• Non ci sono risultati.

The novel H2S-donor $-carboxyphenylisothiocyanate promotes cardioprotective effects against ischemia/reperfusion injury through activation of mitoKATP channels and reduction of oxidative stress

N/A
N/A
Protected

Academic year: 2021

Condividi "The novel H2S-donor $-carboxyphenylisothiocyanate promotes cardioprotective effects against ischemia/reperfusion injury through activation of mitoKATP channels and reduction of oxidative stress"

Copied!
10
0
0

Testo completo

(1)

ContentslistsavailableatScienceDirect

Pharmacological

Research

jo u r n al hom e p ag e :w w w . e l s e v i e r . c o m / lo c a t e / y p h r s

The

novel

H

2

S-donor

4-carboxyphenyl

isothiocyanate

promotes

cardioprotective

effects

against

ischemia/reperfusion

injury

through

activation

of

mitoK

ATP

channels

and

reduction

of

oxidative

stress

Lara

Testai

a

,

Alice

Marino

b

,

Ilaria

Piano

a

,

Vincenzo

Brancaleone

c

,

Kengo

Tomita

b

,

Lorenzo

Di

Cesare

Mannelli

d

,

Alma

Martelli

a

,

Valentina

Citi

a

,

Maria

C.

Breschi

a

,

Roberto

Levi

b

,

Claudia

Gargini

a

,

Mariarosaria

Bucci

e

,

Giuseppe

Cirino

e

,

Carla

Ghelardini

d

,

Vincenzo

Calderone

a,∗

aDepartmentofPharmacy,UniversityofPisa,Pisa,Italy

bDepartmentofPharmacology,WeillCornellMedicine,NewYork,USA cDepartmentofScience,UniversityofBasilicata,Potenza,Italy

dDepartmentofNeuroscience,Psychology,DrugResearchandChildHealth(Neurofarba),UniversityofFlorence,Florence,Italy eDepartmentofPharmacy,UniversityofNaplesFedericoII,Naples,Italy

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received30May2016 Accepted7September2016 Availableonline9September2016 Chemicalcompoundstudiedinthisarticle: 4-hydroxyphenylisothiocyanate(PubChem CID:121230993) Keywords: Hydrogensulphide H2S-donors Isothiocyanate Myocardialischemia/reperfusion Cardioprotection

Mitochondrialpotassiumchannels

a

b

s

t

r

a

c

t

Theendogenousgasotransmitterhydrogensulphide(H2S)isanimportantregulatorofthe

cardiovascu-larsystem,particularlyofmyocardialfunction.Moreover,H2Sexhibitscardioprotectiveactivityagainst

ischemia/reperfusion(I/R)orhypoxicinjury,andisconsideredanimportantmediatorof“ischemic pre-conditioning”,throughactivationofmitochondrialpotassiumchannels,reductionofoxidativestress, activation ofthe endogenous “anti-oxidant machinery”and limitation of inflammatoryresponses. Accordingly,H2S-donors,i.e. pro-drugsable togenerate exogenousH2S,are viewed as promising

therapeuticagentsforanumberofcardiovasculardiseases.ThenovelH2S-donor4-carboxy

phenyl-isothiocyanate(4CPI),whosevasorelaxingeffectswererecentlyreported,wastestedhereindifferent experimentalmodelsofmyocardialI/R.

InLangendorff-perfusedratheartssubjectedtoI/R,4CPIsignificantlyimprovedthepost-ischemic recoveryofmyocardialfunctionalparametersandlimitedtissueinjury.Theseeffectswereantagonized by5-hydroxydecanoicacid(ablockerofmitoKATPchannels).Moreover,4CPIinhibitedtheformation

ofreactiveoxygenspecies.WefoundthewholebatteryofH2S-producingenzymestobepresentin

myocardialtissue:cystathionine␥-lyase(CSE),cystathionine␤-synthase(CBS)and3-mercaptopyruvate sulfurtransferase(MPST).Notably,4CPIdown-regulatedthepost-ischemicexpressionofCSE.

InLangendorff-perfusedmousehearts,4CPIreducedthepost-ischemicreleaseofnorepinephrineand theincidenceofventriculararrhythmias.Inbothratandmousehearts,4CPIdidnotaffectthe degranu-lationofresidentmastcells.

Inisolatedratcardiacmitochondria,4CPIpartiallydepolarizedthemitochondrialmembranepotential; thiseffectwasantagonizedbyATP(i.e.,thephysiologicalinhibitorofKATPchannels).Moreover,4CPI

abrogatedcalciumuptakeinthemitochondrialmatrix.

Finally,inaninvivomodelofacutemyocardialinfarctioninrats,4CPIsignificantlydecreased I/R-inducedtissueinjury.

Inconclusion,H2S-donors,andinparticularisothiocyanate-basedH2S-releasingdrugslike4CPI,can

actuallybeconsideredasuitablepharmacologicaloptioninanti-ischemictherapy.

©2016PublishedbyElsevierLtd.

∗ Correspondingauthorat:DepartmentofPharmacy,UniversityofPisa,Via Bonanno,6,I-56126Pisa,Italy.

E-mailaddress:calderone@farm.unipi.it(V.Calderone).

1. Introduction

Thegasotransmitterhydrogensulphide(H2S)is apleiotropic

and ubiquitousmediator which influencesalmost allthe func-tionsofthemammalianbody[1].Amongthese,theregulationof

http://dx.doi.org/10.1016/j.phrs.2016.09.006 1043-6618/©2016PublishedbyElsevierLtd.

(2)

thecardiovascularsystemisanimportantroleofthis gasotrans-mitter [2,3].H2Sisbiosynthesized by cystathionine␤-synthase

(CBS), cystathionine ␥-lyase (CSE) [4], and by the cooperation betweencysteineaminotransferase(CAT)and3-mercaptopyruvate sulfurtransferase (MPST) [4–6]. The pattern of distribution and localizationoftheseenzymesisquitecomplexandtheymaycoexist incardiovasculartissues[7–9].

H2S exhibits cardioprotective activity against

ischemia/reperfusion (I/R) or hypoxic injury and is consid-eredanimportantmediatorof“ischemicpreconditioning”(IPC),a self-defencecardioprotectivemechanism againstmyocardialI/R injury.Themechanismsofactionaccountingforthis cardioprotec-tiveactivityareheterogeneousandnotyetcompletelyunderstood. Mitochondrial ATP-sensitivepotassium channels (mitoKATP)are

well-known effectors of ischemic preconditioning [10]. Their activation by H2S is likely to be a relevant cardioprotective

mechanism[11],sincetheanti-ischemiceffectsofH2Sarelargely

antagonized by blockers of mitochondrial potassium channel

[12].Othermechanismshavealsobeenproposedtoexplainthe cardioprotectiveactivity ofH2S. Antiapoptotic responsesplay a

roleincardioprotectionagainstI/Rinjury,andareduetotheH2

S-inducedtriggeringofpathwaysofintracellularsignalling,suchas PI3K/Akt,PKCand ERK1/2,andtheNrf-2-mediatedantioxidant machinery[13].Eventheinhibitionoftype-5phosphodiesterase byH2Splaysapotentialrole.Infact,theintracellularriseofcGMP,

and theconsequentcGMP-dependent proteinkinaseactivation, trigger downstream effectors of ischemic preconditioning [14], upregulateCSElevelsandpromotefurtherH2Sproduction[15].

ExacerbationofI/R-induced tissue injury canbealso dueto anintenseinflammatoryresponse,triggeredbythedegranulation ofresidentheartmastcellsandthereleaseofcytokines,growth factors,chemokines,andotherpro-inflammatorymediators[16]. Remarkably,cardiacmast cellscontainrenin and therelease of thisproteolyticenzymefromcardiacmastcellscontributestothe I/R-associatedheartinjury[17].

Noteworthy, H2S was reported to inhibit antigen-induced

degranulation of rat basophile leukemic RBL-2H3 cells (a well knownmast-celllikemodel)and murinebone marrow-derived mastcells,suggestinganinhibitoryroleofthisgasotransmitterin mastcell-mediatedinflammatoryresponses[18,19].Therefore,a possibleH2S-mediatedinhibitionofthedegranulationofresident

heartmastcellsmaybeafurther(andpoorlyinvestigated) mech-anismcontributing,atleastinpart,totheoverallcardioprotective activity.

Giventhe intriguingbiological activityofH2Sinthe

cardio-vascularfunction,naturalandsyntheticH2S-donors,i.e.pro-drugs

abletogenerateexogenousH2S,areviewedaspromising

cardio-protectiveagents[20–22].4-carboxyphenyl-isothiocyanate(4CPI,

Fig.1)isaH2S-releasingcompound,knowntoevokevasorelaxing

responsesinisolatedrataortaandtoincreasecoronaryflowin iso-latedrathearts[23].Moreover,4CPIwasshowntocausemembrane hyperpolarizationinhumanaorticsmoothmusclecellsthrough theactivationofKv7potassiumchannels,whichplayaroleinH2

S-inducedvasodilation[24].Noteworthy,Kv7channels(inparticular,

Fig.1.Chemicalstructureof4CPI.

Kv7.4)havebeenrecentlyrecognizedinheartmitochondria,where theyappeartoplayacardioprotectiverole[25].

AlthoughthevasculareffectsofthenovelH2S-donor4CPIhave

beenelucidated,itspotentialcardioprotectiveactivityisyettobe evaluated.Hence,theaimofthisstudywastoinvestigatetheeffects of4CPIindifferentexperimentalmodelsofI/Rinisolatedheartsand ofacutemyocardialinfarctioninvivo,byevaluatingwell-known markersofI/R-inducedmyocardialinjury(i.e.,reducedmyocardial contractility,ventriculararrhythmias,celldeath,oxidativestress). The involvement of some relevant mechanisms of action, such asactivationof mitochondrialion channelsand/orinhibitionof degranulationofresidentheartmastcells,wasalsotestedin iso-latedcardiacmitochondriaandisolatedhearts,respectively.

2. Materialsandmethods

2.1. Substances

4CPI(Fluorochem Ltd, Hadfield, UK)was dissolved(10−2M) in dimethylsulfoxide(DMSO), andfurtherdilutedin bi-distilled water. 5-hydroxy decanoic acid (5HD; Sigma–Aldrich, Milano, Italy)wasdissolvedinbidistilledwater.Tetraphenylphosphonium chloride(TPP+Cl,Sigma–Aldrich,Milano,Italy)wasdissolvedin

bi-distilled water and 2,3,5-triphenyltetrazolium chloride (TTC, Sigma–Aldrich.Milano,Italy)wasdissolved(1%,p/w)inphosphate buffer (pH 7.4). Olygomicin, 2,4-dinitrophenol (DNP), carbonyl cyanidem-chlorophenylhydrazone(CCCP)andvalinomycinwere purchasedfromSigma–Aldrich(Milano,Italy),dissolvedinpure DMSO(10mM)andfurtherdilutedinbi-distilledwater.

2.2. Pharmacologicalprocedures

Alltheexperimentalprocedureswerecarriedoutfollowingthe guidelinesoftheEuropeanCommunityCouncilLaw2010/63and havebeenapprovedbytheCommitteeforanimalexperimentation oftheUniversityofPisa.Allproceduresonmicewereapprovedby WeillCornellMedicineInstitutionalAnimalCareandUse Commit-tee.

2.3. Langendorff-perfusedrathearts

MaleWistarrats(260–350g) weretreatedwithani.p. injec-tionofdifferentincreasingdosesof4CPI0.072mg/kg,0.24mg/Kg, 0.72mg/kgand2.4mg/kgortheirvehicle(DMSO).After2h,allthe animalswereanaesthetizedwithsodiumpentobarbital(100mg/kg i.p.)andheparinized(100UIi.p.)topreventbloodclotting.When requiredfromexperimentalprocedure,5HD (10mg/kgi.p.)was administrated20minbefore4CPI(0.24mg/kg)-treatment.

Afteropeningthechest,heartswerequicklyexcisedandplaced ina4◦CKrebssolution(compositionmM:NaHCO325.0,NaCl118.1,

KCl4.8,MgSO4 1.2,CaCl2×2H2O1.6,KH2PO41.2,glucose11.5),

equilibrated with95% O2 and 5% CO2,to stop contractionand

reduceoxygenconsumption.Rapidly,theascendingaortawas can-nulatedandtheheartsweremountedonaLangendorffapparatus, andthenperfusedwithKrebssolution(thermostatedat37◦Cand continuouslybubbledwithagasmixtureof95%O2and5%CO2)at

constantpressure(70–80mmHg).Theaboveprocedurewas com-pletedwithin2min.Awater-filledlatex balloonconnectedtoa pressuretransducer(BentleyTrantec,mod800,UgoBasile, Come-rio,Italy)wasintroducedintotheleftventricleviathemitralvalve andthevolumewasadjustedtoachieveastableleftventricular end-diastolicpressureof5–10mmHgduringinitialequilibration. After30minofequilibration,heartsweresubjectedto30minof globalischemia(noflow).Thereafter,heartswerereperfusedfor 120min.Functionalparameterswerecontinuouslyrecorded dur-ingthewholeexperiment.Attheendofreperfusionheartswere

(3)

removedfromtheLangendorffapparatusandleftventricleswere isolatedandsubmittedtomorphometric,histologicaland biochem-icalassays.

2.3.1. Recordingoffunctionalparameters

ReductionofheartcontractilityafterI/Rhasbeenusedasa suit-ableindicatorofI/R-induced injury. Therefore,totest potential cardioprotectiveeffectsof4CPI,werecordedprospective improve-mentsofinotropicparametersinheartssubmittedtoI/R.

Heartrate(HR),leftventriculardevelopedpressure(LVDP)and therateofriseoftheleftventricularpressure(dP/dt)were con-tinuouslymonitoredbyacomputerizedBiopacsystem(California, USA).RPPwascalculatedasRatexPressureProduct.Post-ischemic dP/dtandRPPrecordedduringreperfusionwereexpressedasa% ofthecorrespondingvaluesrecordedinthepre-ischemicperiod. HeartsshowingseverearrhythmiaorunstableLVDPandHRvalues, duringthepre-ischemicphase,werediscarded.

2.3.2. Beta-hexosaminidaseassayincoronaryeffluent

Measurement of mast cell-derived beta-hexosaminidase ( ␤-hexo)iswidelyusedasasuitablemarkerofmastcelldegranulation inducedbyI/R.Thus, totestpotentialinhibitoryeffects of4CPI onmastcelldegranulation,weinvestigatedwhetherany reduc-tioninmastcell-derived␤-hexooccurredin4CPI-treatedhearts submittedtoI/R.

Atthebeginningofreperfusion,5mlofcoronaryeffluentwere collectedandusedtomeasure␤-hexoconcentration.50␮lof per-fusate were placed into a 96-well plate,then 50␮l of ␤-hexo substrate(p-nitrophenyl-N-acetyl-d-glucosaminide1.3mg/ml dis-solvedincitratebuffer0.1M,pH4.5)wereaddedandincubatedfor 60minat37◦C.Thereactionwasstoppedwith100␮lofTRISbuffer (pH=9at4◦C).Opticaldensitywasreadat405nmonaplatereader (EnSpire,PerkinElmer).␤-hexoreleasewasexpressedasarbitrary unitsofabsorbance.

2.3.3. Morphometricanalysisoftheischemicarea

ThesizeofventriculartissueexhibitingI/R-inducedcelldeathis widelyusedasasuitableindicatorofI/R-inducedinjury.Therefore, totestpotentialcardioprotectiveeffectsof4CPI,wemeasuredthe possiblereductionofthesizeofinjuredareasin4CPI-treatedhearts submittedtoI/R.

The left ventricle was cut in 2mm-wideslices which were immersedina1%aqueoussolutionofTTCfor20minandthenina 10%aqueoussolutionofformaldehyde.After24h,ventricularslices werephotographedandanalyzedtohighlightnecroticareasdueto theischemicprocess(visibleasawhiteorlightpinkcolor)andthe healthyareas(visibleasastrongredduetotheTTCreaction).

2.3.4. DeterminationofCSE,CBSandMPSTexpression

TheexpressionofCSE,CBSandMPSTwasdeterminedinheart tissue,inordertoevaluatetheinfluenceofI/RontheH2S

biosynthe-sizingmachinery.Moreover,theeffectsof4CPIontheexpression oftheseenzymeswasevaluatedinhearts(withandwithoutI/R), inordertoinvestigatethemechanismsofactionofthiscompound. Asabovedescribed,heartswereisolatedfromratspretreatedwith vehicleor4CPIandsubmittedtotheI/Rcycle.Moreover,CSE,CBS andMPSTexpressionwasalsodetectedintheheartsofa“sham group”:inthisgroup,heartswereisolatedfromratspretreatedwith vehicleor4CPI,mountedinaLangendorffapparatusandperfused for150min,butnotsubmittedtoI/R.

Following an I/R cycle or a sham 150min perfusion time, left ventricular tissue from rat hearts were homogenized in lysisbuffer. Denaturedproteins(40␮g)wereseparated on10% sodium-dodecylsulfate polyacrylamide gels and transferred to polyvinylidene fluoride membrane (PVDF). Membranes were

blockedinphosphate-bufferedsalinecontaining0.1%v/v Tween-20(PBST) and3% w/vnon-fatdry milkfor30min,followedby overnight incubation at 4◦C with rabbit polyclonal anti-MPST (1:500, Novus Biologicals, Italy), mouse monoclonal anti-CSE (1:1000,Proteintech,UK),rabbitpolyclonalanti-CBS(1:1000,Santa Cruz Biotechnology,Germany) or rabbit polyclonal anti-GAPDH (1:5000, Sigma–Aldrich, Italy). Membranes were extensively washedinPBSTpriortoincubationwithhorseradish-peroxidase conjugated secondary antibody for 2h at room temperature. Followingincubation,membraneswerewashedand chemilumi-nescencewasdetectedbyusingImageQuant-400(GE-Healthcare, USA).Targetproteinbandintensitywasnormalizedin considera-tionofhousekeepingproteinGAPDHintensity.

2.3.5. Detectionofoxidativestress

Increasedproductionofreactiveoxygenspecies(ROS)was con-sideredasasuitableindicatorofI/R-inducedoxidativestress,i.e. anadditionalmarkerofmyocardialinjury.Thus,tofurthertestthe potentialcardioprotectiveeffectsof4CPI,werecordedapossible reductionofROSproductionin4CPI-treatedheartssubmittedto I/R.

Forhistologicallabelingandqualitativeimageacquisition,left ventriclesfromratswereisolatedandreadilyincludedin Opti-malCuttingTemperature (OCT,Sakura,Japan) withoutfixation. Cryosection20␮mthickwereobtainedusingamanualcryostat (Leica,Germany)andcollectedontoglassslides.Ventriclesections werethenincubatedin10␮Mdihydroethidium(DHE)solutionat 37◦Cfor30min.Sectionswerethenrinsed3×5mininphosphate bufferedsaline(PBS)andmountedforconfocalimagingwith Vec-tashield(Vector,Burlingame).Confocalimageswereobtainedfor eachsectionusinga16×oilobjective(NA0.50)onaTCS-SP2 con-focalmicroscope(Leica,Germany).Eachimagewasacquiredasthe maximumintensityprojectionofa10␮mconfocalstack.Inorder toquantifyROS+areasinthedifferentexperimentalgroup,were acquiredsixfieldsofeachsectionoftheleftventricleanalyzed.It wassampledthreesectionsforeachleftventricleofthreeanimals pergroup.

2.4. Langendorff-perfusedmousehearts

Wild-typeC57BL/6Jmice(male,10-to12-weekold,Jackson Lab-oratory,BarHarbor,ME)wereinjectedi.p.with4CPI0.24mg/kg 2hbeforetheexperiment.Micewereinjectedi.p.withheparin (100UI),anaesthetizedwithCO2andeuthanizedbycervical

dis-location.Hearts were isolated and transferred to a Langendorff apparatus(Radnoti,Monrovia,CA,USA).Theaortawascannulated withaflanged20-gaugestainless-steelneedle.Theheartwas per-fusedthroughtheaortainaretrogrademodeataconstantpressure of100cmH2OwithmodifiedKrebs-Henseleit(KH)buffer

contain-ing(mM):NaCl,120;KCl,4.7;CaCl2,2.5;MgSO4,1.2;KH2PO4,1.2;

NaHCO3,25;glucose,11;Pyruvateacid,2;EDTA,0.5.The

perfu-sionfluidwasbubbledwith95%O2 and5%CO2at37◦Ctogivea

pHof7.4.Afterequilibration,allheartsweresubjectedto30-min ischemia(glucose-andpyruvicacid-freeKHbuffer,95%N2+5%CO2

andsodiumdithionite)followedby30-minreoxygenation (reper-fusion) withKH buffer. Coronaryflow wasmeasured bytimed collectionsoftheeffluentevery5min;sampleswereassayedfor ␤-hexo,reninandnorepinephrine(NE).

2.4.1. Evaluationofventriculararrhythmias

SurfaceECGwasrecordedfromleadsattachedtotheleft ventri-cleandtherightatriumandanalyzedusingPowerLaboratory/8SP (ADInstruments,ColoradoSprings,CO,USA).Reperfusion arrhyth-mias were recorded and quantified according to the Lambeth Conventions.

(4)

2.4.2. Determinationofnorepinephrinerelease

Increased release of norepinephrine (NE) from heart sym-pathetic nerve endings was considered a suitable indicator of I/R-inducedadrenergicactivation.Thus,tofurthertestpotential cardioprotectiveeffectsof4CPI,weinvestigatedapossible reduc-tionofNEreleasein4CPI-treatedheartssubmittedtoI/R.

Norepinephrine (NE) wasassayed in thecoronary perfusate byhigh-performanceliquid chromatographycoupledto electro-chemicaldetection[26].PerchloricacidandEDTAwereaddedto samplestoachievefinalconcentrationof0.01Nand0.025%, respec-tively.NEpresent intheeffluentwasadsorbedonacid-washed aluminaadjustedatpH8.6withTris2%EDTAbuffer(inagitation for45min)andthenextractedin150␮lof0.1Nperchloricacid. Thesefinalsampleswereinjectedontoa3␮mODSreverse-phase column(3.2×100mm,BioanalyticalSystem,WestLafayette,IN) withanappliedpotentialof0.65V.Themobilephaseconsistedof monochloroaceticacid(75mM),Na2EDTA(0.5mM),sodium

acty-sulfate(0.5mM)and acetonitrile(15%)atpH3.0.Flowratewas 1.0mg/min. Dihydroxybenzylamine (DHBA) was added to each sampleasaninternalstandardbeforealuminaextractionandused forrecoverycalculation.TherecoveryofNEwas77%andthe detec-tionlimitwasapproximately0.2pmol.

2.4.3. Determinationofˇ-hexorelease

Thedeterminationofmastcell-derived␤-hexohasbeenused asa suitable markerofmast celldegranulation inducedbyI/R. Therefore,totestthepotentialinhibitoryeffectsof4CPIonmast celldegranulation, we ascertainedwhethertherelease of mast cell-derived␤-hexowasreducedin4CPI-treatedmousehearts sub-mittedtoI/R.Sampleofcoronaryeffluentwereconcentrated 8-to10-foldbycentrifugalfiltration(EMDMillipore),thenthesame proceduredescribedabovewascarriedout.

2.4.4. Determinationofreninrelease

Determinationofmastcell-derivedreninhasbeenusedasan additionalsuitablemarkerofmastcelldegranulationinducedby I/R.Thus,asafurthertestofpotentialinhibitoryeffectsof4CPIon mastcelldegranulation,weevaluatedapossiblereductionofmast cell-derivedreninin4CPI-treatedheartssubmittedtoI/R.

Reninactivitywasmeasuredinsamplescollectedfrom coro-nary effluent using a GammaCoat Plasma Renin Activity 125I Radioimmunoassaykit(DiaSorin,Stillwater,MN,USA)according tothemanufacturer’sinstructions.Briefly,200␮leachsampleof coronaryeffluentwereincubatedwithporcineangiotensinogen (0.1mg/ml),maleatebufferand PMSF(partof theDiaSorinkit). ThereactionforangiotensinIproductionwasconductedfor1.5hat 37◦C.Resultswerenormalizedtototalheartweight.Thedetection limitwasapproximately0.01pmol.

2.5. Acutemyocardialinfarction

Thecardioprotectiveeffectsof4CPIwereevaluatedinvivo,inan experimentalmodelmorecloselyresemblingtheclinicalcondition ofacutemyocardialinfarction.

Theexperimentalprotocolforcoronaryocclusion-reperfusion wasperformedasdescribedin[27],withminormodifications.Two hoursbeforetheexperimentalprocedure,ratsreceivedani.p. injec-tion(about0.3ml)of4CPI(0.24mg/kg)orvehicle(DMSO).Then, ratswereanaesthetizedwithsodiumpentobarbital(70mg/kg,i.p.). Thetracheawasintubatedandconnectedtoarodentventilator (mod.7025UgoBasile,Comerio,Italy)forartificialventilationwith roomair(strokevolume,1ml/100gbodyweight;70strokes/min). Electrocardiogram (ECG) was continuouslymeasuredby leadII (Mindray, PM5000, 2 BiologicalInstruments,Varese, Italy). The chest was opened by a left thoracotomy. A 6-0 surgical nee-dle was passed around the left anterior descending coronary

artery(LAD),locatedbetweenthebaseofthepulmonaryartery and leftatrium. Theends ofthe suturewerepassedthrough a polypropylene tube(PE50)to forma snare, allowingreversible arteryocclusion.Theacuteinfarctionprotocolconsistedof30-min occlusion/120-min reperfusion; successful occlusion was con-firmedbyobservingregionalcyanosisdownstreamoftheligature, and by ST elevation in theECG recording. A groupof vehicle-pretreatedanimalswassubmittedtoanIPCprocedure,achievedby 2cyclesof5-minocclusion/10minreperfusion,followedby30-min coronaryocclusionand120-minreperfusion.Eachexperimental groupwascomposedof6–10animals.Attheendofreperfusion, rats were euthanized by an overdose of sodium pentobarbital, heartswerequicklyexcised,mountedonaLangendorffapparatus (Radnoti,California,USA)andperfusedfor100withKrebssolution at37◦Ctocleansecoronarybloodvessels.Then,theatriaandright ventriclewereremovedfromthehearts.Theleftventriculartissue wasdried,frozenat−20◦C,andcutinto4–5transverseslicesfrom

apextobaseofequalthickness(about2mm).Thesliceswerethen incubatedina1%2,3,5-triphenyltetrazoliumchloride(TTC) solu-tioninaphosphatebuffer(pH7.4)at37◦Cfor20min.TTCreacts withNADHinthepresenceofdehydrogenaseenzymes,toform a formazanderivative,whichstaintheviablecells withintense redcolor.Thesliceswerethenfixedovernightin10% formalde-hydeandfinallyphotographed.Red-stainedviabletissuewaseasily distinguishedfromtheinfarctedwhite-unstainednecrotictissue. 2.6. Isolatedcardiacmitochondria

Toinvestigateapossiblemitochondrialinvolvement,theeffects of4CPIonmembranepotentialandcalciumuptakeweretestedin isolatedheartmitochondria.

Mitochondriawereisolatedbydifferentialcentrifugationfrom heartsexcisedfromadifferentgroupofrats.Theseratswerenot pretreatedwitheither4CPIorvehicle.Theseheartswerenot sub-mitted toany I/R protocol. Male Wistar rats(260–350g) were killedbypentobarbitaloverdose,heartswereremoved immedi-atelyandplacedinanice-coldisolationbuffer(compositionmM: sucrose250,Tris5,EGTA1,pH7.4adjustedwithHCl).Theatria wereremovedandtheventriculartissuewasfinelymincedwith surgicalscissors(about2mmpieces)andhomogenizedusingan Ultra-Turrax homogenizer (20ml of isolation buffer per heart, IKA1-WerkeGmbH&Co.,Staufen-Germany).Three homogeniza-tion cycles(eachof 20s)were performedonice, and then the suspensionwascentrifugedat1075gfor3minat4◦C(EuroClone, SpeedMaster14Rcentrifuge,Milano,Italy).Theresulting super-natantwascentrifugedat11,950gfor 10minat4◦C. Thepellet containingthemitochondrialfractionwasfurtherresuspendedin theisolationbuffer(withoutEGTA)andcentrifugedat11,950gfor 10minat4◦C,thisstepwasrepeatedoncemore.Thefinal mito-chondrialpelletwasresuspendedinaminimalvolumeof400␮lof theisolationbuffer(withoutEGTA)andstoredonicethroughout the experiments,which wereperformed within 2h. Mitochon-drialproteinconcentrationsweredeterminedusingtheBradford reaction.Previous experiments(datanotshown) confirmedthe reliabilityoftheisolationproceduresbymeasurementofthe mito-chondrialrespiratoryfunctionwithanATPbioluminescenceassay, inagreementwiththemethodofDrewandLeeuwenburgh,as pre-viouslydescribed[28].

2.6.1. Mitochondrialmembranepotential

Mitochondrial membrane potential (m) was measured potentiometricallywithtetraphenylphosphonium(TPP+)-sensitive

mini-electrodes,coupledwithareferenceelectrode(WPI,FL,USA), usingadataacquisitionsoftware(BiopacInc.California,USA),as previouslydescribed[28].Briefly,electrodeswerecalibratedbefore each experimentusing knownconcentrationsofTPP+Cl.

(5)

Mito-chondria(1mgprotein/ml)weresuspendedundergentlystirring intheincubationmedium(compositionmM:KCl120,K2HPO45,

Hepes10,succinicacid10,MgCl22,EGTA1,plusTPP+Cl−10␮M,pH

7.4adjustedwithKOH).Thevalueofthepotentialwascalculatedby thefollowingNernst-derivedexperimentalequation:wheremis themitochondrialmembranepotential(mV),

 =60×LogV0·

[TPP+]0

[TPP+]t −Vt−K0P

VmP+KiP

V0isthevolumeoftheincubationmediumbeforethemitochondria

addition,Vtisthevolumeoftheincubationmediumafterthe

mito-chondriaaddition,Vmisthevolumeofthemitochondrialmatrix

(ml/mgprotein),[TPP+]

0 and[TPP+]t are concentrationsofTPP+

recordedbeforetheadditionofmitochondriaandattimet, respec-tively,Pistheproteinconcentration(mg),K0andKiareapparent

externalandinternalpartitioncoefficientsofTPP+,andwere

esti-mated as 14.3ml/mg and 7.9ml/mg, respectively. The volume ofmitochondriawastaken as1ml/mgofprotein.Mitochondria showingabasallevelofmembranepotential>−170mVwere dis-carded.Changesofmwerecontinuouslyrecorded(inmV)before andaftertheaddition intheincubation mediumof cumulative increasingconcentrationsof 4CPI(10–300␮M).Whenrequired, ATP(200␮M),physiologicalblocker ofKATP channels,orXE991

(10␮M,blockerofKv7channels)wereincubatedinthemedium 2minbeforethemitochondriaaddition.Effectsoftheadditionof thecorrespondingvehicleswereevaluated.Each concentration-responsecurvewasobtainedwithmitochondriaisolatedfromthe heartsof6–10differentanimals.

2.6.2. Mitochondrialcalciumuptake

Mitochondrialcalciumuptakewasmeasuredby potentiomet-ric technique, as described [28]. In particular, the changes of calcium concentration in the medium (i.e. extra-mitochondrial calcium) were continuouslymeasuredwith a calcium-selective mini-electrode,coupledwithareferenceelectrode(WPI,FL,USA), usingadataacquisitionsoftware(BiopacInc.California,USA).The selectivityoftheelectrodeforcalciumoverothercations,suchas magnesium,potassiumandsodium,is>105.Inordertocorrelate

thepotentiometricmeasurements(inmV)withthecorresponding concentrationsofcalciumionsinthesolution,calibrationcurves weregeneratedbeforeeachexperiment,usingknown concentra-tionsofCaCl2.Mitochondria(1mgprotein/ml)wereadded,under

gentlystirring,totheincubationmedium(compositionmM:KCl 120, K2HPO4 5, Hepes10,succinic acid10, MgCl2 2, plus CaCl2

100␮M,pH7.4adjustedwithKOH)containingthevehicle(DMSO 1%)or4CPI(100␮Mor300␮M).Aftertheadditionof mitochon-dria,themaximaldecreaseoftheconcentrationofcalciuminthe medium,relatedtoitsaccumulationinthemitochondrialmatrix, wasmeasured.Eachresultwasobtainedwithmitochondria iso-latedfromtheheartsof6differentanimals.

2.7. Dataanalysis

Data were expressed as means±standard errors and were statisticallyanalyzed byANOVA and Student’st-test (software: GraphPadPrism4.0).Pvalueslowerthan0.05wereconsideredas indicativeofsignificantdifferences.

3. Results

3.1. EffectsonisolatedratheartsubjectedtoI/Rinjury

I/R caused marked functional damage to isolated hearts of vehicle-treatedrats,withasignificantreductionofmyocardial con-tractility.Indeed, duringreperfusion,theRPPvaluewasalways

lessthan50%ofthecorrespondingpre-ischemicone.Consistently, dP/dtvaluesweremarkedlyreduced(Fig.2A–B).Thefunctional impairmentinducedbyI/Rwasassociatedwithahighdegreeof tissueinjurydetectedbymorphometricanalysis(Fig.2C).

I/Rcausedlessdamageinisolatedheartsofratstreatedwith 4CPI(0.072-0.72mg/kg), as indicated by an improvedrecovery ofboth functionalandmorphometric parameters(Fig.2A-C). In contrast,atthehighestdosetested(2.4mg/kg),4CPIfailedto pro-ducecardioprotectiveeffects,asanevidentischemicinjury was observedatthisdose(Fig.2A–C).

Finally,pre-treatmentofanimalswith5HD(10mg/kgi.p.), a selectiveblockerofmito-KATPchannels,almostcompletely abol-ished the cardioprotective effects of 4CPI, administered at the selecteddose0.24mg/kg(Fig.2A–C).

DHEstainingofcontrolnon-ischemicsamplesofmyocardial tis-sueshowedaverylowlevelofROSproduction.Incontrast,heartsof vehicle-treatedanimalssubmittedtoI/Rrevealedahighdensityof DHE-stainednuclei,indicatingasignificantlevelofoxidativestress andROSproduction.Treatmentwith4CPI0.24mg/kgsignificantly reducedthelevelsofDHEstaininginmyocardialsamplesafterI/R injury(Fig.3A–B).

No release of ␤-hexo, a marker of mast cell degranulation, wasdetectableinthecoronaryperfusateofcontrolnon-ischemic hearts.showedHighlevelsof␤-hexowereinsteaddetectedinthe coronaryperfusateofratheartssubjectedtoI/R.Nochangesin ␤-hexoreleasewereobservedafter4CPItreatment(0.072,0.24and 0.72mg/kg).Incontrast,atthehighestdose(2.4mg/kg)4CPIcaused asignificantincreasein␤-hexorelease(Fig.3C).

WesternblotanalysisshowedabasalexpressionofCSE,CBS andMPSTinmyocardialtissue(shamgroup).I/Rdidnot signifi-cantlymodifytheexpressionofthethreeenzymes,althoughthere wasaslightnotsignificantincreaseinCSE(Fig.4A).Inhearts sub-jectedtoI/R,treatmentwith4CPIsignificantlyreducedCSEprotein levels,asalsodemonstratedbydensitometryanalysis(Fig.4B).In contrast,nosignificantchangesoccurredineitherCBSorMPST pro-teinexpressionfollowing4CPIadministration(Fig.4C–D).Notably, 4CPIdidnotchangelevelsofCBS,MPSTandCSEin“shamgroup” hearts(datanotshown).

3.2. EffectsonisolatedmouseheartssubjectedtoI/R

WhenLangendorff-perfusedmurineheartsweresubjectedto 30min of ischemia, followed by 30min reoxygenation, a large increaseinrenin,␤-hexoandnorepinephrine(NE)overflowwas observedduringthefirst5minofreperfusion,whichwas accompa-niedbyventriculartachycardia/fibrillation(VT/VF).Pre-treatment with4CPI0.24mg/kgsignificantlydiminishedNErelease,aswell asthedurationofVT/VF,whereasreninand␤-hexoreleasefrom residentmastcellswasnotmodified(Fig.5A-D).

3.3. 3Invivomodelofacutemyocardialinfarction

LADligature led,in vehicle-treatedrats,towideI/R-induced tissue injury (Ai/AVL=39±2%). IPC significantly reduced I/R-induced tissue injury (Ai/AVL=17±6%);pretreatmentwith 4CPI 0.24mg/kgalsosignificantlyreducedthesizeofI/R-injuredareas (Ai/AVL=25±3;Fig.6A–B).

3.4. Effectsonmitochondrialmembranepotential

Membranepotentialofisolatedheartmitochondriawaslower than −170mV. Cumulatively increasing concentrations of 4CPI (10–300␮M)wereaddedtoamitochondrialsuspension(1mg/ml), and only at the highest concentration 4CPI elicited a signifi-cantdepolarizationofmitochondrialmembranepotentialofabout 40mV.The effectof 4CPIwassignificantly antagonized byATP

(6)

Fig.2. Post-ischemicfunctionalparametersofRPP(A)anddP/dt(B)recordedduringreperfusioninLangendorffratheartspre-treatedwithvehicle(black),withincreasing dosesof4CPI(0.072mg/Kg,magenta;0.24mg/Kg,blue;0.72mg/Kg,red;2.4mg/Kg,green)orwith4CPI0.24mg/kgplus5HD5mg/kg(gray).TwowayANOVAindicatedthat thecurvesobtainedinheartsofratspre-treatedwith4CPI(0.072,0.24and0.72mg/kg)showsignificantdifferences(P<0.01)vsvehicle.(C)Thecorrespondingdataemerging fromthemorphometricanalysisoftheareasofI/R-inducedtissueinjury(Ai/Avs)arealsoshown;asterisksindicatesignificantdifferences(*=P<0.05)vsvehicle.Inallthe panels,thedifferentpharmacologicalpre-treatmentsareindicatedbydifferentcolorsoflinesandhistograms:vehicle(black);4CPI0.072mg/Kg,magenta;4CPI0.24mg/Kg, blue;4CPI0.72mg/Kg,red;4CPI2.4mg/Kg,green;4CPI0.24mg/kgplus5HD5mg/Kg,gray.

(200␮M),thephysiologicalmitoKATPblocker(Fig.7A).Incontrast,

XE991,a Kv7 potassium channelblocker, didnot influencethe effectsof4CPI(datanotshown).

3.5. Effectsonmitochondrialcalciumuptake

Cardiac mitochondria (1mg/ml), exposed to 100␮M CaCl2,

rapidlyand almostfully accumulatedthis cation,leading toan almostcompletereductionofcalciumconcentrationinthe extra-mitochondrial buffer (82±13␮M). 4CPI 100␮M and 300␮M significantly reduced calcium accumulation in a concentration-dependentmode(Fig.7B).

4. Discussion

Heartdiseases,suchasmyocardialischemiaandinfarction,are majorcausesofmortality,and theidentificationof novel phar-macological tools tolimit I/R-inducedcardiac injury remains a challengingissue.ThediscoveryofH2Sasthethirdgasotransmitter

andtheunderstandingofitspivotalroleinregulating cardiovascu-larfunction,andinmediatingcardioprotection,pavedthewayto newexcitingperspectivesinthisfieldofresearch[29].In particu-lar,H2S-releasingdrugs,suchasGYY4137,haveshownsignificant

protectiveeffects inexperimentalmodelofmyocardialI/R[30], suggestingthatH2S-donorscanactuallybeviewedasapromising

classofanti-ischemicdrugs.

Inthispaper,weevaluatedthecardioprotectiveeffectsof4CPI and investigated the mechanisms of action. The H2S-releasing

propertiesof4CPIwereclearlycharacterizedinpreviousstudiesby usualamperometricandspectrometricmeasurements,andfurther confirmedbygaschromatography,coupledwithmass spectropho-tometry[23].

In an ex-vivo experimental model of myocardial I/R (Langendorff-perfused rat hearts), i.p. pre-administration of 4CPI, at doses of 0.072, 0.24 and 0.72mg/Kg, ledto significant recoveryofRPPanddP/dtduringreperfusionandtoanevident limitationoftissueinjury,althoughnocleardose-dependencywas observed.Accordingly, asanH2S-donor,4CPIaffordssignificant

cardioprotection against I/R-mediated myocardial tissue injury. Notably, at high doses (2.4mg/kg) 4CPI failed to show cardio-protective effects: indeed, both functional and morphometric parameters recordedafterI/Rinheartsofratspre-treated with this dose of 4CPIwere almost equivalentto those recorded in vehicle-treated animals. Such a “bi-modal” effect of 4CPI can be reasonably attributedto an excessiveformation of H2Sand

the consequentinduction of toxic effects, typical of thehigher concentrationofall gasotransmitters[31,32].Thishypothesis is supportedbythedeterminationofmastcell-derived␤-hexo.This markerofmast celldegranulationcouldnotbedetectedin the perfusateofnon-ischemicrathearts,butwasclearlyreleasedin heartsofvehicle-treatedanimals,subjectedtoI/R.Pre-treatment withcardioprotectivedosesof4CPI(0.072,0.24and0.72mg/kg) didnotreducethereleaseof␤-hexo,suggestingthatinhibitionof

(7)

Fig.3. Representativepictures(A)andrelativequantificationoftheROS-positiveareas(B)oftheDHE-positivenucleiobservedbyfluorescencemicroscopyinventricular tissue.Nonischemiccontrol(CTR)heartswereisolatedfromvehicle-treatedratsandwerenotsubjectedtoI/R.HeartssubjectedtoI/Rwereisolatedfromvehicle-treated rats(I/R)orfrom4CPI-treatedrats(0.24mg/kg).InpanelC,␤-hexoreleaseinthereperfusionoverflowofLangendorffheartsofvehicle-(I/R)or4CPI-treatedratsarealso shown.Inthecontrolpre-ischemicoverflow(CTR)noreleaseof␤-hexowasdetected.Asterisksindicatesignificantdifferences(*=P<0.05;**=P<0.01).

mastcelldegranulationdoesnotplayarelevantroleinthe car-dioprotectionaffordedby4CPI.Incontrast,asignificantincrease of␤-hexo release wasobserved in theperfusate fromheart of animals pre-treated with the highest doseof 4CPI(2.4mg/kg), suggestingapossibletriggeringoftoxicresponses.

Basedontheaboveresults,0.24mg/kgwasselectedasan effec-tiveand safedosefor furthercharacterizing themechanism of actionof4CPI.

Duringmyocardialischemia,excessiveNEreleasefrom sympa-theticnerveendingsisamajorcauseofarrhythmiasandincrease inmetabolicdemand,whichlargelycontributetomorbidityand mortalityfollowingmyocardialinfarction.ThisNEreleaseis rein-forcedbyreninrelease frommastcellsandactivationofalocal renin-angiotensincascade[33].Weevaluatedpossibleeffectsof 4CPIonarrhythmiasandreleaseofNE,reninand␤-hexoinmouse heartssubjected to I/R. In this model, I/R wasassociated with severeventriculararrhythmiasandamassivereleaseofNE,renin and␤-hexo.Asalreadyobservedin rathearts,pre-treatmentof micewith4CPI(0.24mg/kg)ledtoclearcardioprotectiveeffects. Indeed, the H2S-donor caused a significant reduction of

post-ischemicarrhythmias,and asignificantreductionofNE release. Yet,reninand␤-hexoreleasewasnotinfluenced.Theseresults sug-gestthatthereductionofNEreleaseandconsequentattenuationof ventriculararrhythmiasmaybeattributedtoanH2S-induced

sta-bilizationofsympatheticnerveendings.Indeed,H2Sdonors,such

asGYY4137,havebeenrecentlyreportedtoinhibit electrically-evokedNEreleasefromisolatedbovineiris-ciliarybodies[34].In contrast,asalreadyobservedintherathearts,inhibitionofthe releaseofmastcellproductsdoesnotseemtoplayasignificant role.

H2Seasilyreactswithmanyreactivespecies,suchassuperoxide

radical anion, hydrogen peroxide, peroxynitrite and hypochlo-rite, leading to their neutralization and reduction of oxidative stress[35].However,the anti-oxidantactivity ofH2Sis dueto

furtherand more complex mechanisms,such as theactivation ofpowerfulendogenousmechanisms,suchastheNrf2-mediated “anti-oxidant”machinery[36],possiblyinvolvedalsointhe car-dioprotectiveeffectsofH2S[13].Indeed,inexperimentalmodels

ofcardiacI/R,H2S-donorssuchasGYY4137werefoundtostrongly

inhibitoxidativestressinmyocardialtissue[30].Consistently,in ourstudy,I/RcausedadramaticincreaseinDHE-stainednucleiin rathearts,indicatingaveryhighlevelofROSproduction. Impor-tantly,4CPI(0.24mg/kg)completelyabolishedsuchanincrease, suggestingthatareductionofoxidativestressmaybeanadditional protectiveeffectsof4CPIagainstI/Rinjury.

CSE is likely to be the main source of endogenous H2S in

theheart,butconflictingresultsconcerningtheinfluenceofI/R onCSEexpression have beenreported[37]. Ischemiceventsin

(8)

Fig.4.(A)WesternBlotsshowthebasalexpressionofCSE,CBSandMPSTinventriculartissueofheartsofthe“shamgroup”(sham),notsubjectedtoI/R.Moreover,the expressionofthethreeenzymesinventriculartissueofheartssubjectedtoI/R,isolatedfromvehicle-treatedor4CPI-treatedrats(0.24mg/kg)isalsoshown.Thecorresponding quantitativeanalysisforCSE(B),CBS(C)andMPST(D)expressionisalsoshown.Dataareexpressedasarbitraryunitsofdensitometry.Asterisksindicatesignificantdifferences vsvehicle(**=P<0.01).TheoriginaluncroppedimagesofWesternBlotexperimentsareavailableasSupplementarymaterial.

Fig.5. PanelAreportstheduration(seconds)ofventriculararrhythmiasrecordedduringreperfusionafterfollowingischemia.ReleaseofNE(B),renin(C)and␤-hexo(D) inthereperfusionoverflowofLangendorffheartsofvehicle-(I/R)or4CPI-treatedrats(0.24mg/kg)arealsoshown.Inthecontrolpre-ischemicoverflow(CTR)noreleaseof NEand␤-hexo,andaverymodestreleaseofreninweredetected.Asterisksindicatesignificantdifferences(*=P<0.05;***=P<0.001).

(9)

Fig.6.MorphometricquantificationofI/R-inducedtissueinjuryobservedin ven-tricularslicesofrathearts,afteracutemyocardialinfarctioninvivo.Infarctionwas createdinvehicle-treatedrats(vehicle)orin4CPI-treatedrats(0.24mg/kg).Insome vehicle-treatedrats,acutemyocardialinfarctionwasprecededbyischemic pre-conditioning(IPC).Asterisksindicatesignificantdifferencesvsvehicle(**=P<0.01; ***=P<0.001).Imagesofrepresentativeventricularslicesarealsoshown.Paleareas indicateI/R-injuredtissue,whilehealthytissueiscoloredinred.

myocardiumhave beenassociatedwithanenhancementofCSE expression,suggesting a possible cardiac defensive mechanism directedat increasingH2Slevelsand limiting ischemicdamage

[38].In ourstudy,Westernblottingshowedthebasal presence ofallthreeH2S-biosynthesizingenzymesinratventriculartissue:

CSE,CBSandMPST.I/Rdidnotsignificantlyaltertheexpression of theseenzymes; however, a slightnot significant increase of

CSEexpressionwasobserved,suggestingthetriggeringofa self-defencemechanism.Pre-treatmentwith4CPI(0.24mg/kg)caused adramaticinhibitionofCSEexpressioninheartssubjectedtoI/R, whileitdidnotcausesignificanteffectsonCBSandMPST.In con-trast,4CPIdidnotinfluencetheexpressionofCSEinheartsnot subjectedtoI/R.Thus,wecanspeculatethatsince4CPIdirectly increasesH2Slevel,anincreaseinCSEexpressionasaself-defence

mechanismagainstmyocardialischemicinjurymaybecome super-fluous.

Asreportedabove,theactivationofmitochondrialKATPchannels

islikelytobeinvolvedinthecardioprotectiveeffectsevokedbyH2S

[11,12].Inourstudy,themitoKATP-blocker5HDcompletely

abol-ishedtheeffectsof4CPI,stronglysuggestingthatmitoKATPmaybe

amaintargetoftheanti-ischemiceffectsofthisnovelH2S-donor.

Tosolidifythishypothesis,weinvestigatedtheeffectsof4CPIon isolatedratheartmitochondria.Aspreviouslyobservedwith acti-vatorsofmitochondrialpotassiumchannels,4CPIcausedapartial depolarizationofthemitochondrialmembranepotential[28].This effectwasinhibitedbyATP,thussuggestingtheinvolvementof ATP-sensitivechannels.Incontrast,XE991didnotcauseany sig-nificantinfluence,indicatingthattheactivationofmitochondrial Kv7channeldoesnotcontributesignificantlytocardioprotection. Mitochondrialcalciumaccumulationisakeyeventinpromoting celldeathafterI/R,andtheinhibitionofcalciumuptakeintothe mitochondrialmatrixisconsideredapivotalmechanismofaction oftheanti-ischemiceffectsofmitochondrial potassiumchannel activators[10].Consistently,4CPIstronglypreventedcalcium accu-mulationintothemitochondrialmatrix,furtherindicatingthatthe mitoKATPchannelislikelytobearelevantpharmacologicaltarget

ofthisnovelH2S-donor.

Finally, the cardioprotective effects of 4CPI were tested in vivo,inanexperimentalmodelofacutemyocardialinfarctionin rats,moreclosely resemblingtheclinicalpattern ofmyocardial infarction. Alsoin this model, 4CPI(0.24mg/kg)exhibited car-dioprotective effects, which were comparable to those evoked by IPC, i.e. an endogenous and powerful self-defence mecha-nism. These results strongly suggest that isothiocyanate-based H2S-releasingdrugs,suchas4CPI,cantriggera“pharmacological

pre-conditioning”andcouldrepresentasuitablepharmacological optioninanti-ischemictherapy.

Fig.7.(A)Changeinmitochondrialmembranepotential(yinmV)uponincubationofmitochondriawith4CPI(300␮M),intheabsenceorpresenceofATP(200␮M). Asterisksindicatesignificantstatisticaldifferences(**=P<0.01).B)ChangesinextramitochondrialCa2+concentration(in␮M)uponadditionofmitochondriatoacalcium-rich

(10)

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound, intheonlineversion,athttp://dx.doi.org/10.1016/j.phrs.2016.09. 006.

References

[1]R.Wang,Physiologicalimplicationsofhydrogensulfide:awhiffexploration thatblossomed,Physiol.Rev.92(2012)791–896.

[2]M.Bucci,G.Cirino,Hydrogensulphideinheartandsystemiccirculation, Inflamm.AllergyDrugTargets10(2011)103–108.

[3]G.Yang,R.Wang,H2Sandbloodvessels:anoverview,Handb.Exp.

Pharmacol.230(2015)85–110.

[4]M.H.Stipanuk,Sulfuraminoacidmetabolism:pathwaysforproductionand removalofhomocysteineandcysteine,Annu.Rev.Nutr.24(2004)539–577. [5]Y.Mikami,N.Shibuya,Y.Kimura,N.Nagahara,Y.Ogasawara,H.Kimura,

Thioredoxinanddihydrolipoicacidarerequiredfor3-mercaptopyruvate sulfurtransferasetoproducehydrogensulfide,Biochem.J439(2011) 479–485.

[6]M.Ishigami,K.Hiraki,K.Umemura,Y.Ogasawara,K.Ishii,H.Kimura,Asource ofhydrogensulfideandamechanismofitsreleaseinthebrain,Antioxid. RedoxSignal.11(2009)205–214.

[7]P.Kamoun,Endogenousproductionofhydrogensulfideinmammals,Amino Acids26(2004)243–254.

[8]I.Ishii,N.Akahoshi,X.N.Yu,Y.Kobayashi,K.Namekata,G.Komaki,H.Kimura, Murinecystathioninegamma-lyase:completecDNAandgenomicsequences, promoteractivity,tissuedistributionanddevelopmentalexpression, Biochem.J381(2004)113–123.

[9]R.Wang,C.Szabo,F.Ichinose,A.Ahmed,M.Whiteman,A.Papapetropoulos, TheroleofH2Sbioavailabilityinendothelialdysfunction,TrendsPharmacol.

Sci.36(2015)568–578.

[10]L.Testai,S.Rapposelli,A.Martelli,M.C.Breschi,V.Calderone,Mitochondrial potassiumchannelsaspharmacologicaltargetforcardioprotectivedrugs, Med.Res.Rev.35(2015)520–553.

[11]B.Geng,J.Yang,Y.Qi,J.Zhao,Y.Pang,J.Du,C.Tang,H2Sgeneratedbyheartin

ratanditseffectsoncardiacfunction,Biochem.Biophys.Res.Commun.313 (2004)362–368.

[12]D.Johansen,K.Ytrehus,G.F.Baxter,Exogenoushydrogensulfide(H2S)

protectsagainstregionalmyocardialischemia-reperfusioninjury—Evidence foraroleofKATPchannels,BasicRes.Cardiol.101(2006)53–60.

[13]J.W.Calvert,S.Jha,S.Gundewar,J.W.Elrod,A.Ramachandran,C.B.Pattillo, C.G.Kevil,D.J.Lefer,Hydrogensulfidemediatescardioprotectionthroughnrf2 signaling,Circ.Res.105(2009)365–374.

[14]A.D.Costa,K.D.Garlid,I.C.West,T.M.Lincoln,J.M.Downey,M.V.Cohen,S.D. Critz,ProteinkinaseGtransmitsthecardioprotectivesignalfromcytosolto mitochondria,Circ.Res.97(2005)329–336.

[15]I.Andreadou,E.K.Iliodromitis,C.Szabo,A.Papapetropoulos,Hydrogensulfide andPKGinischemia-reperfusioninjury:sources,signaling,acceleratorsand brakes,BasicRes.Cardiol.110(2015)510.

[16]N.G.Frangogiannis,K.A.Youker,R.D.Rossen,M.Gwechenberger,M.H. Lindsey,L.H.Mendoza,L.H.Michael,C.M.Ballantyne,C.W.Smith,M.L. Entman,Cytokinesandthemicrocirculationinischemiaandreperfusion,J. Mol.Cell.Cardiol.30(1998)2567–2576.

[17]C.J.Mackins,S.Kano,N.Seyedi,U.Schäfer,A.C.Reid,T.Machida,R.B.Silver,R. Levi,Cardiacmastcell-derivedreninpromoteslocalangiotensinformation, norepinephrinerelease,andarrhythmiasinischemia/reperfusion,J.Clin. Investig.116(2006)1063–1070.

[18]A.Martelli,A.Marino,V.Citi,L.Testai,R.Levi,M.C.Breschi,V.Calderone, Isothiocyanatesandinhibitionofmastcelldegranulation:ishydrogensulfide therealplayer?NitricOxide47(Suppl)(2015)S32.

[19]F.Roviezzo,A.Bertolino,R.Sorrentino,M.Terlizzi,M.Matteis,V.Calderone,V. Mattera,A.Martelli,G.Spaziano,A.Pinto,B.D’Agostino,G.Cirino,Hydrogen sulfideinhalationamelioratesallergeninducedairwayhypereactivityby modulatingmastcellactivation,Pharmacol.Res.100(2015)85–92.

[20]A.Martelli,L.Testai,M.C.Breschi,C.Blandizzi,A.Virdis,S.Taddei,V. Calderone,Hydrogensulphide:novelopportunityfordrugdiscovery,Med. Res.Rev.32(2012)1093–1130.

[21]A.Martelli,L.Testai,A.Marino,M.C.Breschi,F.DaSettimo,V.Calderone, Hydrogensulphide:biopharmacologicalrolesinthecardiovascularsystem andpharmaceuticalperspectives,Curr.Med.Chem.19(2012)3325–3336. [22]V.Calderone,A.Martelli,L.Testai,V.Citi,M.C.Breschi,Usinghydrogensulfide

todesignanddevelopdrugs,ExpertOpin.DrugDiscov.11(2016)163–175. [23]A.Martelli,L.Testai,V.Citi,A.Marino,F.G.Bellagambi,S.Ghimenti,M.C.

Breschi,V.Calderone,Pharmacologicalcharacterizationofthevasculareffects ofarylisothiocyanates:ishydrogensulfidetherealplayer,Vasc.Pharmacol. 60(2014)32–41.

[24]A.Martelli,L.Testai,M.C.Breschi,K.Lawson,N.G.McKay,F.Miceli,M. Taglialatela,V.Calderone,Vasorelaxationbyhydrogensulphideinvolves activationofKv7potassiumchannels,Pharmacol.Res.70(2013)27–34. [25]L.Testai,V.Barrese,M.V.Soldovieri,P.Ambrosino,A.Martelli,I.Vinciguerra,

F.Miceli,I.A.Greenwood,M.J.Curtis,M.C.Breschi,M.J.Sisalli,A.Scorziello, M.J.Canduela,P.Grandes,V.Calderone,M.Taglialatela,Expressionand functionofKv7.4channelsinratcardiacmitochondria:possibletargetsfor cardioprotection,Cardiovasc.Res.110(2016)40–50.

[26]M.Endou,E.Poli,R.Levi,HistamineH3-receptorsignalingintheheart:

possibleinvolvementofGi/GoproteinsandN-typeCa++channels,J.

Pharmacol.Exp.Ther.269(1994)221–229.

[27]L.Testai,A.Martelli,A.Marino,V.D’Antongiovanni,F.Ciregia,L.Giusti,A. Lucacchini,S.Chericoni,M.C.Breschi,V.Calderone,Theactivationof mitochondrialBKpotassiumchannelscontributestotheprotectiveeffectsof naringeninagainstmyocardialischemia/reperfusioninjury,Biochem. Pharmacol.85(2013)1634–1643.

[28]V.Calderone,L.Testai,A.Martelli,S.Rapposelli,M.Digiacomo,A.Balsamo, M.C.Breschi,Anti-ischemicpropertiesofanewspiro-cyclicbenzopyran activatorofthecardiacmito-KATPchannel,Biochem.Pharmacol.79(2010) 39–47.

[29]F.N.Salloum,Hydrogensulfideandcardioprotection–mechanisticinsights andclinicaltranslatability,Pharmacol.Ther.152(2015)11–17.

[30]G.Meng,J.Wang,Y.Xiao,W.Bai,L.Xie,L.Shan,P.K.Moore,Y.Ji,GYY4137 protectsagainstmyocardialischemiaandreperfusioninjurybyattenuating oxidativestressandapoptosisinrats,J.Biomed.Res.29(2015)203–213. [31]R.Wang,Two’scompany,three’sacrowd:canH2Sbethethirdendogenous

gaseoustransmitter,FASEBJ.16(2002)1792–1798.

[32]L.Li,A.Hsu,P.K.Moore,Actionsandinteractionsofnitricoxide,carbon monoxideandhydrogensulphideinthecardiovascularsystemandin inflammation-ataleofthreegases,Pharmacol.Ther.123(2009)386–400. [33]A.C.Reid,J.A.Brazin,C.Morrey,R.B.Silver,R.Levi,Targetingcardiacmast

cells:pharmacologicalmodulationofthelocalrenin-angiotensinsystem, Curr.Pharm.Des.17(2011)3744–3752.

[34]A.Salvi,P.Bankhele,J.M.Jamil,M.Kulkarni-Chitnis,Y.F.Njie-Mbye,S.E.Ohia, C.A.Opere,Pharmacologicalactionsofhydrogensulfidedonorson sympatheticneurotransmissioninthebovineanterioruvea,invitro, Neurochem.Res.41(2016)1020–1028.

[35]O.Kabil,Banerjee:redoxbiochemistryofhydrogensulfide,J.Biol.Chem.285 (2010)21903–21907.

[36]J.M.Hourihan,J.G.Kenna,J.D.Hayes,Thegasotransmitterhydrogensulfide inducesnrf2-targetgenesbyinactivatingthekeap1ubiquitinligasesubstrate adaptorthroughformationofadisulfidebondbetweencys-226andcys-613, Antioxid.RedoxSignal.19(2013)465–481.

[37]M.Fu,W.Zhang,G.Yang,R.Wang,Iscystathioninegamma-lyaseprotein expressedintheheart?Biochem.Biophys.Res.Commun.428(2012)469–474. [38]Y.G.Sun,X.Y.Wang,X.Chen,C.X.Shen,Y.G.Li,Hydrogensulfideimproves

cardiomyocyteselectricalremodelingpostischemia/reperfusioninjuryin rats,Int.J.Clin.Exp.Pathol.8(2015)474–481.

Riferimenti

Documenti correlati

È stato già mostrato nella figura 1 come l’espressione della proteina-canale TMEM16A sia fortemente aumentata dal trattamento con IL-4 e come tale espressione sia

* DAFE, Department of Agriculture, Food and Environment – University of Pisa; SSSUP, School of Advanced Studies Sant’Anna, Pisa; IPMB, Department of Plant and

Dass sein seelisches Leicì ursdchlich mit deutscher Geschichte verknùpft ìst, fùhrt nicht zur Vermengung der ìn. Betrzcht gezogenen

Di seguito, viene sinteticamente presentato un esempio di costruzione delle WFIUH utilizzate in HYPERStream con riferimento al bacino idrografico dell’Altro Tevere

Nella nostra attuale epoca, post – moderna, dominano i concetti di diritto, di flessibilità,. di dinamismo,

Tortola, la più grande delle oltre 40 isole che compongono l'arcipelago delle Isole Vergini Britanniche, vi accoglierà con la sua eleganza, le case bianche che spiccano sul verde

“La proprietà dello stabilimento, Eridania Beghin Say società del gruppo Montedison, ha deciso di chiudere l'attività entro Maggio 2001, adducendo i problemi