• Non ci sono risultati.

Model-Independent Observation of Exotic Contributions to B0 →j /ψK+π- Decays

N/A
N/A
Protected

Academic year: 2021

Condividi "Model-Independent Observation of Exotic Contributions to B0 →j /ψK+π- Decays"

Copied!
10
0
0

Testo completo

(1)

Model-Independent Observation of Exotic Contributions to B

0

→ J=ψK

+

π

Decays

R. Aaijet al.*

(LHCb Collaboration)

(Received 17 January 2019; published 17 April 2019)

An angular analysis of B0→ J=ψKþπ− decays is performed, using proton-proton collision data corresponding to an integrated luminosity of3 fb−1 collected with the LHCb detector. The mðKþπ−Þ spectrum is divided into fine bins. In each mðKþπ−Þ bin, the hypothesis that the three-dimensional angular distribution can be described by structures induced only by Kresonances is examined, making minimal assumptions about the Kþπ− system. The data reject the K-only hypothesis with a large significance, implying the observation of exotic contributions in a model-independent fashion. Inspection of the mðJ=ψπ−Þ vs mðKþπ−Þ plane suggests structures near mðJ=ψπ−Þ ¼ 4200 and 4600 MeV.

DOI:10.1103/PhysRevLett.122.152002

In the standard model, the quark model allows for hadrons comprising any number of valence quarks, as long as they are color-singlet states. Yet, after decades of searches, the reason why the vast majority of hadrons are built out of only quark-antiquark (meson) or three-quark (baryon) combinations remains a mystery. The best known exception is the Zð4430Þ− resonance with spin-parity 1− and width Γ ¼ 172  13 MeV [1–3] which has minimal quark content c¯c ¯u ¯d, and is therefore manifestly exotic, i.e., has components that are neither quark-antiquark or three-quark combinations. The only confirmed decay of the Zð4430Þ− state is via Zð4430Þ− → ψð2SÞπ−, as seen in B0→ ψð2SÞKþπ− decays [1,4]. The corresponding Zð4430Þ−→ J=ψπ− decay rate is suppressed by at least a factor of 10[5]. The authors of Ref.[6]surmise that in a dynamical diquark picture, this is because of a larger overlap of the Zð4430Þ− radial wave function with the excited stateψð2SÞ than with the ground state J=ψ. For the B0→ J=ψKþπ− channel, the Belle collaboration [5] has reported the observation of a new exotic Zð4200Þ− reso-nance decaying to J=ψπ− that might correspond to the structure in mðψð2SÞπ−Þ seen in Ref. [1] at around the same mass.

A generic concern in searches for broad exotic states like the Zð4430Þ− resonance is disentangling contributions from nonexotic components. For B0→ ψð0ÞKþπ− decays

[7], the latter comprise different KJ resonances with spin J, that decay to Kþπ−. Figure 1 shows the KJ spectrum,

which has multiple, overlapping, and poorly measured

states. The bulk of the measurements come from the LASS Kþπ− scattering experiment [8]. In particular, the decay B0→ J=ψKþπ− is known to be dominated by KJ

reso-nances, with an exotic fit fraction of only 2.4% [5], compared to a 10.3% contribution from the Zð4430Þ− for B0→ ψð2SÞKþπ− [9]. This smaller exotic fit fraction for the J=ψ case makes it pertinent to study the evidence of exotic contributions in a manner independent of the dominant but poorly understood KJ spectrum.

The BABAR collaboration[11]has performed a model-independent analysis of B0→ ψð0ÞKþπ− decays making minimal assumptions about the KJ spectrum, using two-dimensional (2D) moments in the variables mðKþπ−Þ and the Kþ helicity angle,θV. The key feature of this approach

FIG. 1. Spectrum of KJ resonances from Ref. [10], with the

vertical span of the boxes indicatingΓ0, whereΓ0is the width of each resonance. The horizontal dashed lines mark the mðKþπ−Þ physical region for B0→ J=ψKþπ−decays, whereas the dot-dashed lines mark the specific region, mðKþπ−Þ ∈ ½1085; 1445 MeV, employed for determining the significance of exotic contributions.

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Funded by SCOAP3.

(2)

is that no information on the exact content of the KJstates,

including their masses, widths, and mðKþπ−Þ -dependent line shapes, is required. An amplitude analysis would require the accurate description of the KJ line shapes which depend on the underlying production dynamics. The model-independent procedure bypasses these problems, requiring only knowledge of the highest spin, Jmax, among

all the contributing KJ states, for a given mðKþπ−Þ bin. Within uncertainties, the mðJ=ψπ−Þ spectrum in the BABAR data was found to be adequately described using just KJ states, without the need for exotic contributions.

In this Letter, a four-dimensional (4D) angular analysis of B0→ J=ψKþπ− decays with J=ψ → μþμ− is reported, employing the Run 1 LHCb dataset. The data sample corresponds to a signal yield approximately 40 and 20 times larger than those of the corresponding BABAR [11]

and Belle[9]analyses, respectively. The larger sample size allows analysis of the differential rate as a function of the four variables, mðKþπ−Þ, θV,θl, andχ, that fully describe

the decay topology. The lepton helicity angle,θl, and the azimuthal angle,χ, between the ðμþμ−Þ and ðKþπ−Þ decay planes, were integrated over in the BABAR 2D analysis

[11]. The present 4D analysis therefore benefits from a significantly better sensitivity to exotic components than the previous 2D analysis.

The LHCb detector is a single-arm forward spectrometer covering the pseudorapidity range 2 < η < 5 and is described in detail in Ref. [12]. Samples of simulated events are used to obtain the detector efficiency and optimise the selection. The pp collisions are generated usingPYTHIA[13]with a specific LHCb configuration[14].

Decays of hadronic particles are described byEVTGEN[15],

in which final-state radiation is generated using PHOTOS

[16]. Dedicated control samples are employed to calibrate the simulation for agreement with the data.

The selection procedure is the same as in Refs.[17,18]

for the rare decay B0→ μþμ−Kþπ−, with the additional requirement that the mðμþμ−Þ mass is constrained to the known J=ψ mass via a kinematic fit[19]. The data sample is divided into 35 fine bins in mðKþπ−Þ such that the mðKþπ−Þ dependence can be neglected inside a given bin, and each subsample is processed independently. The bin widths vary depending on the data sample size in a given mðKþπ−Þ region. Backgrounds from Bþ→ J=ψKþ, B0s → J=ψKþK−, andΛ0b→ J=ψpK− decays are reduced

to a level below 1% of the signal yield at the selection stage using the excellent tracking and particle-identification capabilities of the LHCb detector, and are subsequently removed by a background subtraction procedure. The B0ðsÞ → J=ψKþπ− signal line shape in the mðJ=ψKþπ−Þ spectrum is described by a bifurcated Gaussian core and exponential tails on both sides. A sum of two such line shapes is used for the signal template for the mass fit, while the background line shape is a falling exponential. The exponential tails in the signal line shape are fixed from the

simulation and all other parameters are allowed to vary in the fit, performed as a binnedχ2minimization. An example mass fit result is given in the Supplemental Material[20]. The cumulative signal yield in the mðKþπ−Þ ∈ ½745; 1545 MeV region is 554; 500  800.

The strategy in this analysis is to examine the hypothesis that nonexotic KJ contributions alone can explain all

features of the data. Under the approximation that the muon mass can be neglected and within a narrow mðKþπ−Þ bin, the CP -averaged transition matrix element squared is[21,22] jMj2¼X η jX λ;J ffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2J þ 1 p Hη;Jλ dJλ;0ðθVÞd1λ;ηðθlÞeiλχj2; ð1Þ

where Hη;Jλ are the KJ helicity amplitudes and djm0;m are

Wigner rotation matrix elements. The helicities of the outgoing lepton and KJ are η ¼ 1 and λ ∈ f0; 1g, respectively. Parity conservation in the electromagnetic J=ψ →μ−μþ decay leads to the relationHþ;Jλ ¼H−;Jλ ≡HJ

λ.

The differential decay rate of B0→ J=ψð→ μþμ−ÞKþπ− with the Kþπ−system including spin-J partial waves with J ≤ Jk

max can be written as

 dΓk dΩ  Jk max ∝Xn k max i¼1 fiðΩÞΓki; ð2Þ

where the angular part in Eq.(1)has been expanded in an orthonormal basis of angular functions, fiðΩÞ. Here, k

enumerates the mðKþπ−Þ bin under consideration, and dΩ ¼ d cos θld cosθVdχ is the angular phase space differ-ential element. The angular basis functions, fiðΩÞ, are

constructed from spherical harmonics, Ym

l ≡ Ymlðθl; χÞ, and

reduced spherical harmonics, Pml ≡

ffiffiffiffiffiffi 2π p

YmlðθV; 0Þ, and are

given in the Supplemental Material[20].

The Γki moments are observables that have an overall mðKþπ−Þ dependence, but within a narrow mðKþπ−Þ bin, this dependence can be neglected. The number of moments for the kth bin, nkmax, depends on the allowed spin of the

highest partial wave, Jk

max, and is given by Ref.[22]

nk

max¼ 28 þ 12 × ðJkmax− 2Þ; for Jkmax> 2: ð3Þ

Thus, for spin 3 onward, each additional higher spin component leads to 12 additional moments. In contrast to previous analyses, d cosθldχ is not integrated over, which would have resulted in integrating over 10 out of these 12 moments, for each additional spin. Because of the orthonormality of the fiðΩÞ basis functions, the angular

observables, Γk

i, can be determined from the data in an

unbiased fashion using a simple counting measurement

[21]. For the kth mðKþπ−Þ bin, the background-subtracted raw moments are estimated as

(3)

Γk i;raw¼ Xnk sig p¼1 fiðΩpÞ − xk Xnk bkg p¼1 fiðΩpÞ; ð4Þ

whereΩprefers to the set of angles for a given event in this mðKþπ−Þ bin. The corresponding covariance matrix is

Ck ij;raw¼ Xnk sig p¼1 fiðΩpÞfjðΩpÞ þ ðxkÞ2 Xnk bkg p¼1 fiðΩpÞfjðΩpÞ: ð5Þ Here, nksigand nkbkgcorrespond to the number of candidates

in the signal and background regions, respectively. The signal region is defined within15 MeV of the known B0 mass, and the background region spans the range mðJ=ψKþπ−Þ ∈ ½5450; 5560 MeV. The scale factor, xk,

is the ratio of the estimated number of background candidates in the signal region divided by the number of candidates in the background region and is used to normal-ize the background subtraction.

To unfold effects from the detector efficiency including event reconstruction and selection, an efficiency matrix, Ek

ij, is used. It is obtained from simulated signal events

generated according to a phase space distribution, uniform in Ω, as Ek ij ¼ Xnk sim p¼1 wk pfiðΩpÞfjðΩpÞ: ð6Þ The wk

pweight factors correct for differences between data

and simulation, and the summation is over simulated and reconstructed events. They are derived using the B0→ J=ψKð892Þ0control mode, as described in Refs.[17,18]. The efficiency-corrected moments and covariance matrices are estimated as

Γk

i ¼ ½ðEkÞ−1ilΓkl;raw; ð7Þ

Ck

ij¼ ½ðEkÞ−1ilClm;rawk ½ðEkÞ−1jm: ð8Þ

The first moment,Γk1, corresponds to the overall rate. The remaining moments and the covariance matrix are normal-ized to this overall rate as ¯Γk

i ≡ Γki=Γk1 and ¯Ck ij;stat¼  Ckij ðΓk 1Þ2 þ ΓkiΓkj ðΓk 1Þ4C k 11− Γk iCk1jþ ΓkjCk1i Γk 1ðΓk1Þ2  ; ð9Þ for i; j ∈ f2; …; nk maxg.

The normalization with respect to the total rate renders the analysis insensitive to any overall systematic effect not correlated with dΩ in a given mðKþπ−Þ bin. The uncer-tainty from limited knowledge of the background is

included in the second term in Eq.(5). The effect on the normalized moments, ¯Γk

i, due to the uncertainty in the xk

scale factors from the mass fit, is found to be negligible. The effect due to the limited simulation sample size compared to the data is small and accounted for using pseudoexperiments. The last source of systematic uncer-tainty is the effect of finite resolution in the reconstructed angles. The estimated biases in the measured ¯Γki moments are added as additional uncertainties.

The dominant contributions to B0→ J=ψKþπ−are from the Kð892Þ0 and K2ð1430Þ0 states. To maximize the sensitivity to any exotic component, the dominant Kð892Þ0 region that serves as a background for any non-KJ component, the analysis is performed on the

mðKþπ−Þ ∈ ½1085; 1445 MeV region, as marked by the dot-dashed lines in Fig. 1. The value of Jk

max depends on

mðKþπ−Þ, with higher spin states suppressed at lower mðKþπ−Þ values, due to the orbital angular momentum barrier factor[23]. As seen from Fig. 1, only states with spin J ¼ f0; 1g contribute below mðKþπ−Þ ∼ 1300 MeV and spin J ¼ f0; 1; 2g below mðKþπ−Þ ∼ 1600 MeV. As a conservative choice, Jk

maxis taken to be one unit larger than

these expectations

Jkmax¼

 2 for 1085 ≤ mðKþπÞ < 1265 MeV;

3 for 1265 ≤ mðKþπÞ < 1445 MeV: ð10Þ

Any exotic component in the J=ψπ− or J=ψKþ system will reflect onto the entire basis of KJ partial waves and

give rise to nonzero contributions from Plðcos θVÞ

com-ponents for l larger than those needed to account for KJ resonances. From the completeness of the fiðΩÞ basis, a

model with large enough Jkmax also describes any exotic

component in the data. For a given value of mðKþπ−Þ, there is a one-to-one correspondence between cosθV and the variables mðJ=ψπ−Þ or mðJ=ψKþÞ. Therefore, a complete basis of Plðcos θVÞ partial waves also describes any

arbitrary shape in mðJ=ψπ−Þ or mðJ=ψKþÞ, for a given mðKþπ−Þ bin. The series is truncated at a value large enough to describe the relevant features of the distribution in data, but not so large that it follows bin-by-bin statistical fluctuations. A value of Jkmax¼ 15 is found to be suitable.

For the kth mðKþπ−Þ bin, the probability density function (pdf) for the Jk

max model is PJk maxðΩÞ ¼ 1 ffiffiffiffiffiffi 8π p  1 ffiffiffiffiffiffi 8π p þX nk Jmax i¼2 ¯Γk ifiðΩÞ  : ð11Þ Simulated events generated uniformly inΩ, after incorpo-rating detector efficiency effects and weighting by the pdf in Eq. (11), are expected to match the background-sub-tracted data. The background subtraction is performed using the sPlot technique [24], where the weights are determined from fits to the invariant mðJ=ψKþπ−Þ

(4)

distributions described previously. Figure 2 shows this comparison between the background-subtracted data and weighted simulated events in the mðKþπ−Þ ∈ ½1085; 1265 MeV region. The Jk

max¼ 2 model clearly

misses the peaking structures in the data around mðJ=ψπ−Þ ¼ 4200 and 4600 MeV. This inability of the Jk

max¼ 2 model to describe the data, even though the first

spin 2 state, K2ð1430Þ0, lies beyond this mass region,

strongly points toward the presence of exotic components. These could be four-quark bound states, meson molecules, or possibly dynamically generated features such as cusps. To obtain a numerical estimate of the significance of exotic states, the likelihood ratio test is employed between the null hypothesis [KJ-only, from Eq.(10)] and the exotic hypothesis ðJk

max¼ 15Þ pdfs, denoted as PkKJ and Pkexotic,

respectively. The test statistic used in the likelihood ratio test is defined as Δð−2logLÞjk≡ −X nk sig p¼1 2log P k KJðΩpÞ Pk exoticðΩpÞ þ xkX nk bkg p¼1 2log P k KJðΩpÞ Pk exoticðΩpÞ þ 2ðnk sig− xknkbkgÞlog R Pk KJðΩÞϵðΩÞdΩ R Pk exoticðΩÞϵðΩÞdΩ ; ð12Þ for the kth mðKþπ−Þ bin, where ϵðΩÞ denotes the three-dimensional angular detector efficiency in this bin, derived from the simulation weighted to match the data in the B0 production kinematics. The last term in Eq. (12) ensures normalization of the relevant pdf and is calculated from simulated events that pass the reconstruction and selection criteria Ek i ≡ Xnk sim p¼1 wk pfiðΩpÞ; ð13Þ Z PJk maxðΩÞϵðΩÞdΩ ∝ Xnk max i¼1 Γk iEki: ð14Þ

Results from individual mðKþπ−Þ bins are combined to give the final test statisticΔð−2 log LÞ ¼PkΔð−2 log LÞjk.

From Eq. (3) the number of degrees-of-freedom (ndf) increases by 12 for each additional spin-J wave in each mðKþπ−Þ bin. From Eq. (10), for the Jk

max¼ 2 and 3

choices,Δndf ¼12×ð15−2Þ¼156 and 12×ð15−3Þ¼144, respectively, between the exotic and KJ-only pdfs for each mðKþπ−Þ bin. Each additional degree-of-freedom between the exotic and KJ-only pdf adds approximately one unit to

the computed Δð−2 log LÞ in the data due to increased sensitivity to the statistical fluctuations, andΔð−2 log LÞ is therefore not expected to be zero even if there is no exotic contribution in the data. The expected Δð−2 log LÞ dis-tribution in the absence of exotic activity is evaluated using a large number of pseudoexperiments. For each mðKþπ−Þ bin, 11 000 pseudoexperiments are generated according to the KJ-only model with the moments varied according to

the covariance matrix. The number of signal and back-ground events for each pseudoexperiment are taken to be those measured in the data. The detector efficiency obtained from simulation is parametrized in 4D. Each pseudoexperiment is analyzed in exactly the same way as the data, where an independent efficiency matrix is gen-erated for each pseudoexperiment. This accounts for the limited sample size of the simulation for the efficiency unfolding. The pseudoexperiments therefore represent the data faithfully at every step of the processing.

Figure3shows the distribution ofΔð−2 log LÞ from the pseudoexperiments in the mðKþπ−Þ ∈ ½1085; 1445 MeV

FIG. 2. Comparison of mðJψπ−Þ in the mðKþπ−Þ ∈ ½1085; 1265 MeV region between the background-subtracted data and simulated events weighted by moments models with Jk

max¼ 2 and Jkmax¼ 15.

FIG. 3. Likelihood-ratio test for exotic significance. The data shows a10σ deviation from the pseudoexperiments generated according to the null hypothesis (KJ-only contributions).

(5)

region comprising six mðKþπ−Þ bins each with the Jkmax¼ 2 or 3 choice. A fit to a Gaussian profile gives

Δð−2 log LÞ ≈ 2051 between the null and exotic hypoth-esis, even in the absence of any exotic contributions. This value is consistent with the naïve expectation ΔðndfÞ ¼ 1800 from the counting discussed earlier. The value of Δð−2 log LÞ for the data, as marked by the vertical line in Fig. 3, shows a deviation of more than 10σ from the null hypothesis, corresponding to the distribution of the pseudoexperiments. The uncertainty due to the quality of the Gaussian profile fit in Fig. 3 is found to be negligible. The choice of large Jk

max for Pkexotic, as well

as the detector efficiency and calibration of the simulation, is systematically varied in pseudoexperiments, with sig-nificance for exotic components in excess of6σ observed in each case.

In summary, employing the Run 1 LHCb dataset, non-KJ contributions in B0→ J=ψKþπ− are observed

with overwhelming significance. Compared to the pre-vious BABAR analysis [11] of the same channel, the current study benefits from a 40-fold increase in signal yield and a full angular analysis of the decay topology. The method relies on a novel orthonormal angular moments expansion and, aside from a conservative limit on the highest allowed KJ spin for a given mðKþπ−Þ invariant mass, makes no other assumption about the Kþπ−system. Figure4shows a scatter plot of mðJ=ψπ−Þ against mðKþπ−Þ in the background-subtracted data. Although the model-independent analysis performed here does not identify the origin of the non-KJ contributions,

structures are visible at mðJ=ψπ−Þ ≈ 4200 MeV, close to the exotic state reported previously by Belle [5], and at mðJ=ψπ−Þ ≈ 4600 MeV. To interpret these structures as exotic tetraquark resonances and measure their properties will require a future model-dependent amplitude analysis of the data.

We express our gratitude to our colleagues in the CERN accelerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at the LHCb institutes. We acknowledge support from CERN and from the national agencies CAPES, CNPq, FAPERJ, and FINEP (Brazil); MOST and NSFC (China); CNRS/ IN2P3 (France); BMBF, DFG, and MPG (Germany); INFN (Italy); NWO (Netherlands); MNiSW and NCN (Poland); MEN/IFA (Romania); MSHE (Russia); MinECo (Spain); SNSF and SER (Switzerland); NASU (Ukraine); STFC (United Kingdom); NSF (U.S.). We acknowledge the computing resources that are provided by CERN, IN2P3 (France), KIT and DESY (Germany), INFN (Italy), SURF (Netherlands), PIC (Spain), GridPP (United Kingdom), RRCKI and Yandex LLC (Russia), CSCS (Switzerland), IFIN-HH (Romania), CBPF (Brazil), PL-GRID (Poland), and OSC (U.S.). We are indebted to the communities behind the multiple open-source software packages on which we depend. Individual groups or members have received support from AvH Foundation (Germany); EPLANET, Marie Skłodowska-Curie Actions and ERC (European Union); ANR, Labex P2IO and OCEVU, and R´egion Auvergne-Rhône-Alpes (France); Key Research Program of Frontier Sciences of CAS, CAS PIFI, and the Thousand Talents Program (China); RFBR, RSF, and Yandex LLC (Russia); GVA, XuntaGal, and GENCAT (Spain); the Royal Society and the Leverhulme Trust (United Kingdom); Laboratory Directed Research and Development program of LANL (U.S.).

[1] R. Aaij et al. (LHCb Collaboration),Phys. Rev. Lett. 112, 222002 (2014).

[2] S. K. Choi et al. (Belle Collaboration),Phys. Rev. Lett. 100, 142001 (2008).

[3] Natural units with ℏ ¼ c ¼ 1 are used throughout the document.

[4] The inclusion of charge-conjugate decay modes is implied throughout.

[5] K. Chilikin et al. (Belle Collaboration),Phys. Rev. D 90, 112009 (2014).

[6] S. J. Brodsky, D. S. Hwang, and R. F. Lebed,Phys. Rev. Lett. 113, 112001 (2014).

[7] Hereψ denotes the ground state J=ψ, and ψ0denotes the excited stateψð2SÞ.

[8] D. Aston et al. (LASS Collaboration),Nucl. Phys. B296, 493 (1988).

[9] K. Chilikin et al. (Belle Collaboration),Phys. Rev. D 88, 074026 (2013).

[10] M. Tanabashi et al. (Particle Data Group),Phys. Rev. D 98, 030001 (2018).

[11] B. Aubert et al. (BABAR Collaboration),Phys. Rev. D 79, 112001 (2009).

[12] A. A. Alves, Jr. et al. (LHCb Collaboration),J. Instrum. 3, S08005 (2008).

FIG. 4. Background-subtracted 2D distribution of mðJ=ψπ−Þ vs mðKþπ−Þ in the region mðKþπ−Þ ∈ ½745; 1545 MeV. The intensity (z-axis) scale has been highly truncated to limit the strong Kð892Þ0 contribution.

(6)

[13] T. Sjöstrand, S. Mrenna, and P. Skands, J. High Energy Phys. 05 (2006) 026; Comput. Phys. Commun. 178, 852 (2008).

[14] I. Belyaev et al., J. Phys. Conf. Ser. 331, 032047 (2011).

[15] D. J. Lange, Nucl. Instrum. Methods Phys. Res., Sect. A 462, 152 (2001).

[16] P. Golonka and Z. Was,Eur. Phys. J. C 45, 97 (2006). [17] R. Aaij et al. (LHCb Collaboration),J. High Energy Phys.

02 (2016) 104.

[18] R. Aaij et al. (LHCb Collaboration),J. High Energy Phys. 12 (2016) 065.

[19] W. D. Hulsbergen,Nucl. Instrum. Methods Phys. Res., Sect. A 552, 566 (2005).

[20] See Supplemental Material at http://link.aps.org/ supplemental/10.1103/PhysRevLett.122.152002for defini-tions of the angles, an example mass fit, further comparisons between the data and moments models, and a list of the angular basis functions.

[21] B. Dey,Phys. Rev. D 92, 033013 (2015). [22] B. Dey,Phys. Rev. D 95, 033004 (2017).

[23] F. von Hippel and C. Quigg,Phys. Rev. D 5, 624 (1972). [24] M. Pivk and F. R. Le Diberder, Nucl. Instrum. Methods

Phys. Res., Sect. A 555, 356 (2005).

R. Aaij,29C. Abellán Beteta,46B. Adeva,43 M. Adinolfi,50 C. A. Aidala,77Z. Ajaltouni,7 S. Akar,61P. Albicocco,20 J. Albrecht,12F. Alessio,44M. Alexander,55A. Alfonso Albero,42G. Alkhazov,41P. Alvarez Cartelle,57A. A. Alves Jr.,43 S. Amato,2S. Amerio,25Y. Amhis,9L. An,19L. Anderlini,19G. Andreassi,45M. Andreotti,18J. E. Andrews,62F. Archilli,29

J. Arnau Romeu,8 A. Artamonov,40 M. Artuso,63K. Arzymatov,38E. Aslanides,8 M. Atzeni,46B. Audurier,24 S. Bachmann,14J. J. Back,52S. Baker,57V. Balagura,9,bW. Baldini,18A. Baranov,38R. J. Barlow,58S. Barsuk,9W. Barter,58

M. Bartolini,21F. Baryshnikov,73V. Batozskaya,33 B. Batsukh,63A. Battig,12 V. Battista,45A. Bay,45J. Beddow,55 F. Bedeschi,26I. Bediaga,1A. Beiter,63L. J. Bel,29S. Belin,24N. Beliy,4V. Bellee,45N. Belloli,22,cK. Belous,40I. Belyaev,35 G. Bencivenni,20E. Ben-Haim,10S. Benson,29S. Beranek,11A. Berezhnoy,36R. Bernet,46D. Berninghoff,14E. Bertholet,10 A. Bertolin,25C. Betancourt,46F. Betti,17,44M. O. Bettler,51Ia. Bezshyiko,46S. Bhasin,50J. Bhom,31S. Bifani,49P. Billoir,10 A. Birnkraut,12A. Bizzeti,19,d M. Bjørn,59M. P. Blago,44 T. Blake,52F. Blanc,45S. Blusk,63D. Bobulska,55V. Bocci,28 O. Boente Garcia,43 T. Boettcher,60A. Bondar,39,e N. Bondar,41S. Borghi,58,44M. Borisyak,38M. Borsato,43F. Bossu,9

M. Boubdir,11T. J. V. Bowcock,56C. Bozzi,18,44 S. Braun,14M. Brodski,44J. Brodzicka,31A. Brossa Gonzalo,52 D. Brundu,24,44 E. Buchanan,50A. Buonaura,46C. Burr,58A. Bursche,24J. Buytaert,44W. Byczynski,44S. Cadeddu,24

H. Cai,67R. Calabrese,18,fR. Calladine,49M. Calvi,22,cM. Calvo Gomez,42,gA. Camboni,42,g P. Campana,20 D. H. Campora Perez,44L. Capriotti,17,hA. Carbone,17,h G. Carboni,27R. Cardinale,21A. Cardini,24P. Carniti,22,c K. Carvalho Akiba,2G. Casse,56L. Cassina,22M. Cattaneo,44G. Cavallero,21R. Cenci,26,iM. G. Chapman,50M. Charles,10

Ph. Charpentier,44G. Chatzikonstantinidis,49M. Chefdeville,6 V. Chekalina,38C. Chen,3 S. Chen,24S.-G. Chitic,44 V. Chobanova,43M. Chrzaszcz,44A. Chubykin,41P. Ciambrone,20X. Cid Vidal,43G. Ciezarek,44F. Cindolo,17 P. E. L. Clarke,54M. Clemencic,44H. V. Cliff,51J. Closier,44V. Coco,44J. A. B. Coelho,9 J. Cogan,8 E. Cogneras,7 L. Cojocariu,34P. Collins,44T. Colombo,44A. Comerma-Montells,14A. Contu,24G. Coombs,44S. Coquereau,42G. Corti,44

M. Corvo,18,f C. M. Costa Sobral,52B. Couturier,44G. A. Cowan,54 D. C. Craik,60A. Crocombe,52M. Cruz Torres,1 R. Currie,54F. Da Cunha Marinho,2 C. L. Da Silva,78E. Dall’Occo,29J. Dalseno,43,jC. D’Ambrosio,44A. Danilina,35 P. d’Argent,14 A. Davis,3 O. De Aguiar Francisco,44K. De Bruyn,44 S. De Capua,58M. De Cian,45J. M. De Miranda,1 L. De Paula,2M. De Serio,16,kP. De Simone,20J. A. de Vries,29C. T. Dean,55D. Decamp,6L. Del Buono,10B. Delaney,51

H.-P. Dembinski,13M. Demmer,12 A. Dendek,32D. Derkach,74 O. Deschamps,7 F. Desse,9 F. Dettori,56B. Dey,68 A. Di Canto,44P. Di Nezza,20S. Didenko,73H. Dijkstra,44F. Dordei,24M. Dorigo,44,lA. C. dos Reis,1A. Dosil Suárez,43

L. Douglas,55A. Dovbnya,47K. Dreimanis,56 L. Dufour,44G. Dujany,10P. Durante,44 J. M. Durham,78D. Dutta,58 R. Dzhelyadin,40M. Dziewiecki,14A. Dziurda,31A. Dzyuba,41 S. Easo,53U. Egede,57V. Egorychev,35S. Eidelman,39,e

S. Eisenhardt,54U. Eitschberger,12R. Ekelhof,12L. Eklund,55S. Ely,63A. Ene,34S. Escher,11S. Esen,29T. Evans,61 A. Falabella,17C. Färber,44N. Farley,49S. Farry,56D. Fazzini,22,44,cM. F´eo,44P. Fernandez Declara,44A. Fernandez Prieto,43

F. Ferrari,17L. Ferreira Lopes,45 F. Ferreira Rodrigues,2 M. Ferro-Luzzi,44S. Filippov,37R. A. Fini,16 M. Fiorini,18,f M. Firlej,32C. Fitzpatrick,45T. Fiutowski,32F. Fleuret,9,b M. Fontana,44F. Fontanelli,21,mR. Forty,44V. Franco Lima,56 M. Frank,44C. Frei,44J. Fu,23,nW. Funk,44E. Gabriel,54A. Gallas Torreira,43D. Galli,17,hS. Gallorini,25S. Gambetta,54

Y. Gan,3M. Gandelman,2P. Gandini,23Y. Gao,3 L. M. Garcia Martin,76J. García Pardiñas,46B. Garcia Plana,43 J. Garra Tico,51L. Garrido,42D. Gascon,42C. Gaspar,44L. Gavardi,12G. Gazzoni,7 D. Gerick,14E. Gersabeck,58 M. Gersabeck,58T. Gershon,52D. Gerstel,8Ph. Ghez,6V. Gibson,51O. G. Girard,45P. Gironella Gironell,42L. Giubega,34

(7)

K. Gizdov,54V. V. Gligorov,10C. Göbel,65D. Golubkov,35A. Golutvin,57,73A. Gomes,1,o I. V. Gorelov,36 C. Gotti,22,c E. Govorkova,29J. P. Grabowski,14R. Graciani Diaz,42L. A. Granado Cardoso,44E. Graug´es,42E. Graverini,46 G. Graziani,19A. Grecu,34R. Greim,29P. Griffith,24L. Grillo,58L. Gruber,44B. R. Gruberg Cazon,59O. Grünberg,70C. Gu,3

E. Gushchin,37A. Guth,11 Yu. Guz,40,44 T. Gys,44T. Hadavizadeh,59C. Hadjivasiliou,7 G. Haefeli,45C. Haen,44 S. C. Haines,51B. Hamilton,62X. Han,14T. H. Hancock,59S. Hansmann-Menzemer,14N. Harnew,59T. Harrison,56 C. Hasse,44M. Hatch,44J. He,4M. Hecker,57K. Heinicke,12A. Heister,12K. Hennessy,56L. Henry,76M. Heß,70J. Heuel,11 A. Hicheur,64R. Hidalgo Charman,58D. Hill,59M. Hilton,58P. H. Hopchev,45J. Hu,14W. Hu,68W. Huang,4Z. C. Huard,61 W. Hulsbergen,29T. Humair,57M. Hushchyn,74D. Hutchcroft,56D. Hynds,29P. Ibis,12M. Idzik,32P. Ilten,49A. Inglessi,41 A. Inyakin,40K. Ivshin,41R. Jacobsson,44J. Jalocha,59E. Jans,29B. K. Jashal,76 A. Jawahery,62F. Jiang,3 M. John,59 D. Johnson,44C. R. Jones,51C. Joram,44B. Jost,44N. Jurik,59S. Kandybei,47M. Karacson,44J. M. Kariuki,50S. Karodia,55

N. Kazeev,74M. Kecke,14F. Keizer,51M. Kelsey,63M. Kenzie,51T. Ketel,30E. Khairullin,38B. Khanji,44 C. Khurewathanakul,45K. E. Kim,63T. Kirn,11 V. S. Kirsebom,45S. Klaver,20K. Klimaszewski,33T. Klimkovich,13 S. Koliiev,48M. Kolpin,14R. Kopecna,14P. Koppenburg,29I. Kostiuk,29S. Kotriakhova,41M. Kozeiha,7 L. Kravchuk,37

M. Kreps,52F. Kress,57 P. Krokovny,39,e W. Krupa,32 W. Krzemien,33W. Kucewicz,31,pM. Kucharczyk,31 V. Kudryavtsev,39,e A. K. Kuonen,45T. Kvaratskheliya,35,44 D. Lacarrere,44 G. Lafferty,58A. Lai,24D. Lancierini,46 G. Lanfranchi,20C. Langenbruch,11T. Latham,52 C. Lazzeroni,49R. Le Gac,8 R. Lef`evre,7 A. Leflat,36F. Lemaitre,44

O. Leroy,8 T. Lesiak,31B. Leverington,14 P.-R. Li,4,qY. Li,5Z. Li,63X. Liang,63T. Likhomanenko,72R. Lindner,44 F. Lionetto,46V. Lisovskyi,9 G. Liu,66X. Liu,3 D. Loh,52A. Loi,24 I. Longstaff,55J. H. Lopes,2 G. H. Lovell,51 D. Lucchesi,25,r M. Lucio Martinez,43A. Lupato,25E. Luppi,18,fO. Lupton,44A. Lusiani,26X. Lyu,4 F. Machefert,9

F. Maciuc,34V. Macko,45P. Mackowiak,12S. Maddrell-Mander,50O. Maev,41,44 K. Maguire,58D. Maisuzenko,41 M. W. Majewski,32S. Malde,59B. Malecki,44A. Malinin,72T. Maltsev,39,eG. Manca,24,sG. Mancinelli,8D. Marangotto,23,n J. Maratas,7,tJ. F. Marchand,6U. Marconi,17C. Marin Benito,9M. Marinangeli,45P. Marino,45J. Marks,14P. J. Marshall,56 G. Martellotti,28M. Martinelli,44D. Martinez Santos,43F. Martinez Vidal,76A. Massafferri,1M. Materok,11R. Matev,44

A. Mathad,52Z. Mathe,44C. Matteuzzi,22A. Mauri,46E. Maurice,9,b B. Maurin,45M. McCann,57,44A. McNab,58 R. McNulty,15J. V. Mead,56B. Meadows,61C. Meaux,8N. Meinert,70D. Melnychuk,33M. Merk,29A. Merli,23,n E. Michielin,25D. A. Milanes,69E. Millard,52M.-N. Minard,6L. Minzoni,18,f D. S. Mitzel,14A. Mödden,12A. Mogini,10

R. D. Moise,57 T. Mombächer,12I. A. Monroy,69 S. Monteil,7 M. Morandin,25G. Morello,20M. J. Morello,26,u O. Morgunova,72J. Moron,32A. B. Morris,8 R. Mountain,63F. Muheim,54M. Mukherjee,68M. Mulder,29D. Müller,44 J. Müller,12K. Müller,46V. Müller,12C. H. Murphy,59D. Murray,58P. Naik,50T. Nakada,45R. Nandakumar,53A. Nandi,59

T. Nanut,45I. Nasteva,2 M. Needham,54N. Neri,23,nS. Neubert,14N. Neufeld,44R. Newcombe,57T. D. Nguyen,45 C. Nguyen-Mau,45,v S. Nieswand,11R. Niet,12N. Nikitin,36A. Nogay,72N. S. Nolte,44A. Oblakowska-Mucha,32

V. Obraztsov,40S. Ogilvy,55D. P. O’Hanlon,17 R. Oldeman,24,sC. J. G. Onderwater,71A. Ossowska,31 J. M. Otalora Goicochea,2 T. Ovsiannikova,35 P. Owen,46 A. Oyanguren,76P. R. Pais,45 T. Pajero,26,u A. Palano,16

M. Palutan,20G. Panshin,75A. Papanestis,53M. Pappagallo,54L. L. Pappalardo,18,fW. Parker,62C. Parkes,58,44 G. Passaleva,19,44A. Pastore,16M. Patel,57C. Patrignani,17,hA. Pearce,44A. Pellegrino,29G. Penso,28M. Pepe Altarelli,44

S. Perazzini,44 D. Pereima,35P. Perret,7 L. Pescatore,45 K. Petridis,50A. Petrolini,21,m A. Petrov,72S. Petrucci,54 M. Petruzzo,23,n B. Pietrzyk,6 G. Pietrzyk,45M. Pikies,31M. Pili,59D. Pinci,28J. Pinzino,44F. Pisani,44A. Piucci,14 V. Placinta,34S. Playfer,54J. Plews,49 M. Plo Casasus,43 F. Polci,10M. Poli Lener,20A. Poluektov,52N. Polukhina,73,w

I. Polyakov,63E. Polycarpo,2 G. J. Pomery,50S. Ponce,44 A. Popov,40D. Popov,49,13S. Poslavskii,40E. Price,50 J. Prisciandaro,43C. Prouve,43V. Pugatch,48A. Puig Navarro,46H. Pullen,59G. Punzi,26,iW. Qian,4J. Qin,4R. Quagliani,10

B. Quintana,7N. V. Raab,15B. Rachwal,32J. H. Rademacker,50M. Rama,26M. Ramos Pernas,43M. S. Rangel,2 F. Ratnikov,38,74G. Raven,30M. Ravonel Salzgeber,44M. Reboud,6F. Redi,45S. Reichert,12F. Reiss,10C. Remon Alepuz,76

Z. Ren,3 V. Renaudin,59S. Ricciardi,53S. Richards,50K. Rinnert,56P. Robbe,9 A. Robert,10A. B. Rodrigues,45 E. Rodrigues,61J. A. Rodriguez Lopez,69M. Roehrken,44S. Roiser,44A. Rollings,59V. Romanovskiy,40A. Romero Vidal,43

M. Rotondo,20M. S. Rudolph,63T. Ruf,44J. Ruiz Vidal,76 J. J. Saborido Silva,43N. Sagidova,41B. Saitta,24,s V. Salustino Guimaraes,65C. Sanchez Gras,29C. Sanchez Mayordomo,76B. Sanmartin Sedes,43R. Santacesaria,28 C. Santamarina Rios,43M. Santimaria,20,44E. Santovetti,27,xG. Sarpis,58A. Sarti,20,yC. Satriano,28,zA. Satta,27M. Saur,4

D. Savrina,35,36S. Schael,11M. Schellenberg,12M. Schiller,55 H. Schindler,44M. Schmelling,13T. Schmelzer,12 B. Schmidt,44O. Schneider,45A. Schopper,44H. F. Schreiner,61M. Schubiger,45S. Schulte,45M. H. Schune,9

(8)

R. Schwemmer,44B. Sciascia,20A. Sciubba,28,yA. Semennikov,35E. S. Sepulveda,10A. Sergi,49N. Serra,46J. Serrano,8 L. Sestini,25A. Seuthe,12P. Seyfert,44M. Shapkin,40Y. Shcheglov,41,a T. Shears,56L. Shekhtman,39,e V. Shevchenko,72 E. Shmanin,73B. G. Siddi,18R. Silva Coutinho,46L. Silva de Oliveira,2G. Simi,25,rS. Simone,16,kI. Skiba,18N. Skidmore,14 T. Skwarnicki,63M. W. Slater,49 J. G. Smeaton,51E. Smith,11I. T. Smith,54M. Smith,57M. Soares,17l. Soares Lavra,1

M. D. Sokoloff,61F. J. P. Soler,55 B. Souza De Paula,2 B. Spaan,12E. Spadaro Norella,23,nP. Spradlin,55 F. Stagni,44 M. Stahl,14S. Stahl,44 P. Stefko,45S. Stefkova,57O. Steinkamp,46S. Stemmle,14 O. Stenyakin,40 M. Stepanova,41 H. Stevens,12A. Stocchi,9 S. Stone,63B. Storaci,46S. Stracka,26M. E. Stramaglia,45M. Straticiuc,34U. Straumann,46

S. Strokov,75J. Sun,3 L. Sun,67Y. Sun,62K. Swientek,32A. Szabelski,33T. Szumlak,32M. Szymanski,4Z. Tang,3 A. Tayduganov,8 T. Tekampe,12G. Tellarini,18F. Teubert,44E. Thomas,44M. J. Tilley,57V. Tisserand,7S. T’Jampens,6 M. Tobin,32S. Tolk,44L. Tomassetti,18,fD. Tonelli,26D. Y. Tou,10R. Tourinho Jadallah Aoude,1E. Tournefier,6M. Traill,55

M. T. Tran,45A. Trisovic,51A. Tsaregorodtsev,8 G. Tuci,26,iA. Tully,51N. Tuning,29,44 A. Ukleja,33A. Usachov,9 A. Ustyuzhanin,38,74U. Uwer,14A. Vagner,75 V. Vagnoni,17 A. Valassi,44 S. Valat,44 G. Valenti,17M. van Beuzekom,29

E. van Herwijnen,44J. van Tilburg,29M. van Veghel,29A. Vasiliev,40R. Vazquez Gomez,44P. Vazquez Regueiro,43 C. Vázquez Sierra,29S. Vecchi,18J. J. Velthuis,50M. Veltri,19,aaG. Veneziano,59A. Venkateswaran,63M. Vernet,7 M. Veronesi,29M. Vesterinen,52J. V. Viana Barbosa,44D. Vieira,4M. Vieites Diaz,43H. Viemann,70X. Vilasis-Cardona,42,g

A. Vitkovskiy,29M. Vitti,51V. Volkov,36A. Vollhardt,46D. Vom Bruch,10B. Voneki,44A. Vorobyev,41V. Vorobyev,39,e N. Voropaev,41R. Waldi,70J. Walsh,26J. Wang,5M. Wang,3 Y. Wang,68Z. Wang,46D. R. Ward,51H. M. Wark,56 N. K. Watson,49D. Websdale,57A. Weiden,46C. Weisser,60M. Whitehead,11G. Wilkinson,59M. Wilkinson,63I. Williams,51

M. Williams,60M. R. J. Williams,58T. Williams,49F. F. Wilson,53M. Winn,9W. Wislicki,33M. Witek,31G. Wormser,9 S. A. Wotton,51K. Wyllie,44D. Xiao,68Y. Xie,68A. Xu,3M. Xu,68Q. Xu,4Z. Xu,6Z. Xu,3Z. Yang,3Z. Yang,62Y. Yao,63

L. E. Yeomans,56H. Yin,68J. Yu,68,bb X. Yuan,63O. Yushchenko,40K. A. Zarebski,49M. Zavertyaev,13,w D. Zhang,68 L. Zhang,3 W. C. Zhang,3,cc Y. Zhang,44A. Zhelezov,14Y. Zheng,4 X. Zhu,3 V. Zhukov,11,36

J. B. Zonneveld,54and S. Zucchelli17,h (LHCb Collaboration)

1

Centro Brasileiro de Pesquisas Físicas (CBPF), Rio de Janeiro, Brazil

2

Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil

3

Center for High Energy Physics, Tsinghua University, Beijing, China

4

University of Chinese Academy of Sciences, Beijing, China

5

Institute Of High Energy Physics (ihep), Beijing, China

6

Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IN2P3-LAPP, Annecy, France

7

Universit´e Clermont Auvergne, CNRS/IN2P3, LPC, Clermont-Ferrand, France

8

Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France

9

LAL, Univ. Paris-Sud, CNRS/IN2P3, Universit´e Paris-Saclay, Orsay, France

10

LPNHE, Sorbonne Universit´e, Paris Diderot Sorbonne Paris Cit´e, CNRS/IN2P3, Paris, France

11

I. Physikalisches Institut, RWTH Aachen University, Aachen, Germany

12

Fakultät Physik, Technische Universität Dortmund, Dortmund, Germany

13

Max-Planck-Institut für Kernphysik (MPIK), Heidelberg, Germany

14

Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany

15

School of Physics, University College Dublin, Dublin, Ireland

16

INFN Sezione di Bari, Bari, Italy

17INFN Sezione di Bologna, Bologna, Italy 18

INFN Sezione di Ferrara, Ferrara, Italy

19INFN Sezione di Firenze, Firenze, Italy 20

INFN Laboratori Nazionali di Frascati, Frascati, Italy

21INFN Sezione di Genova, Genova, Italy 22

INFN Sezione di Milano-Bicocca, Milano, Italy

23INFN Sezione di Milano, Milano, Italy 24

INFN Sezione di Cagliari, Monserrato, Italy

25INFN Sezione di Padova, Padova, Italy 26

INFN Sezione di Pisa, Pisa, Italy

(9)

28INFN Sezione di Roma La Sapienza, Roma, Italy 29

Nikhef National Institute for Subatomic Physics, Amsterdam, Netherlands

30Nikhef National Institute for Subatomic Physics and VU University Amsterdam, Amsterdam, Netherlands 31

Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Poland

32AGH - University of Science and Technology, Faculty of Physics and Applied Computer Science, Kraków, Poland 33

National Center for Nuclear Research (NCBJ), Warsaw, Poland

34Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Magurele, Romania 35

Institute of Theoretical and Experimental Physics NRC Kurchatov Institute (ITEP NRC KI), Moscow, Russia

36Institute of Nuclear Physics, Moscow State University (SINP MSU), Moscow, Russia 37

Institute for Nuclear Research of the Russian Academy of Sciences (INR RAS), Moscow, Russia

38Yandex School of Data Analysis, Moscow, Russia 39

Budker Institute of Nuclear Physics (SB RAS), Novosibirsk, Russia

40Institute for High Energy Physics NRC Kurchatov Institute (IHEP NRC KI), Protvino, Russia 41

Petersburg Nuclear Physics Institute NRC Kurchatov Institute (PNPI NRC KI), Gatchina, Russia

42ICCUB, Universitat de Barcelona, Barcelona, Spain 43

Instituto Galego de Física de Altas Enerxías (IGFAE), Universidade de Santiago de Compostela, Santiago de Compostela, Spain

44European Organization for Nuclear Research (CERN), Geneva, Switzerland 45

Institute of Physics, Ecole Polytechnique F´ed´erale de Lausanne (EPFL), Lausanne, Switzerland

46Physik-Institut, Universität Zürich, Zürich, Switzerland 47

NSC Kharkiv Institute of Physics and Technology (NSC KIPT), Kharkiv, Ukraine

48Institute for Nuclear Research of the National Academy of Sciences (KINR), Kyiv, Ukraine 49

University of Birmingham, Birmingham, United Kingdom

50H.H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom 51

Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom

52Department of Physics, University of Warwick, Coventry, United Kingdom 53

STFC Rutherford Appleton Laboratory, Didcot, United Kingdom

54School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom 55

School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom

56Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom 57

Imperial College London, London, United Kingdom

58School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom 59

Department of Physics, University of Oxford, Oxford, United Kingdom

60Massachusetts Institute of Technology, Cambridge, Massachusetts, USA 61

University of Cincinnati, Cincinnati, Ohio, USA

62University of Maryland, College Park, Maryland, USA 63

Syracuse University, Syracuse, New York, USA

64Laboratory of Mathematical and Subatomic Physics, Constantine, Algeria

[associated with Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil]

65Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil

[associated with Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil]

66South China Normal University, Guangzhou, China (associated with Center for High Energy Physics,

Tsinghua University, Beijing, China)

67School of Physics and Technology, Wuhan University, Wuhan, China

(associated with Center for High Energy Physics, Tsinghua University, Beijing, China)

68Institute of Particle Physics, Central China Normal University, Wuhan, Hubei, China

(associated with Center for High Energy Physics, Tsinghua University, Beijing, China)

69Departamento de Fisica, Universidad Nacional de Colombia, Bogota, Colombia

(associated with LPNHE, Sorbonne Universit´e, Paris Diderot Sorbonne Paris Cit´e, CNRS/IN2P3, Paris, France)

70Institut für Physik, Universität Rostock, Rostock, Germany (associated with Physikalisches Institut,

Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany)

71Van Swinderen Institute, University of Groningen, Groningen, Netherlands

(associated with Nikhef National Institute for Subatomic Physics, Amsterdam, Netherlands)

72National Research Centre Kurchatov Institute, Moscow, Russia [associated with Institute of Theoretical and Experimental Physics

NRC Kurchatov Institute (ITEP NRC KI), Moscow, Russia, Moscow, Russia]

73National University of Science and Technology“MISIS”, Moscow, Russia [associated with Institute of Theoretical and Experimental

Physics NRC Kurchatov Institute (ITEP NRC KI), Moscow, Russia, Moscow, Russia]

74National Research University Higher School of Economics, Moscow, Russia

(associated with Yandex School of Data Analysis, Moscow, Russia)

75National Research Tomsk Polytechnic University, Tomsk, Russia [associated with Institute of Theoretical and Experimental Physics

(10)

76Instituto de Fisica Corpuscular, Centro Mixto Universidad de Valencia - CSIC, Valencia, Spain

(associated with ICCUB, Universitat de Barcelona, Barcelona, Spain)

77University of Michigan, Ann Arbor, Michigan, USA (associated with Syracuse University, Syracuse, New York, USA) 78

Los Alamos National Laboratory (LANL), Los Alamos, New Mexico, USA (associated with Syracuse University, Syracuse, New York, USA)

a

Deceased.

bAlso at Laboratoire Leprince-Ringuet, Palaiseau, France. c

Also at Universit`a di Milano Bicocca, Milano, Italy.

dAlso at Universit`a di Modena e Reggio Emilia, Modena, Italy. e

Also at Novosibirsk State University, Novosibirsk, Russia.

fAlso at Universit`a di Ferrara, Ferrara, Italy. g

Also at LIFAELS, La Salle, Universitat Ramon Llull, Barcelona, Spain.

hAlso at Universit`a di Bologna, Bologna, Italy. i

Also at Universit`a di Pisa, Pisa, Italy.

jAlso at H.H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom. k

Also at Universit`a di Bari, Bari, Italy.

lAlso at Sezione INFN di Trieste, Trieste, Italy. m

Also at Universit`a di Genova, Genova, Italy.

nAlso at Universit`a degli Studi di Milano, Milano, Italy. o

Also at Universidade Federal do Triângulo Mineiro (UFTM), Uberaba-MG, Brazil.

pAlso at AGH - University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, Kraków,

Poland.

qAlso at Lanzhou University, Lanzhou, China. r

Also at Universit`a di Padova, Padova, Italy.

sAlso at Universit`a di Cagliari, Cagliari, Italy. t

Also at MSU - Iligan Institute of Technology (MSU-IIT), Iligan, Philippines.

uAlso at Scuola Normale Superiore, Pisa, Italy. v

Also at Hanoi University of Science, Hanoi, Vietnam.

wAlso at P.N. Lebedev Physical Institute, Russian Academy of Science (LPI RAS), Moscow, Russia. x

Also at Universit`a di Roma Tor Vergata, Roma, Italy.

yAlso at Universit`a di Roma La Sapienza, Roma, Italy. z

Also at Universit`a della Basilicata, Potenza, Italy.

aaAlso at Universit`a di Urbino, Urbino, Italy. bb

Also at Physics and Micro Electronic College, Hunan University, Changsha City, China.

Riferimenti

Documenti correlati

Starting from these hypothesis, we will build a three stage model where a local politician who is in charge in the first period must choose among three different

Un ulteriore aspetto che bisogna considerare quando si ha a che fare con genitori maltrattanti, abusanti o gravemente trascuranti è che essi sono spesso (ma non sempre)

Uomini primitivi e fanciulli dell’umanità: il recupero di memoria, fantasia e ingegno nello sviluppo della storia universale.. Vico insegnante e Vico filosofo: la nozione di

As reported for CB1r, CB2r selective agonists express an important role in studying either in vitro or in vivo different effects of activation of the two receptors as

Since he is willing to limit the validity of a labour embodied theory of value to the ‘early and rude state of society’ prior to the accumulation of capital

1.1 La causa della violenza di genere: due teorie a confronto 4 1.2 Nascita e sviluppo della società patriarcale 7 1.3 Il corpo femminile: dal debitum

8 1.3 Orientamenti dottirnali e giurisprudenziali della seconda.. metà

Nello studio, i punteggi di Playfulness sono risultati alti: i robot hanno permesso di esperire attività ludiche piacevoli e coinvolgenti per i bambini; tuttavia, il ruolo