• Non ci sono risultati.

CcL 06 - Diffrazione dei raggi X nei cristall

N/A
N/A
Protected

Academic year: 2021

Condividi "CcL 06 - Diffrazione dei raggi X nei cristall"

Copied!
56
0
0

Testo completo

(1)

La diffrazione mediante raggi X è il metodo ideale per comprendere le strutture dei materiali cristallini su una scala atomica. Essa permette quindi di stabilire le relazioni tra struttura e proprietà chimico-fisiche del materiale investigato, oppure permette l’investigazione delle relazioni tra struttura cristallina e condizioni termodinamiche nelle quali esso si forma.

Docente: Ernesto Mesto

e-mail: ernesto.mesto@uniba.it

Website:www.geo.uniba.it/mesto.html

Diffrazione dei raggi X nei cristalli

Corso di laurea triennale in Scienza dei Materiali

a.a. 2018-2019

(2)

L’analisi strutturale

L’analisi strutturale dei cristalli si basa sui fenomeni di diffrazione causata dall’interazione della materia con radiazioni di diversa natura aventi l

paragonabili alle distanze interatomiche presenti nel cristallo (0.1 - 2 Å). Sebbene la teoria della diffrazione è la stessa per tutti i tipi di radiazione (raggi X, elettroni, neutroni, protoni, …) normalmente sono adoperati i raggi X, elettroni e neutroni. In particolare, la radiazione cui si farà riferimento nelle prossime slide è quella dei raggi X.

Ricordiamo che per il concetto di dualismo onda-particella (o dualismo onda-corpuscolo), espresso all'interno del principio di complementarità, tutte le particelle elementari della materia, come l'elettrone o il fotone, mostrano una duplice natura,sia corpuscolare sia ondulatoria.

Tale evidenza nasce dall'interpretazione di alcuni esperimenti compiuti all'inizio del XX secolo: ad esempio l'effetto fotoelettrico, suggeriva una natura corpuscolare della luce, che d'altra parte manifestava chiaramente da tempo proprietà ondulatorie attraverso i fenomeni della diffrazione e dell'interferenza (esperimento di Young).Il paradosso rimase fino alla formulazione completa della meccanica quantistica, quando finalmente si riuscì a descrivere i due aspetti in maniera unificata.

(3)

Solo per particelle di massa piccola (o momento p piccolo) si possono evidenziare fenomeni ondulatori.Nel 1927, i fisici Clinton Joseph Davisson e Lester Halbert Germer confermarono le previsioni della formula di De Broglie dirigendo un fascio di elettroni contro un reticolo cristallino e osservandone figure di diffrazione. Esperimenti con risultati analoghi furono eseguiti diversi anni dopo, come quello della variante dell'esperimento di Young condotta con elettroni, protoni e particelle più pesanti (esperimento della doppia fenditura).

Dualismo onda-particella

Louis de Broglie ipotizzò che, come la luce possiede proprietà corpuscolari e ondulatorie, tutta la materia abbia anche proprietà ondulatorie: a un corpo con quantità di moto p = mv veniva infatti associata un'onda di lunghezza d'onda:l = ℎ𝑝 (dive h è la constante di Plank).

(4)

L'impiego dei raggi X nell'analisi dei materiali è dovuta in massima parte alla loro elevata penetrazione in molti materiali; nella generalità dei casi è infatti vero che, per ottenere, con un’indagine non distruttiva, informazioni analitiche o strutturali su di un campione, occorre che si verifichino contemporaneamente due fatti:

a) la radiazione penetri sufficientemente nel campione in modo da attraversarlo o perlomeno da penetrare significativamente;

b) la radiazione deve interagire con gli atomi del materiale in maniera sufficientemente frequente da permettere dall'esterno di osservare ciò che è avvenuto all'interno del campione.

Risulta evidente che la prima condizione è molto restrittiva per gran parte della radiazione elettromagnetica ed elastica di bassa energia, fatte ovviamente le dovute eccezioni (NMR, ultrasuoni, ecc.). La seconda condizione può essere verificata solo conoscendo i meccanismi di interazione delle radiazioni con la materia e la metodologia seguita per dedurre l'informazione analitica o strutturale. E’ utile anche notare che le due precedenti condizioni sono in contraddizione tra loro: se infatti vi è un maggior numero di interazione, quindi una maggiore probabilità di interazione, la penetrazione del fascio risulterà minore.

(5)

La scoperta dei raggi X è avvenuta per caso: Roentgen (1895) durante un esperimento per la produzione di raggi catodici si accorse di aver causato

fluorescenza in un minerale e la imputò a una nuova radiazione che chiamò X, perché non ne conosceva la natura. Essa venne essenzialmente impiegata in tre grandi campi:

Radiografia con raggi-X: è la tecnica che consente di ottenere immagini del contenuto di un solido, in funzione della sua capacità di assorbirmento, mediante impressione di un elemento sensibile (pellicola, schermo, ecc.) da parte di radiazioni ionizzanti quali raggi X o raggi.

Metodi analitici che usano

i raggi X

Schema del processo di base della Fluorescenza dei raggi X

Schema del processo di base di una radiografia a raggi X

Flurorescenza a raggi X: permette l’identificazione degli elementi chimici che sono presenti, o compongono il campione esaminato. Il principio prevede che impiegando una radiazione X di energia ed intensità appropriate è possibile creare, per effetto fotoelettrico, una vacanza elettronica in un guscio interno dell’atomo di un elemento. Tale posizione viene successivamente rioccupata da un elettrone che appartiene ad uno dei gusci più esterni, che nella diseccitazione produce un fotone che ha una energia pari alla differenza tra le energie dell’elettrone nelle due posizioni iniziale e finale.

(6)

Metodi analitici che

usano i raggi X

Prima di allora i cristallografi avevano giustamente supposto, ma solo supposto, l’ordinamento periodico dei cristalli dalla morfologia, dalla sfaldatura, dalle proprietà ottiche, ecc.

Dopo di allora fu possibile non solo misurare le distanze fra piani reticolari, ma localizzare la posizione degli ioni, degli atomi,ecc. e quindi determinare le strutture. I Bragg (padre e figlio) nel 1914 risolsero la prima struttura,che fu quella del salgemma.

La cristallografia a raggi X può localizzare ogni atomo nella zeolite, un alluminosilicato utilizzato in applicazioni come la purificazione dell'acqua.

Cristallografia mediante raggi X: sfrutta la diffrazione dei raggi X dai cristalli per calcolarne le mappe di densità elettronica le quali, in pratica, sono immagini della distribuzione dei costituenti del cristallo all’interno del reticolo cristallino.

L’applicazione dei raggi X allo studio dei cristalli ha dato un grande impulso alla mineralogia.

(7)

Scattering elastico Fotone incidente

Effetto dell’irraggiamento da raggi X

Calore Diffusione Fascio trasmesso Diffrazione coerente Diffrazione incoerente Effetto fotoelettrico + Fluorescenza Fotone incidente Scattering anelastico

elettrone Elettrone fotoespulso Elettrone cade nella lacuna Fotone-X secondario Fotone-X incidente Sorgente di raggi X Campione

(8)

1 ° - elet t roni secondari 2 ° - raggi X di f luorescenza l f luorescenza  l x D i f f r a z i o n e X l diffratta = l X Ef f e t t o Co m p t o n l Compt on > l X

(9)

Interazione raggi X materia

Diagramma dell’interazione atomo-raggio X. P: Fotoionizzazione, A: Decadimento Auger (Coster-Kronig), F: fluorescenza, SO: shake-off, S: elastic x-ray scattering elastico del raggio X.

(10)

La diffrazione è un complesso fenomeno di diffusione e interferenza originato dall’interazione di onde elettromagnetiche (raggi X) o particelle “relativistiche” (neutroni e elettroni) aventi

appropriata lunghezza d’onda (dell’ordine dell’Å) con un reticolo cristallino. Il processo di diffusione (o scattering)

L’interazione di un’onda elettromagnetica con la materia avviene essenzialmente attraverso due processi di scattering che riflettono il dualismo onda-particella della radiazione incidente:

Il fenomeno della diffrazione

1) scattering non-elastico: il fotone cede parte della sua energia (Scattering Compton), la

radiazione diffusa risultante ha quindi

lunghezza d’onda maggiore di quella incidente. Non essendoci alcuna relazione fra radiazione incidente e radiazione diffusa, questo tipo di scattering è definito incoerente.Questo fenomeno non dà luogo a processi di interferenza.

Diffusione di un fotone da parte di un elettrone e diagramma vettoriale delle componenti dei momenti di fotoni e elettrone

(11)

2) scattering elastico: i fotoni della radiazione incidente vengono deviati in ogni direzione dello spazio senza perdita di energia (scattering Thomson) . Esiste dunque una precisa relazione fra radiazione incidente e radiazione diffusa per cui il processo viene definito

coerente. Questo processo è alla base della diffrazione.

Il fenomeno della diffrazione

Fotone X incidente Scattering elastico

del fotone X

(12)

Proprietà della radiazione elettromagnetica X

• Si propagano nel vuoto von velocità c pari a circa 300.000 Km/sec.

• I due vettori campo elettrico E e magnetico H sono disposti entrambi ortogonalmente alla direzione di

propagazione dell’onda, sono ortogonali fra loro e variano nel tempo con legge sinusoidale:

𝐸𝑖 = 𝐸0𝑖 exp 2𝜋𝑖n(𝑡 − 𝑥𝑐).

• L’indice di rifrazione dei raggi X è molto vicino

all’unità: per l = 2 Å e per le sostanze più dense a differenza dall’unità dell’indice di rifrazione è dell’ordine di 10-4. Pertanto i raggi X non possono

essere focalizzati attraverso lenti come la luce ordinaria e gli elettroni.

Non si può parlare per i raggi X, come per la luce visibile e gli elettroni, di osservazione diretta dei cristalli attraverso strumenti equivalenti ai microscopi ottici e elettronici

(13)

Proprietà della radiazione elettromagnetica X

Consideriamo per il momento una singola onda. Definiamo fronte d'onda il luogo dei punti dello spazio in cui la radiazione ha la stessa fase. Nel caso di una sorgente puntiforme in un mezzo omogeneo e isotropo, in cui le onde si propagano con la stessa velocità in tutte le direzioni, i fronti d'onda sono superfici sferiche concentriche, il cui centro coincide con la sorgente ( onde sferiche ). Se consideriamo la sorgente a distanza molto grande, tali sfere possono essere assimilate a superfici piane che si propagano parallelamente a se stesse ( onde piane ).

Cristallografia con laboratorio - a.a. 2018-2019

Onda sferica E(t3)

E(t2)

(14)

E(r,t4)

E(r,t2)

E(r,t3)

Proprietà della radiazione elettromagnetica X

Consideriamo per il momento una singola onda. Definiamo fronte d'onda il luogo dei punti dello spazio in cui la radiazione ha la stessa fase. Nel caso di una sorgente puntiforme in un mezzo omogeneo e isotropo, in cui le onde si propagano con la stessa velocità in tutte le direzioni, i fronti d'onda sono superfici sferiche concentriche, il cui centro coincide con la sorgente (onde sferiche). Se consideriamo la sorgente a distanza molto grande, tali sfere possono essere assimilate a superfici piane che si propagano parallelamente a se stesse (onde piane).

Onda sferica E(t1)

x

y

z

v

Fronti d’onda

E(t2) E(t3) E(t4)

Onda piana E(r,t1)

x

y

r

z

Fronti d’onda

(15)

I Raggi X

È nota come raggi X quella porzione dello spettro elettromagnetico con una lunghezza d'onda compresa approssimativamente tra 10 nanometri (nm) e 1/1000 di nanometro (1 picometro).

Raggi X con una lunghezza d'onda superiore a 0,1 nm sono chiamati raggi X molli. A lunghezze minori, sono chiamati raggi X duri.

Schema della propagazione di un’onda elettromagnetica, dove il campo elettrico (E) e magnetico (H) sono mutualmente perpendicolari tra loro e perpendicolari al vettore di propagazione (k) dell’onda. La lunghezza d'onda (l) è la distanza tra due creste o fra due ventri.

Ampiezza

I = KA2

E = hn = hc/l n = c/l

(16)

Un reticolo cristallino può essere approssimato ad un

reticolo di fenditure.

Quindi la fisica della diffrazione di raggi X si fonda in parte sulla fisica della diffrazione di onde luminose da reticoli di fenditure e sulla teoria della riflessione

"semplice".

L’analogia tra un atomo ed una fenditura deriva dal fatto che l’atomo, come la fenditura che riceve una certa onda incidente, diviene sorgente secondaria di radiazione.

(17)

A small scattering object is a secondary source

(18)

Cosa è la diffrazione?

La diffrazione è un fenomeno che avviene quando un onda incontra un ostacolo per la quale l’onda mostra «in qualche modo» la capacità di «aggirare» l’ostacolo. Un onda che incontra un ostacolo può essere «ribalzata» dallo stesso, come avviene nel caso della riflessione, può essere deviata dall’ostacolo, come nel caso della

rifrazione o può passare oltre un bordo o un apertura come nel caso della diffrazione.

Il fenomeno della diffrazione dipende dalle dimensioni relative tra la lunghezza d’onda dell’onda, l, e le dimensioni dell’ostacolo, D.

l << D Effetti di diffrazione trascurabili

l ≈ D Effetti di diffrazione apprezzabili

Fenomeno della diffrazione illustrato secondo il principio di Hugeyns-Fresnel: “Ogni punto di un fronte d'onda si comporta a sua volta come una sorgente secondaria di onde sferiche con la stessa frequenza della primaria. La forma con cui evolve il fronte d'onda originario è data dalla sovrapposizione dei singoli fronti d'onda secondari, compatibilmente con gli eventuali ostacoli presenti”.

(19)

Ond

e

elettr

omagn

etic

he

Diffrazione della luce. La luce è un’onda elettromagnetica (non meccanica, non ha bisogno di un mezzo di trasmissione, si

trasmette anche nel vuoto)

La diffrazione dipende dalla lunghezza dell’onda e dalle dimensioni della fenditura o dell’ostacolo: questo spiega per esempio, come mai il suono, che è un’onda meccanica, o le

onde sulla superfice dell’acqua come nella figura di sopra, riescono a girare intorno agli angoli mentre la luce no. Gli effetti di diffrazione luminosa sono quindi molto piccoli rispetto

a quelli delle onde sonore o dell’acqua. L'esperienza di ogni giorno ci porta ad osservare che quando un'onda incontra un'apertura o

l'estremità di un ostacolo, una parte delle onde prosegue in regioni dello spazio non direttamente esposte alle onde incidenti, dato che dovrebbero viaggiare in linea retta.

(20)

Quando un’onda interagisce con:

Una singola particella

Un materiale cristallino

La particella

diffonde

il raggio incidente

uniformemente

in tutte le direzioni

I fasci diffusi possono

interferire

tra loro

rafforzandosi lungo

alcune direzioni

originando

raggi diffratti

.

(21)

Scattering di un particella

Il campo elettro-magnetico dell'onda X incidente

accelera la particella inducendo l'emissione di

radiazione della stessa frequenza dell'onda incidente; in questo modo l'onda incidente viene diffusa. Nel caso di una particella in moto non-relativistico (cioè con velocità trascurabile rispetto a

quella della luce), la principale causa

dell'accelerazione della particella sarà dovuta al campo elettrico dell'onda incidente mentre gli effetti del campo magnetico della stessa possono essere trascurati. La particella si muoverà nella direzione del campo elettrico oscillante, generando radiazione elettro-magnetica di dipolo.

Fotone X incidente

Onda sferica diffusa nelle tre dimensioni

La particella irradia in modo più intenso nelle direzioni perpendicolari al suo moto e in queste direzioni la radiazione sarà polarizzata lungo la direzione del moto della particella.Pertanto,

in base alla posizione dell'osservatore, la radiazione prodotta in un elemento di volume può sembrare più o meno polarizzata.

(22)

Supponiamo che nell’origine del nostro sistema di riferimento (x, y, z) vi sia una particella materiale libera di carica elettrica e, avente massa m e che un’onda elettromagnetica piana, monocromatica con frequenza n e vettore campo elettrico Ei si propaghi lungo l’asse x.

Il campo elettrico associato all’onda elettromagnetica è definito dall’equazione: 𝐸𝑖 = 𝐸0𝑖𝑒𝑥𝑝2𝜋𝑖n(𝑡 − 𝑥𝑐 ), dove Eoi è l’ampiezza dell’onda, ed Ei è il valore del campo elettrico in x al tempo t.

Scattering da un elettrone libero

Quando il campo elettromagnetico investe la particella, il campo Ei eserciterà una forza F = e·Ei che sarà periodica di frequenza n. Tale forza imprimerà un’oscillazione periodica alla particella (a= F/m = e·Ei/m) con frequenza n. (non si considera il campo magnetico perché il suo modulo è trascurabile rispetto a quello del campo elettrico). Secondo la teoria classica dell’elettromagnetismo, una particella carica in moto accelerato è sorgente di radiazione elettromagnetica: il suo campo nel punto Q, definito dal vettore r, è proporzionale all’accelerazione e giace nel piano (Ei, r).In Q si misurerà un campo elettrico Ed dovuto alla radiazione diffuso, dato da:

𝐸𝑑 = 𝐸0𝑑𝑒𝑥𝑝[2𝜋𝑖n 𝑡 − 𝑥𝑐 − 𝑖𝛼]

Dove a è un fattore di fase dovuto al ritardo con cui la carica riemette la «radiazione incidente» (per l’elettrone a =

r y

x

z

(23)

Diffusione Thomson

Thomson ricavò che: 𝐼𝑖𝑒𝑡ℎ = 𝐼𝑖 𝑒

4

𝑚2𝑟2𝑐4(

1+𝑐𝑜𝑠22𝜃

2 )

dove: Iieth = intensità della radiazione diffusa;

Ii = intensità della radiazione incidente;

e,m = carica (e = 1.602x10-19 Coulomb) e massa ( m = dell’elettrone);

2𝜃= angolo tra l'accelerazione della particella e direzione del punto di osservazione distante r dalla particella (angolo fra Ei e r).

r = distanza dell’elettrone dal punto di osservazione.(il decadimento di 𝐼𝑖𝑒𝑡ℎ con r è dovuto al fatto che la radiazione è diffusa in tutte le direzioni. )

Quando i fotoni sono diffusi da elettroni differenti, possono interagire tra loro con una relazione di fase ben definita tra radiazione incidente e radiazione diffusa (interferenza).

Nella diffusione coerente (effetto Thomson) la radiazione diffusa ha la stessa lunghezza d'onda di quella incidente. 2q r y x z Q

(24)

2q j r y x Q

2° Caso: Fascio incidente completamente polarizzato con Ei lungo y

L’angolo fra direzione di osservazione (r) e la direzione di oscillazione Ei sarà:

j = 90 -2q, dove 2q è l’angolo fra la direzione incidente e la direzione di osservazione.

Quindi risulterà che :

sen j = sen(90-2q) = cos(-2q) = cos (2q)

𝐼𝑒𝑡ℎ = 𝐼𝑖 𝑒 4 𝑚2𝑟2𝑐4 𝑐𝑜𝑠22𝜃

Fattore di polarizzazione

J=90 r y x z Q

1° Caso: Fascio incidente completamente polarizzato con Ei lungo z

L’angolo fra direzione di osservazione (r) e la direzione di oscillazione Ei sarà: j = 90

𝐼𝑒𝑡ℎ = 𝐼𝑖 𝑒 4 𝑚2𝑟2𝑐4

Consideriamo tre casi in cui il fascio incidente è completamente polarizzato con Ei lungo l’asse z, lungo l’asse y e non polarizzato:

(25)

Fattore di polarizzazione

3° Caso: Fascio incidente non polarizzato

Un fascio incidente non polarizzato può essere decomposto in due fasci completamente polarizzati in cui la direzione di oscillazione del campo elettrico Ei sono rispettivamente lungo l’asse y e z. Se Ii è l’intensità del fascio non polarizzato incidente, Ii/2 sarà l’intensità di ciascun fascio completamente polarizzato. Allora Ieth del fascio diffuso a seguito del fascio non polarizzato sarà la somma delle intensità:

e 𝐼𝑒𝑡ℎ = 𝐼𝑖 𝑒4

𝑚2𝑟2𝑐4 𝑐𝑜𝑠22𝜃

dei fasci diffusi a seguito dei due fasci componenti polarizzati, e cioè: 𝐼𝑒𝑡ℎ = 𝐼𝑖 𝑒

4 𝑚2𝑟2𝑐4 (

1 + 𝑐𝑜𝑠22𝜃

2 )

dove il termine P = 1+𝑐𝑜𝑠2 22𝜃 è chiamato «fattore di polarizzazione».

r y

x

z

(26)

Effetti della polarizzazione

• Se il fascio incidente è completamente

polarizzato con E

i

lungo l’asse z,

la radiazione diffusa è la stessa in tutte le direzioni

.

• Se il fascio incidente è completamente

polarizzato con E

i

lungo l’asse y,

la radiazione diffusa

varia nelle diverse direzioni ed in particolare è

massima nella direzione del fascio incidente

ed è

nulla in direzioni

perpendicolari al fascio incidente.

• Se il fascio

incidente è non polarizzato, la radiazione diffusa è massima

nella direzione del fascio incidente ed è minima in direzioni

perpendicolari al fascio incidente.

Nella pratica si usano radiazioni polarizzate.

Inoltre

la radiazione diffusa sarà sempre parzialmente polarizzata,

anche se il fascio

incidente non lo è.

(27)

L'esperimento di Young è quello con cui il medico e scienziato Thomas Young,nel 1801, dimostrò la natura ondulatoria della luce, grazie alla realizzazione di due sorgenti coerenti di luce, illuminando due fenditure parallele con una singola sorgente.

Ciascuna apertura si comporta come una sorgente secondaria di ondee la figura di interferenza, formata da bande alternativamente oscure e chiare, si può osservare su uno schermo posto ad una certa distanza

dalle due fenditure.

(28)

Nei due casi limite dell’interazione tra due onde aventi un vettore di propagazione (K) parallelo. L’interferenza costruttiva di due onde in fase porta a un raddoppiamento dell’ampiezza, mentre un interferenza distruttiva tra due onde completamente non in fase risulta in un ampiezza finale nulla, ovvere le due onde si estinguono.

Interferenza costruttuva e distruttiva di

onde

(29)

Diffrazione

La trattazione sulla diffrazione e sull’interferenza che verrà in seguito presentata si baserà sulle condizioni di Fraunhofer. La prima consiste, nel caso di singola fenditura, nella relazione:

𝑅 > 𝑎

2

𝜆

dove, a: Dimensioni dell’ostacolo; R: distanza tra la sorgente puntiforme di luce e l’ostacolo; l: lunghezza d’onda della luce

mentre la seconda richiede che la distanza D tra l’ostacolo e lo schermo di osservazione sia

𝐷 > 𝑎

2

𝜆

Queste sono le condizioni per cui sia sull’ostacolo (fenditura, particella etc.) , sia sullo schermo di osservazione l’onda incidente può essere considerata un’onda piana.

In realtà i fenomeni di diffrazione si possono dividere in due classi:

1) quelli in cui la sorgente della luce e lo schermo su cui andiamo ad osservare il risultato della diffrazione si trovano a distanza infinita dalla fenditura, che sono classificati, per ragioni storiche, come "diffrazioni alla Fraunhofer". In questo caso avremmo a che fare con onde piane e, quindi, con fronti d'onda paralleli.

2) quelli in cui la sorgente e lo schermo sono a distanza finita, che sono classificati come "diffrazioni alla Fresnel", in cui avremmo a che fare con onde sferiche, e quindi con fronti d'onda divergenti.

(30)

Diffrazione

E' evidente che i casi reali possono presentarsi solo sotto forma di diffrazione alla Fresnel, ma l'analisi matematica sarebbe complicata dalla presenza di onde sferiche, per cui saremmo costretti a ricorrere ad approssimazioni forzate. Nel caso di fasci luminosi possiamo, però, rendere il caso reale una diffrazione alla Fraunhofer inserendo nel sistema due lenti convergenti sottili, a focale lunga:

Se la sorgente è posta ad una distanza corrispondente a quella focale della prima lente, i raggi incidenti su essa saranno resi paralleli e le onde incidenti sulla fenditura saranno onde piane. Le onde diffratte, anch'esse piane, possono essere focalizzate su uno schermo da una seconda lente che renderà convergenti i raggi paralleli incidenti. Le distanze percorse dai vari raggi sono diverse, ma non cambia il loro cammino ottico, per cui si mantengono le relazioni di fase relativa fra i raggi, come se ci mettessimo ad osservarle tutte dalla stessa distanza mentre arrivano paralleli tra loro. Per ricavare le relazioni fra le grandezze in gioco facciamo riferimento alla figura seguente:

(31)

P0 P1

P1

Diffrazione da una singola fenditura

Il caso più semplice di diffrazione è rappresentato dalla diffrazione da una singola fenditura, dove la fessura è di dimensioni paragonabili alla lunghezza d’onda dell’onda.Se la luce proveniente da elementi simmetrici

rispetto al centro della fenditura arriva al centro dello schermo posto al di là della fenditura, come indicato ad esempio dai raggi 1 e 2 in Figura, la loro luce arriva in fase e subisce interferenza costruttiva. In questo caso si avrà un massimo d’intensità di luce.

Consideriamo un’onda piana di lunghezza d’onda l che viene difratta da una sottile fenditura di lunghezza a. Consideriamo la differenza di cammino ottico tra due raggi originati da punti a distanza a/2 l’uno dall’altro. Per calcolare la posizione della prima frangia scura (P1)

sullo schermo di osservazione C posto a distanza D dalla fenditura tale che D>>a, si consideri che le onde originate nella fenditura sono in fase ed interferiscono distruttivamente in P1, quindi in P1 arrivano con uno

(32)

Diffrazione da una singola fenditura

Differenza di cammino, DL

Se D >> a è possibile considerare i raggi r1 e r2 paralleli (condizioni di Franhoufer).

Per ogni coppia di raggi che arriva in P1 la differenza di cammino sarà

∆𝐿 = 𝑎

2𝑠𝑖𝑛𝜃

Per avere interferenza distruttiva deve essere: ∆𝐿 = 𝑎2𝑠𝑖𝑛𝜃 = 𝜆2, ovvero:

(33)

Diffrazione da una singola fenditura

Per ogni coppia di onde secondarie provenienti da punti della fenditura separati da una distanza pari a a/2 si

verifica la condizione ottenuta sopra e sommando su tutte queste coppie di onde secondarie si ottiene la condizione di interferenza distruttiva totale e perciò un minimo di intensità di luce sullo schermo:

𝑎𝑠𝑖𝑛𝜃 = 𝜆

A parità di lunghezza d’onda ldel fascio incidente, al diminuire dello spessore delle fenditura a, l’effetto di diffrazione aumenta, ovvero aumenta l’angolo q a cui si trova il primo minimo, se a = l, allora q1 = 90° e il

massimo centrale copre tutto lo schermo.

Per grandi valori di a l’effetto di diffrazione diventa trascurabile.

(34)

Diffrazione da una singola fenditura

Si può applicare la condizione precedente anche alla situazione in cui la differenza di cammino sia pari a un

mezza lunghezza d’onda per onde generate da punti distanti a/4 fra loro. In questo caso avremo il minimo di

intensità al second’ordine P2:

Differenza di cammino ottico: 𝑟2 − 𝑟1 = 𝑟3 − 𝑟2 = 𝑟4 − 𝑟3 = 𝑎

4𝑠𝑖𝑛𝜃 = 𝜆 2

𝑎𝑠𝑖𝑛𝜃 = 2𝜆

(35)

D

2y

Diffrazione da una singola fenditura

Iterando il procedimento si ottiene che:

𝑎𝑠𝑖𝑛𝜃𝑚 = 𝑚𝜆 (𝑐𝑜𝑛 𝑚 = 0, 1, 2, 3 … )

con:

a: spessore della fenditura; qm: angolo dal centro della figura di diffrazione all’ m-esimo minimo

l: lunghezza d’onda della luce; m: ordine del minimo

In particolare, la distanza del minimo dal centro dello schermo può essere calcolata considerando che, poiché nella condizione di Fraunhofer gli angoli sono molto piccoli, si può utilizzare l’approssimazione sinq = tanq e per la trigonometria si ha che:

𝑡𝑎𝑛𝜃 = 𝑦

𝐷 dove

y: distanza dal centro della figura di diffrazione dall’m-esimo minimo

D: distanza dello schermo dalla fenditura Per piccoli valori di q:

𝜃 ≈ 𝑡𝑎𝑛𝜃 ≈ 𝑠𝑖𝑛𝜃 = 𝐷𝑦; ma 𝑎𝑠𝑖𝑛𝜃 = 𝑚𝜆, per cui:

𝑦 ≈ 𝑚𝜆𝐷

𝑎 ⇒ 2𝑦 ≈

2𝑚𝜆𝐷

(36)

Diffrazione da una singola fenditura

http://www.walter-fendt.de/ph6it/singleslit_it.htm

l1 = 685 nm

(37)

Diffrazione da una singola apertura

circolare

L’interazione della luce con un foro circolare di diametro D paragonabile alla l della radiazione incidente genera una figura di diffrazione formata da cerchi luminosi (disco di Airy) e scuri alternati. La trattazione matematica della diffrazione di Fraunhofer da fenditura circolare presenta difficoltà di calcolo eccessive.Si ricordi solo che la posizione angolare del primo punto ad intensità nulla vale:

𝑠𝑖𝑛𝜃𝑚 = 1.22𝑚𝐷𝜆 (𝑐𝑜𝑛 𝑚 = 1, 2, 3 … )

dove: D = diametro della fenditura; qm = angolo dal centro della figura di diffrazione all’ m-esimo minimo

l = lunghezza d’onda della luce; m = ordine del minimo

(38)

a) Piccole particelle b) Particelle grandi

r0 r0

(39)

Criterio di Rayleigh

Due sorgenti luminose puntiformi sono risolubili se la loro distanza angolare è tale che il massimo centrale della figura di diffrazione di una coincide con il primo

minimo (m = 1) della figura di diffrazione dell’altra. Approssimando sinqRcon qR(siamo in presenza

di angoli piccoli), si ottiene:

𝜃𝑅 ≈ 𝑠𝑖𝑛𝜃𝑅 = 1.22 𝜆 𝐷

Cristallografia con laboratorio - a.a. 2018-2019

Il primo minimo della curva blu è esattamente sul massimo della

curva rossa

(40)

Diffrazione da una singola fenditura

rettangolare

a~b~λ

𝑦 ≈

𝑚𝜆𝐷

𝑏

𝑥 ≈

𝑛𝜆𝐷

𝑎

(41)

Diffrazione da due fenditure con

ampiezza trascurabile

Cristallografia con laboratorio - a.a. 2018-2019

Consideriamo due fessure identiche (S1 e S2) sufficientemente piccole, vicine e distanziate di d (figura di sotto); quando la luce passa attraverso le due fenditure, esse agiscono come se fossero due sorgenti puntiformi di luce coerente e le due onde emesse dalle fenditure interferiscono tra di loro. Se mettiamo uno schermo oltre le fenditure (figura di fianco) si osservano su di esso una serie alternata di bande illuminate e scure, dette frange di interferenza,corrispondenti ai massimi e ai minimi di interferenza.

Nella condizione di Fraunhofer (q q’) si ricava che gli angoli a cui corrispondono i massimi dell’interferenza sono dati dalla relazione:

d𝑠𝑖𝑛𝜃 = 𝑚𝜆 Inoltre,per piccoli valori di q:

𝜃 ≈ 𝑠𝑖𝑛𝜃 ≈ 𝑡𝑎𝑛𝜃 = 𝑦 𝐷

da cui si ricava che:

𝑦 = 𝑚𝜆𝐷 𝑑 S1 S2 d D y q q’

(42)

Di conseguenza, poiché al massimo

sin

= 1

d =

l

Realisticamente, sin

<1

d >

l

Cioè

la distanza tra le fenditure (analoga alle distanze interplanari in un cristallo)

deve essere dello stesso ordine, ma un po’ più grande, della lunghezza d’onda della luce

Poiché

nei cristalli le distanze interatomiche variano 0.1 - 2 Å

Dobbiamo usare radiazione con

l

= 0.1 - 2 Å

Vanno bene raggi X, elettroni e neutroni!

(43)

Diffrazione da due fenditure con ampiezza

non trascurabile

figura di diffrazione e l’ampiezza risultante sullo schermo è composta da frange d’interferenza di ampiezza variabile modulata dalla figura di diffrazione. L’immagine sotto mostra l’andamento

dell’inten-Se, invece, la fenditura ha ampiezza non trascurabile a  l, le frange di interferenza sono modulate dalla

sità in una figura d’interferenza ottenuta facendo passare luce monocromatica attraverso due fenditure di larghezza

a la cui distanza d supera di 4 volte la larghezza a.

Figura di interferenza fra sorgenti puntiformi di distanza d Figura di diffrazione ottenuta con una

sola fenditura di larghezza a (linea continua sottile)

Intensità misurata (linea continua spessa)

sinq

1 𝑑𝜆 2 𝜆𝑑 3 𝜆𝑑 4 𝑑𝜆 5 𝜆𝑑 6 𝑑𝜆 7 𝑑𝜆 … −1 𝜆𝑑

−2 𝜆𝑑

(44)

Diffrazione da due fenditure con ampiezza

non trascurabile

Massimo centrale

(ordine zero) Massimo d’interferenza del primo

ordine (d senq = l) Struttura fine dovuta

all’interferenza

Distanza dei minimi di diffrazione legata all’ampiezza «𝒂» delle

fenditure

Profilo dovuto alla diffrazione

Distanza dei minimi di interferenza legata alla separazione «𝒅» delle fenditure

Primo minimo di diffrazione (a senq = l) 0 1(l/d) -1(l/d) 2(l/d) 3(l/d) 4(l/d) 5(l/d) 6(l/d) 7(l/d) 8(l/d) 9(l/d) 10(l/d) 11(l/d) 12(l/d) -12(l/d) -11(l/d) -10(l/d) -9(l/d) -8(l/d) -7(l/d) -6(l/d) -5(l/d) -4(l/d) -3(l/d) -2(l/d)

1(l/a) 2(l/a) 3(l/a)

-3(l/a)

-2(l/a) -1(l/a)

(45)

Figure di diffrazione con i fasori

Cristallografia con laboratorio - a.a. 2018-2019

Source: https://www.youtube.com/watch?v=NazBRcMDOOo

(46)

Diffrazione da N fenditure con ampiezza

non trascurabile

Le immagini seguenti mostrano in sequenza la figura d’interferenza ottenuta con due fenditure quando:

𝑎 = 1 4𝑑 𝑎 = 1 6𝑑 𝑎 = 1 9𝑑

La diminuzione della larghezza 𝑎 della fenditura produce la diminuzione dell’intensità della figura d’interferenza al punto tale che a partire da un certo valore non si vedrebbe più niente.

Per ovviare a questo si può aggiungere alla fenditura di destra (o sinistra) una terza alla stessa distanza d delle prime due e poi una quarta e così di seguito.

2 fenditure 3 fenditure

(47)

Diffrazione da reticolo di diffrazione

Cristallografia con laboratorio - a.a. 2018-2019

Se si continua ad aggiungere fenditure si realizza quello che viene chiamato un reticolo di diffrazione: un insieme di N fenditure uguali,parallele ed equidistanti d.

Negli stessi punti in cui due fenditure producevano interferenza costruttiva la si ottiene ancora (la differenza di percorso è sempre un multiplo della lunghezza d’onda).

La posizione dei massimi è data dall’equazione: 𝑑𝑠𝑒𝑛𝜃 = 𝑚𝜆

dove 𝑑 è la distanza tra due fenditure adiacenti, detta

passo del reticolo.

Nelle zone intermedie si ottengono massimi secondari che aumentano di numero man mano che si aggiungono fenditure ma diminuiscono di intensità; quelli principali invece aumentano di intensità ma diventano sempre più puntiformi.

L’andamento dell’intensità prodotta da un reticolo di diffrazione con numerose

fenditure consiste di stretti picchi contrassegnati dal numero d’ordine m

(48)

Diffrazione da reticolo di diffrazione

Singola apertura circolare con dimetro «piccolo»

Singola apertura circolare con dimetro «medio»

Singola apertura circolare con dimetro «grande»

Set 4x5 di piccole aperture circolari piccole come in (a) Tante piccole aperture circolari del dimatero di (a)

Fenditura Pattern di diffrazione

Quali tra queste

situazioni rappresenterà

meglio il fenomeno della

diffrazione nei cristalli?

(49)

Notazione

Cristallografia con laboratorio - a.a. 2015-2016

In queste dispense sarà adottata la seguente notazione: Siano 𝑟1 e 𝑟2 due vettori, allora:

𝑟1 ∙ 𝑟2 denota il prodotto scalare tra i vettori 𝑟1 e 𝑟2 mentre 𝑟1 ∧ 𝑟2 denota il prodotto vettoriale.

Il modulo di 𝑟 sarà indicato con | 𝑟| o con r.

Siano 𝑆1 e 𝑆2 due matrici,𝑆1𝑆2 sarà il loro prodotto (righe per colonne).

Si distinguerà anche tra matrici delle coordinate e vettori. Per esempio, in un sistema di riferimento [𝑂, 𝑎, 𝑏, 𝑐], il vettore posizione 𝑟 potrà essere scritto come:

𝑟 = 𝑥 𝑎 + 𝑦𝑏 + 𝑧 𝑐 = 𝑎 𝑏 𝑐 𝑥 𝑦

𝑧 = 𝐴𝑋

(50)

Intermini vettoriali, consideriamo due diffusori puntuali nelle posizioni O e O’ (due particelle cariche). Se un’onda piana li investe, questi diventano sorgenti di onde sferiche secondarie che interferiscono fra loro. Sia 𝑠0 il versore associato alla

direzione di propagazione dei raggi X incidenti ed 𝑠 il versore associato alla direzione di propagazione dei raggi diffusi lungo la quale vogliamo studiare i fenomeni di interferenza.

La differenza di cammino ottico tra i raggi diffusi in O e O’ lungo la direzione S sarà: (differenza di cammino) = 𝐵𝑂 + 𝐴𝑂 = 𝑟 ⋅ ( 𝑠 − 𝑠0)

Interferenza tra onde

diffuse

𝑠0 O’ O 𝑟 A B q q q 𝑠0 𝜆 𝑟∗

(51)

(differenza di cammino) = 𝐵𝑂 + 𝐴𝑂 = 𝑟 ⋅ ( 𝑠 − 𝑠0) dove 𝑟 è il vettore che va da O a O’.

Infatti:

𝐵𝑂 = 𝑟 ⋅ 𝑠

𝐴𝑂 = − 𝑟 ⋅ 𝑠0 𝐵𝑂 + 𝐴𝑂 = 𝑟 ⋅ 𝑠 − 𝑟 ⋅ 𝑠0 = 𝑟 ⋅ ( 𝑠 − 𝑠0)

𝑟 e 𝑆0hanno verso opposto.

Quindi la differenza di cammino ottico tra i raggi diffusi dai diffusori in O e O’ lungo la direzione 𝑆 sarà:

(differenza di cammino ottico ) = (𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑧𝑎 𝑑𝑖 𝑐𝑎𝑚𝑚𝑖𝑛𝑜)𝜆 = 𝑟⋅( 𝑠−𝑠0)

𝜆

Interferenza tra onde diffuse

(52)

La differenza di fase d fra l’onda diffusa in O’, nella direzione definita dal versore 𝑠, e quella diffusa in O, nella stessa direzione, è:

𝛿 = 2𝜋 ∙ 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑧𝑎 𝑑𝑖 𝑐𝑎𝑚𝑚𝑖𝑛𝑜 𝑜𝑡𝑡𝑖𝑐𝑜 𝛿 = 2𝜋 𝜆 𝑟 ⋅ 𝑠 − 𝑠0 = 2𝜋 𝑟∗ ⋅ 𝑟 dove 𝑟∗ = 1 𝜆( 𝑠 − 𝑠0) Se l è molto più grande della distanza r tra i due

diffusori, la differenza di fase d fra le onde sarà praticamente nulla e quindi non vi saranno fenomeno di interferenza apprezzabili.

Il modulo di 𝑟∗sarà:

𝑟∗ = 2𝑠𝑒𝑛𝜃

𝜆

Dove 2q è l’angolo fra le direzioni dei Raggi X incidenti e quella di osservazione.

Infatti dalla figura in alto:

𝑟∗ = 𝑠 𝑠𝑒𝑛𝜃 + 𝑠0 𝑠𝑒𝑛𝜃 = 2𝑠𝑒𝑛𝜃

La differenza di cammino, D, e la differenza di fase Dj sono legate dalla relazione: Dj = 2p D/l

(53)

𝑠0 O’ O 𝑟 A B q q q 𝑠0 𝜆 𝑟∗

Se tracciamo dei piani normali a 𝑟passanti per O e O’ (QQ’ e GG’ sono le tracce di questi piani) possiamo anche considerare la diffrazione come ottenuta per riflessione speculare rispetto a questi piani.

Q

Q’

G

G’

Interferenza tra onde diffuse

(54)

Quindi, il fenomeno della diffrazione è analogo all’interferenza della luce con un reticolo ottico.

Lungo alcune direzioni (direzione 3) i fasci diffratti A e B si trovano

esattamente sfasati di mezza lunghezza d’onda: si ha interferenza

distruttiva e lungo la direzione 3 si avràintensità nulla.

Lungo le direzioni 1 e 2 i due fasci sono in fase e avremo un massimo di intensità lungo quelle direzioni.

Tra le direzioni 1 e 2 avremo tutte le gradazioni

intermedie.

Se però considero un reticolo ottico devo considerare non solo 2 fasci ma milioni, questo fa si

che si abbia una grande intensità esattamente per

le direzioni 1 e 2 e intensità praticamente nulla per tutte le altre.

(55)

Le direzioni lungo le quali si osserva un’interferenza costruttiva dipendono da:

La lunghezza d’onda della luce incidente 𝝀 La distanza 𝒂 dei nodi del reticolo

Perché i fasci 1 e 2 siano in fase deve valere la seguente condizione:

AB= l, 2l, 3l, ….., nl

ma dal momento che:

AB= a sin

Allora:

𝒂 sin 𝜽 = 𝒏 𝝀

Considerazioni:

• se 𝒂 < 𝝀 osservo solo la diffrazione di ordine zero (sin  1)

• se 𝒂 » 𝝀 i vari ordini di diffrazione sono così ravvicinati da dare un continuo.

Scattering RX

(56)

Il passo del reticolo è l’analogo dei parametri della cella elementare nei cristalli

e determina la geometria della diffrazione

La larghezza delle fenditure determina l'intensità diffratta

Il numero totale di fenditure determina il numero e l’intensità dei riflessi

satellite o massimi secondari di diffrazione

Analogie fra diffrazione della luce e diffrazione

di raggi x

Figura

figura di diffrazione e l’ampiezza risultante sullo schermo è composta da frange d’interferenza di ampiezza variabile modulata dalla figura di diffrazione
Figure di diffrazione con i fasori

Riferimenti

Documenti correlati

Nota la distanza dallo schermo (L), la posizione del secondo massimo di interferenza (x) e la distanza tra le due fenditure, stimare la larghezza d’onda della luce del laser..

Per individuare la posizione dei massimi e dei minimi nella figura di diffrazione, consideriamo la fenditura a suddivisa in tanti punti, ognuno dei quali sarà sorgente di onde

All’aumentare dell’ordine l’intensità delle righe diminuisce (fig.14.29) per effetto della diffrazione che avviene a ciascuna delle fenditure (§14.2), per cui oltre

• Per esempio, quando una stretta fenditura è posta tra una lontana sorgente puntiforme di luce (o un fascio laser) e uno schermo, la luce produce una figura di diffrazione

Enrico Silva - diritti riservati - Non è permessa, fra l’altro, l’inclusione anche parziale in altre opere senza il consenso scritto dell’autore. In many solids, the bonding

• Quando gli elettroni emessi dal catodo urtano l’anodo o le pareti di vetro del tubo la loro. energia è sufficiente a produrre

NEL MOMENTO IN CUI L’ONDA COLPISCE LA SUPERFICIE IN MODO OBLIQUO, NON TORNA SU SE STESSA MA RIFLETTE CON LA STESSA ANGOLAZIONE DI INCIDENZA.. LA RIFLESSIONE DEL SUONO PRODUCE

’66 dà vita così all’Associazione scientifica. Statuto e Regolamento, di fatto, sono pronti. Come già accennato, un ruolo importante è stato svolto negli anni