bermude, dove le presenze naturali a metà tra l’irreale e il mostruoso, le sabbie d’oro e i coralli cantati da