• Non ci sono risultati.

Mapping the geology of the 2016 Central Italy earthquake fault (Mt. Vettore – Mt. Bove fault, Sibillini Mts.): geological details on the Cupi – Ussita and Mt. Bove – Mt. Porche segments and overall pattern of coseismic surface faulting

N/A
N/A
Protected

Academic year: 2021

Condividi "Mapping the geology of the 2016 Central Italy earthquake fault (Mt. Vettore – Mt. Bove fault, Sibillini Mts.): geological details on the Cupi – Ussita and Mt. Bove – Mt. Porche segments and overall pattern of coseismic surface faulting"

Copied!
1
0
0

Testo completo

(1)

I I’ M M’ N N’ A A’ B B’ C C’ D D’ E E’ F F’ G G’ H H’ L L’ A A’ B B’ C C’ D D’ E E’ F F’ A A’

1. Geological Map of Mts. Sibillini Area

2. Structural Map of Mt. Vettore - Mt. Bove Fault System

6. Coseismic Surface Parameters

Displacement Distribution Map

5. Geological Sections (Scale 1:25,000)

Mt. Vettore Mt. Bove Fault System (length: 30 km):

7. Comparison with Global Data

- Stratigraphy:

- Tectonics:

LEGEND

8. Comparison of Geologic, Topographic and Coseismic Displacement

h)

(a) Along-strike distribution of the net coseismic displacement (D) measured after the October 30, M 6.5 shock (cumulative D of the August 24 and October 26 and 30 earthquakes; modified from Brozzetti et al., 2019). Each fault segment, represented by lines of different colour, shows a peak of displacement. The Vettoretto - Redentore segment has a very localized high displacement zone.

(b) Along-strike distribution of the cumulative throw (black line) and opening (horizontal aperture measured perpendicular to rupture strike; red lines). The coseismic parameters are listed in the following table. AD integral is the average D obtained by integrating the D distribution over the entire length of the surface rupture. AD arithmetic is the arithmetic mean of all the measured D values.

Coseismic parameters of the 2016 earthquakes compared with empirical relationships MD vs Mw (a), AD vs Mw (b), SRL vs Mw (c), AD vs SRL (d) and MD vs SRL (e) proposed in the literature for global normal faulting earthquakes. Key to abbreviations: W&C94 = Wells and Coppersmith (1994); Wes 08 = Wesnousky (2008); P&C04 = Pavlides and Caputo (2004); G08 = Galli et al. (2008).

The relations that best fit the 2016 data are those between SRL and Mw. Note that both integral and arithmetic AD are lower than the expected values, while MD is higher than the expected values. Low values of AD are likely caused by attenuation of the coseismic displacement toward the surface, due to the high segmentation of the fault system. High values of MD are possibly due to localized tectonic phenomena (e.g., back-tilting, see Frame 8) caused by volumetric accommodation of fault irregularities at shallow depths. f) 2016 cumulative displacement profile, normalized by MD, compared with the envelope of normalized displacement profiles (light blue area) obtained from a set of global normal faulting earthquakes (dashed lines) surface ruptures (from Wesnousky, 2008). Note that the 2016 profile is at the lower edge of the global data, due to the anomalously high MD.

g) 2016 cumulative displacement profile, normalized by AD (integral), compared with the envelope of normalized displacement profiles (light blue area) obtained from a set of global normal faulting earthquakes (dashed lines) surface ruptures (from Wesnousky, 2008). Note that the 2016 profile is more consistent with global data compared to the D/MD profile.

h) Mt. Vettore – Mt. Bove D/MD values in comparison with global data obtained from compilations of normal faulting surface ruptures. ADsumm. is the integral mean of the displacement distribution obtained by summing the contribution of all the synthetic and antithetic distributed (secondary) faults. The long term values (ADl.t./MDl.t.) refer to the post-Late Glacial Maximum (post-LGM) displacement calculated on topographic profiles across fault scarps (see Frame 8).

D D’

Fault Normal fault Jurassic fault Thrust

Survey areas boundary Cupi - Ussita Mt. Bove - Mt. Porche Section trace (this work) Section trace

(Brozzetti et al. 2019) Slope Deposits: slope, landslide and alluvial deposits (Holocene)

Fluvio - lacustrine deposits (Middle/Upper Pleistocene - Holocene) Laga Formation, Schlier, marne con cerrogna, Bisciaro

(Aquitanian - Messinian)

Scaglia Cinerea, scaglia variegata, Scaglia Rossa, Scaglia Bianca, (Upper Albian p.p. - Aquitanian p.p.) Marne a Fucoidi (Lower Aptian - Upper Albian) Maiolica Fm. (Upper Tithonian - Lower Aptian p.p.)

Jurassic complete succession (Calcari Diasprigni, Calcari e Marne a Posidonia, Rosso Ammonitico, marne del Serrone, Corniola)

and condensed successions (Bugarone group) (Carixian p.p. - Lower Tithonian) Calcare Massiccio (Hettangian - Carixian)

Main Secondary

- Cupi-Ussita Segment (9 km) a: Cupi section (4 km); b: Mt. Banditella section (5 km); c: Mt. Rotondo section (3 km).

- Mt. Bove-Mt. Porche Segment (12 km)

d: Mt. Bove section (10 km); e: Mt Porche section (4 km).

- Vettoretto-Redentore Segment (10 km)

f: Quarto.S.Lorenzo section (2.5 km); g: Redentore section (2 km); h: Vettoretto section (2 km).

Outcropping Buried/Uncertain Outcropping Buried/Uncertain

4

3

Surface faulting survey area

b

d

e

f

g

h

Fault - Coseismic Throw: 0-20 cm 20-40 cm 40-80 cm 80-160 cm 160-240 cm Mw 5.9 26 October 2016 Mw 5.4 26 October 2016 Mw 6.5 30 October 2016 Mw 6.0 24 August 2016

a

c

4

3

0 1 2 km

Coordinate system: WGS84 - UTM 33N Coordinate system: WGS84 - UTM 33N Coordinate system: WGS84 - UTM 33N

10

15

15

10

15

15

10

10

10

20

10

10

20

20

11

33

35

15

13

5

15

4

8

20

29

48 42

26

12

30

22

64

23

36

40

16

23

18

14

44

29

29

65

17

17

16

23

5

6

7

20

20

7

11

14

9

22

12

41

23

36

8

5

8

13

21

23

14

24

38

53

33

55

71

63

73

42

10

27

3

23

24

45

20

30

10

10

10

10

10

7

29

14

5

17

26

64

A

'

B

B'

C

C'

D

D'

E'

E

MAI SAA VAS SCC FUC SBI FUC SCC VAS VAS VAS SCC SAA SAA SBI SBI SBI FUC FUC SBI MAI MAI COI CDU MAS CDU POD RSA CDU MAI SAA SAA SAA

A

BU

3. Geological Map of the Cupi - Ussita Area

500 m SCC VAS SAA SBI FUC MAI BU CDU POD RSN RSA COI MAS Anidridi di Burano BUR

Stratigraphic scheme

76

59

87

52

73

87

Point of view of cover page Fig. B (right) Picture from Fig. 2 of the main text 2a

1

1:25,000

0

1 km

(Field survey on 1:10,000 scale topographic map)

Coordinate system: WGS84 - UTM 33N

SAA SAA SAA BU 2g

85

71

71

65

54

64

75

F

F'

G'

G

H

I

I'

H'

L

L'

M

M'

10

10

20

25

20

27

12

25

10

29

30

25

40

30

35

35

20

40

20

20

35

20

20

20

45

20

20

40

30

35

10

40

33

26

48

71

33

39

19

18 16

23

30

17

17

13 21

67

55

69

12

27

29

25

31

33

52

9

18

19

15

15

80

15

25

25

20

35

30

20

25

15

10

10

10

16

30

29

52

20

25

5

10

10

19

18

22

28

33

36

27

10

6

27

7

35

13

50

MAI CDU CDU CDU CDU CDU CDU CDU CDU CDU CDU CDU CDU CDU MAI MAI MAI MAI MAI MAI MAI MAI MAI FUC FUC FUC FUC FUC FUC FUC FUC FUC FUC MAI SBI SBI SBI SBI SBI SBI SAA SAA SAA SAA POD POD POD POD POD POD CDU MAS MAS MAS MAS MAS MAS BU BU

4. Geological Map of the Mt. Bove - Mt. Porche Area

RSN COI RSN COI SAA SBI 2f 2e 2d

Point of view of cover page Fig. B (left) Picture from Fig. 2 of the main text 2a

1

1:25,000

0

1 km

(Field survey on 1:10,000 scale topographic map)

Coordinate system: WGS84 - UTM 33N

BU 2c 2a 2b NO NE A’ SO NE B B’ SAA VAS SCC FUC SAA VAS SCC FUC Il Poggiolo Costa Tranquilla Colle S. Giovanni Pian Terrena SAA FUC SBI M. La Banditella SO NE C C’ SBI VAS SCC SO NE D D’ MAI SAA FUC SBI FUC MAI SAA SBI VAS FUC MAI SAA SBI FUC SAA FUC SO NE F F’ SAA SBI MAI CDU POD POD CDU MAI RSA COI MAS MAS POD CDU MAI RSA COI Pian Dell’Arco M. Bove Nord MAI SO NE G G’ SAA SBI MAI CDU POD FUC MAS BUR CDU POD COI RSA M. Cornaccione M. Bicco MAI CDU POD RSA COI MAS MAJ SO NE H SAA BU MAI CDU POD FUC MAS CDU POD CDU CDU MAI COI SAA SBI FUC RSN H’ M.Bove Sud M.Cornaccione MAI CDU POD BU MAS MAI RSN CDU POD MAS COI POD CDU MAI COI RSN RSN POD CDU COI MAS BUR SO NE I I’ Passo Cattivo SO L’ Colle La Croce Cima Cannafuso MAI CDU POD RSN COI FUC SBI SAA MAI CDU POD RSN COI SO NE M M’ MAI F. Nera CDU POD RSN COI MAS MAI CDU POD RSN FUC SBI SAA MAI SAA POD POD SAA SBI FUC MAI CDU SO N N’ M. Porche ? SBI MAI CDU FUC MAI MAI 500 1000 1500 0 A 2000 500 1000 1500 0 2000 500 1000 1500 0 2000 2500 500 1000 1500 0 2000 2500 -500 500 1000 1500 0 2000 2500 NE 500 1000 1500 0 2000 2500 NE SBI SBI L M. Rotondo M. Prata

Outside the polygon

Geology from Pierantoni et al (2013) Geology constrained by this workInside the polygon:

Th ~ 130 m Th ~ 250 m Th ~ 120 m Th ~ 500 m Th ~100 m Th ~ 100 m Th ~160 m Th ~ 50 m Th ~ 470 m Th ~ 300 m Th ~ 450 m Th ~ 250 m Th ~ 300 m Th ~ 500 m Th ~ 500 m Th ~ 550 m Th ~ 500 m Th ~ 500 m Th ~ 420 m Th ~ 420 m Th ~ 500 m Th ~ 400 m SO E E’ NE MAI FUC SBI SAA MAI MAI Outside the polygon

Geology from Pierantoni et al (2013)

Inside the polygon:

Geology constrained by this work

Th = 20m 2100 2200 2000 2300 2100 2200 2000 2300 Profile 7 2100 2200 2000 2300 2400 2100 2200 2000 2300 2400 Profile 8 Th = 21 m Th = 12 m 2100 2200 2000 2300 2400 2100 2200 2000 2300 2400 Profile 9 Th = 17.5 m Profile 1 2100 2000 2100 2000 Th = 12.5 m Pro le 3 2100 2200 2000 2300 2100 2200 2000 2300 Th = 9.5 m Profile 4 Th = 8 m 2100 2200 2000 2300 2100 2200 2000 2300 Profile 5 Th = 18 m 2100 2200 2000 2300 1900 2100 2200 2000 2300 1900 Profile 6 1900 1800 2000 1900 1800 2000 1700 1700 Th = 10 m 1900 1800 2000 2100 1900 1800 2000 2100 Pro le 2

c)

Tn T Tbt ά1 ά2 ά3 Geometric model

Scarp profile from laser scanning

T = Throw on main fault; Tn = Net throw; Tbt = Throw caused by back - tilting; , = Far field slope; = back-tilting; = Slip vector.

ά

1

ά

3

ά

2 A 20.3 B 16.5 3.5 18.5 19.0 3.5 17.5 22.5 T (m) Tn (m) Tbt (m) Back-tilting(%) MEAN ≈18

Topographic Profile (Scale 1:10,000)

A1

A2

Area 1 (A1) = Area 2 (A2)

50 0 50 m 100 120 0 5000 10000 15000 20000 25000 30000

1

0.8 0.6 0.4 0.2 0 50 100 150 200 250 300 0 10 20 30 40 Maximum Displacement (cm)

Surface Rupture Length (km)

0 20 40 60 80 0 10 20 30 40 Average Displacement (cm)

Surface Rupture Length (km)

W&C94 (N) log(AD) = -1.99 + 1.24 log(SRL) Wes 08 (N) AD = 0.03 SRL

W&C94 (N) log (MD) = -1.98 + 1.51 log(SRL) Wes 08 (N) MD = 0.09 SRL 0 50 100 150 200 250 300 5.5 6.0 7 0 10 20 30 40 50 60 70 80 90 100 W&C94 (N) log(AD) = -4.45 + 0.63 Mw W&C94 30 Oct. 24 Aug. W&C94 (N) log(MD) = -5.9 + 0.89 Mw P&C04 log(MD) = 1.14 Ms - 7.82 (assum. Ms=Mw)

0 5 10 15 20 25 30 35 40 7 Mw Average Displacement (cm) Maximum Displacement (cm) Surface Rupture Length (k m) P&C04 6.5 6.5 6.7 5.5 6.0 6.5 7 5.5 6.0 Cumulative W&C94 6.7 Mw 24 Aug. Cumulative 24 Aug. P&C04 6.7 Mw 30 Oct. 24 Aug. Cumulative W&C94 W&C94 W&C94 (N) log (SRL) = -2.01 + 0.5 Mw P&C04 log(SRL) = 0.78 Ms - 3.93 (assum. Ms=Mw)

30 Oct. Cumulative W&C94 G08 G08 Mw = 4.7248 (SRL) 0.1046 Cumulative 24 Aug.

A-A’

B-B’

C-C’

D-D’

E-E’

F-F’

G-G’

H-H’

I-I’

D-D’

L-L’

M-M’

N-N’

B-B’

A-A’ C-C’ E-E’

F-F’

P.1 P.2 P.3 P.4 P.5 P.6P.7 P.8 P.9

Brozzetti et al, 2019

Geological Throw Brozzetti el al, 2019 Coseismic Throw Topog raphic Throw

0

0.1

0.2

0.3

0.4

AD

/MD

McC&S W es08

ADa/MD ADi/MD ADs/MD

ADl.t./MDl.t.

Global Data (Normal Faulting)

2016 cumulative

Long term Data (Post LGM)

STRUCTURAL (LONG TERM) DATA

MD - SRL AD - SRL SRL -Mw AD - Mw MD - Mw geologic fault coseismic rupture

covered by rock slide

Cupi - Ussita Segment Mt. Bove - Mt. Porche Segment Vettoretto - Redentore Segment

1.0 2.0 3.0 4.0 5.0 6.0 0.0 0.0 0.2 0.4 0.6 0.8 1.0 Normalized Length

D/AD

7.0 (Wesnousky, 2008) 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 1.0

D/MD

1.0 Normalized Length f) (Wesnousky, 2008)

McC&S = Mc Calpin & Slemmons (1998) Wes08 = Wesnousky (2008)

ADa/MD = AD arithmetic/MD ADi/MD = AD integral/MD ADs/Md = AD summ/MD ADl.t./MDl.t. (long term)

ADi/MD(24A) = AD integral / MD (24 August)

COSEISMIC PARAMETERS SRL MD AD integral AD arithmetic 30 km (<32 km) ≥ 22 km 240 cm 222 cm 36 cm 37 cm 24 August (Mw 6.0) 5.8 km 28.5 cm 12.7 cm 30 October (Mw 6.5) Cumulative (Mw 6.7)

Net Displacement (cm)

2016 (cumulative)

Global normal faulting surface ruptures (Wesnousky, 2008)

Along Strike Distribution of Cumulative Net Displacement Solid: Principal Fault

Dashed: Secondary Fault

SW

- Dipping

NE - Dipping

g) 2016 (cumulative)

Global normal faulting surface ruptures (Wesnousky, 2008)

Cupi

Section Mt. Banditella Section

Mt. Rotondo Section Mt. Bove Section Mt.Porche Section Quarto S. Lortenzo Section Redentore Section Vettoretto Section

Cupi Section Mt. Banditella Section

Mt. Rotondo Section

Mt. Bove Section

Mt. Porche Section Q. S. Lortenzo Section

Redentore Section Vettoretto Section

a)

b)

c)

d)

e)

a)

c)

0.5

ADi/MD(24A) 24 August

Distance (km)

Along Strike Distribution of Cumulative Throw and Opening (Principal Fault) Throw Solid: Principal fault

Opening Dashed: Secondary Fault

Throw / Opening (cm)

b)

0 5 10 15 20 25 30 0 5 10 15 20 25 30 SW - Dipping NE - Dipping BP Segment Geological Throw Coseismic Throw Cupi - Ussita Segment Mt. Bove - Mt. Porche Segment Vettoretto - Redentore Segment

Average fault attitude: 225/65

Average slip vector: 231/59

Slip vector Average slip vector

Average fault attitude: 232/65

Average slip vector: 239/62

Average fault attitude: 232/65

Average slip vector: 232/65

CU Segment VR Segment

SRL = Surface Rupture Length MD = Maximum Displacement AD = Average Displacement

44°

44°

42°

12°

12°

14°

14°

4

10°

FUC SO E E’ SAA SBI NE

Croce Di Monte Rotondo

CDU POD RSA MAS SAA SBI MAI FUC CDU BU CDU Th ~ 20 m Th ~ 200 m POD RSA ?

Vertical component of 2016 cumulative coseismic displacement (throw) compared with geologic (a) and topographic (b) throws. The throw values were normalized to the maximum throw in order to make coseismic, topographic and geologic data comparable. Topographic throw is interpreted to be the throw accumulated after the Late Glacial Maximum (post - LGM; e.g., Roberts and Michetti, 2004).

Topographic profiles are realized from a 50 cm - resolution Digital Surface Model (DSM) obtained from Pléiades Images (©CNES_2016) (from CEOS Seismic Hazard Pilot group, IPGP, France). Topographic throw was calculated by measuring the vertical offset of the far - field topographic slope across the fault scarp.

The geologic throw along the Cupi - Ussita and Mt. Bove - Mt. Porche segments was calculated from geologic sections in Frame 5. The geologic throw along the Vettoretto - Redentore segment is from Brozzetti et al. (2019).

c) Quantification of post - LGM back-tilting in the zone of MD by means of topographic profiles from Laser scanning (solid line, hanging wall and basal fault scarp) and Pléiades DSM (dotted lines, footwall) (location of topographic profiles in the inset of the map).

b)

Normalized Throw

(Throw/Throw Max)

Normalized Throw

(Throw/Throw Max)

DISTANCE (m)

0

5000

10000

15000

20000

25000

30000

1

0.8

0.6

0.4

0.2

a)

2250 1950 2000 2200 2150 29 ° 27 ° Hangingwall Footwall Change in slope Fault

Eroded scarp

Far field slope 2050

1

Location Map of Topographic Profiles

A B A A’ Rotated fault Fault Thrust Section traces Bedding Reactivated normal fault

Uncertain/buried reactivated normal fault Not reactived normal fault

Uncertain/buried not reactivated normal fault 32

- Continental deposits:

Slope deposits: well sorted or heterometric unconsolidated deposits of variable size. Clasts are angular to moderately rounded. (Pleistocene - Holocene)

Alluvial deposits: fluvial calcareous gravel deposits. (Pleistocene - Holocene) - Marine succession:

Scaglia Cinerea (SCC): grey and green calcareous marls, marls and clayey marls in medium thin beds. In the lower part there are marly limestones levels. 200 m of thickness

(Bartonian p.p. - Aquitanian p.p.)

Scaglia Variegata (VAS): alternation of gray, red and green coulored limestones and marly limestones in thin to medium beds and red and grey calcareous marls. 50 m of thickness.

(Lutetian p.p. - Bartonian p.p.)

Scaglia Rossa (SAA): limestones and marly limestones, pink, red and rarely withe coloured, in medium beds, with thin pelitic levels. There are also nodules and ribbons of red and pink chert, in the lower and upper parts. 250 - 400 m of thickness. (Lower Turonian p.p. - Lutetian p.p.) Scaglia Bianca (SBI): withe limestones and marly limestones in medium beds, with black chert in the upper part and pink chert in the lower one. In the uppermost part, a 1.5 m thick level made of black anoxic organic-rich shales named “Livello Bonarelli” is present. 50 - 70 m of thickness.

(Upper Albian p.p. - Lower Turonian p.p.)

Marne a Fucoidi (FUC): marls, shaly marls, marly limestone grey, green and red coulored with organic-rich clay levels. In the upper part, marly limeston prevails and green chert is present. 50 - 80 m of thickness. (Lower Aptian - Upper Albian)

Maiolica (MAI): white mudstones in thin-medium beds with gray or white chert in the lower part and black chert in the upper part. 150 - 450 m of thickness. (Upper Tithonian - Lower Aptian)

- Complete Jurassic succession:

Calcari Diasprigni (CDU): the lower part is made up of thinly bedded green, red and gray siliceous mudstones with green, red or gray chert and marly levels. Clastic and bioclastic limestones are also present. The upper part is named “Calcari ad Aptici”, and is composed of grey, green and red cherty limestones in medium - thin beds with aptychi. 150 m of thickness. (Upper Bajocian - Lower Titonian) Calcari e Marne a Posidonia (POD): whitish - brown limestones and marly limestones in medium beds, sometimes nodular. Posidonia filaments are abundant. Clastic and bioclastic limestones are present and chert increases upward. 200 m of thickness. (Upper Toarcian p.p. - Lower Bajocian)

Rosso Ammonitico (RSA): pink and red nodular limestones and marly limestones in medium to thin beds alternating with red marls and shaly marls. The unit can be partially or totally replaced by the

“Marne del Serrone” Formation. 40 m of thickness. (Toarciano p.p.)

Marne del Serrone (RSN): green and grey marly limestones of various thickness, marls and shaly marls and clastic limestones in medium beds. Variable thickess, from a few to 150 m.

(Pleinsbachian p.p. - Toarcian p.p.)

Corniola (COI): grey and brown limestones in thin to thick beds. Gray and white nodules or ribbons of chert are present. Olistoliths of Calcare Massiccio are present. The upper part can be replaced by the “Marne del Serrone” Formation. Thickness of 500 m or more. (Lower Sinemurian p.p. Lower Toarcian p.p.)

- Condensed Jurassic succession

Bugarone group (BU): nodular and locally dolomitized grey, brown or pink mudstones in medium beds. Marls are present in the middle part. There are ammonites, crinoids and brachiopods.

40 m of thickness. (Carixian p.p. - Lower Titonian)

Calcare Massiccio (MAS): white, or more rarely gray or brown grainstones, packstones and sometimes wackstones, massive or coarsely bedded with cyclothemic features. Ooid and bioclastic grainstones are present in the uppermost part. Maximum 700 m of thickness. (Hettangian - Carixian)

LEGEND

2

3

4

5

6

7

9

8

Horizontal bedding Overturned bedding Vertical bedding Fault attitude 53 A B

Topographic profiles in fig. c

73

Mapping the geology of the 2016 Central Italy earthquake fault (Mt. Vettore - Mt. Bove fault, Sibillini Mts.): geological

details on the Cupi - Ussita and Mt. Bove - Mt. Porche segments and overall pattern of coseismic surface faulting.

Alessio Testa

1

, Paolo Boncio

1

, Michele Di Donato

1

, Giovanni Mataloni

2

,

Francesco Brozzetti

1

, Daniele Cirillo

1

1

CRUTS DiSPUTer, University G. D’Annunzio of Chieti - Pescara, Via dei Vestini 31, 66100, Chieti, Italy

2

Dipartimento di Architettura, University G. D’Annunzio of Chieti - Pescara, Viale Pindaro 65127, Pescara, Italy

Profile A 2100 2250 2200 2050 Profile B

Topographic profiles from Laser Scanning and DSM from Pléiades Images (©CNES_2016)

2200 2050 2250 2100 20.3 m 16.5 m 3.8 m 21 m 17.3 m 3.7 m Pléiades DSM (average of 4 profiles) Laser scanning Laser scanning Pléiades DSM (average of 4 profiles) ≈ 40 m ≈ 40 m

Coordinate system: WGS84 - UTM 33N

I I’ M M’ N N’ A A’ B B’ C C’ D D’ E E’ F F’ G G’ H H’ L L’ A A’ B B’ C C’ D D’ E E’ F F’ A A’

1. Geological Map of Mts. Sibillini Area

2. Structural Map of Mt. Vettore - Mt. Bove Fault System

6. Coseismic Surface Parameters

Displacement Distribution Map

5. Geological Sections (Scale 1:25,000)

Mt. Vettore Mt. Bove Fault System (length: 30 km):

7. Comparison with Global Data

- Stratigraphy:

- Tectonics:

LEGEND

8. Comparison of Geologic, Topographic and Coseismic Displacement

h)

(a) Along-strike distribution of the net coseismic displacement (D) measured after the October 30, M 6.5 shock (cumulative D of the August 24 and October 26 and 30 earthquakes; modified from Brozzetti et al., 2019). Each fault segment, represented by lines of different colour, shows a peak of displacement. The Vettoretto - Redentore segment has a very localized high displacement zone.

(b) Along-strike distribution of the cumulative throw (black line) and opening (horizontal aperture measured perpendicular to rupture strike; red lines). The coseismic parameters are listed in the following table. AD integral is the average D obtained by integrating the D distribution over the entire length of the surface rupture. AD arithmetic is the arithmetic mean of all the measured D values.

Coseismic parameters of the 2016 earthquakes compared with empirical relationships MD vs Mw (a), AD vs Mw (b), SRL vs Mw (c), AD vs SRL (d) and MD vs SRL (e) proposed in the literature for global normal faulting earthquakes. Key to abbreviations: W&C94 = Wells and Coppersmith (1994); Wes 08 = Wesnousky (2008); P&C04 = Pavlides and Caputo (2004); G08 = Galli et al. (2008).

The relations that best fit the 2016 data are those between SRL and Mw. Note that both integral and arithmetic AD are lower than the expected values, while MD is higher than the expected values. Low values of AD are likely caused by attenuation of the coseismic displacement toward the surface, due to the high segmentation of the fault system. High values of MD are possibly due to localized tectonic phenomena (e.g., back-tilting, see Frame 8) caused by volumetric accommodation of fault irregularities at shallow depths. f) 2016 cumulative displacement profile, normalized by MD, compared with the envelope of normalized displacement profiles (light blue area) obtained from a set of global normal faulting earthquakes (dashed lines) surface ruptures (from Wesnousky, 2008). Note that the 2016 profile is at the lower edge of the global data, due to the anomalously high MD.

g) 2016 cumulative displacement profile, normalized by AD (integral), compared with the envelope of normalized displacement profiles (light blue area) obtained from a set of global normal faulting earthquakes (dashed lines) surface ruptures (from Wesnousky, 2008). Note that the 2016 profile is more consistent with global data compared to the D/MD profile.

h) Mt. Vettore – Mt. Bove D/MD values in comparison with global data obtained from compilations of normal faulting surface ruptures. ADsumm. is the integral mean of the displacement distribution obtained by summing the contribution of all the synthetic and antithetic distributed (secondary) faults. The long term values (ADl.t./MDl.t.) refer to the post-Late Glacial Maximum (post-LGM) displacement calculated on topographic profiles across fault scarps (see Frame 8).

D D’

Fault Normal fault Jurassic fault Thrust

Survey areas boundary Cupi - Ussita Mt. Bove - Mt. Porche Section trace (this work) Section trace

(Brozzetti et al. 2019) Slope Deposits: slope, landslide and alluvial deposits (Holocene)

Fluvio - lacustrine deposits (Middle/Upper Pleistocene - Holocene) Laga Formation, Schlier, marne con cerrogna, Bisciaro

(Aquitanian - Messinian)

Scaglia Cinerea, scaglia variegata, Scaglia Rossa, Scaglia Bianca, (Upper Albian p.p. - Aquitanian p.p.) Marne a Fucoidi (Lower Aptian - Upper Albian) Maiolica Fm. (Upper Tithonian - Lower Aptian p.p.)

Jurassic complete succession (Calcari Diasprigni, Calcari e Marne a Posidonia, Rosso Ammonitico, marne del Serrone, Corniola)

and condensed successions (Bugarone group) (Carixian p.p. - Lower Tithonian) Calcare Massiccio (Hettangian - Carixian)

Main Secondary

- Cupi-Ussita Segment (9 km) a: Cupi section (4 km); b: Mt. Banditella section (5 km); c: Mt. Rotondo section (3 km).

- Mt. Bove-Mt. Porche Segment (12 km)

d: Mt. Bove section (10 km); e: Mt Porche section (4 km).

- Vettoretto-Redentore Segment (10 km)

f: Quarto.S.Lorenzo section (2.5 km); g: Redentore section (2 km); h: Vettoretto section (2 km).

Outcropping Buried/Uncertain Outcropping Buried/Uncertain

4

3

Surface faulting survey area

b

d

e

f

g

h

Fault - Coseismic Throw: 0-20 cm 20-40 cm 40-80 cm 80-160 cm 160-240 cm Mw 5.9 26 October 2016 Mw 5.4 26 October 2016 Mw 6.5 30 October 2016 Mw 6.0 24 August 2016

a

c

4

3

0 1 2 km

Coordinate system: WGS84 - UTM 33N Coordinate system: WGS84 - UTM 33N Coordinate system: WGS84 - UTM 33N

10

15

15

10

15

15

10

10

10

20

10

10

20

20

11

33

35

15

13

5

15

4

8

20

29

48 42

26

12

30

22

64

23

36

40

16

23

18

14

44

29

29

65

17

17

16

23

5

6

7

20

20

7

11

14

9

22

12

41

23

36

8

5

8

13

21

23

14

24

38

53

33

55

71

63

73

42

10

27

3

23

24

45

20

30

10

10

10

10

10

7

29

14

5

17

26

64

A

'

B

B'

C

C'

D

D'

E'

E

MAI SAA VAS SCC FUC SBI FUC SCC VAS VAS VAS SCC SAA SAA SBI SBI SBI FUC FUC SBI MAI MAI COI CDU MAS CDU POD RSA CDU MAI SAA SAA SAA

A

BU

3. Geological Map of the Cupi - Ussita Area

500 m SCC VAS SAA SBI FUC MAI BU CDU POD RSN RSA COI MAS Anidridi di Burano BUR

Stratigraphic scheme

76

59

87

52

73

87

Point of view of cover page Fig. B (right) Picture from Fig. 2 of the main text 2a

1

1:25,000

0

1 km

(Field survey on 1:10,000 scale topographic map)

Coordinate system: WGS84 - UTM 33N

SAA SAA SAA BU 2g

85

71

71

65

54

64

75

F

F'

G'

G

H

I

I'

H'

L

L'

M

M'

10

10

20

25

20

27

12

25

10

29

30

25

40

30

35

35

20

40

20

20

35

20

20

20

45

20

20

40

30

35

10

40

33

26

48

71

33

39

19

18 16

23

30

17

17

13 21

67

55

69

12

27

29

25

31

33

52

9

18

19

15

15

80

15

25

25

20

35

30

20

25

15

10

10

10

16

30

29

52

20

25

5

10

10

19

18

22

28

33

36

27

10

6

27

7

35

13

50

MAI CDU CDU CDU CDU CDU CDU CDU CDU CDU CDU CDU CDU CDU MAI MAI MAI MAI MAI MAI MAI MAI MAI FUC FUC FUC FUC FUC FUC FUC FUC FUC FUC MAI SBI SBI SBI SBI SBI SBI SAA SAA SAA SAA POD POD POD POD POD POD CDU MAS MAS MAS MAS MAS MAS BU BU

4. Geological Map of the Mt. Bove - Mt. Porche Area

RSN COI RSN COI SAA SBI 2f 2e 2d

Point of view of cover page Fig. B (left) Picture from Fig. 2 of the main text 2a

1

1:25,000

0

1 km

(Field survey on 1:10,000 scale topographic map)

Coordinate system: WGS84 - UTM 33N

BU 2c 2a 2b NO NE A’ SO NE B B’ SAA VAS SCC FUC SAA VAS SCC FUC Il Poggiolo Costa Tranquilla Colle S. Giovanni Pian Terrena SAA FUC SBI M. La Banditella SO NE C C’ SBI VAS SCC SO NE D D’ MAI SAA FUC SBI FUC MAI SAA SBI VAS FUC MAI SAA SBI FUC SAA FUC SO NE F F’ SAA SBI MAI CDU POD POD CDU MAI RSA COI MAS MAS POD CDU MAI RSA COI Pian Dell’Arco M. Bove Nord MAI SO NE G G’ SAA SBI MAI CDU POD FUC MAS BUR CDU POD COI RSA M. Cornaccione M. Bicco MAI CDU POD RSA COI MAS MAJ SO NE H SAA BU MAI CDU POD FUC MAS CDU POD CDU CDU MAI COI SAA SBI FUC RSN H’ M.Bove Sud M.Cornaccione MAI CDU POD BU MAS MAI RSN CDU POD MAS COI POD CDU MAI COI RSN RSN POD CDU COI MAS BUR SO NE I I’ Passo Cattivo SO L’ Colle La Croce Cima Cannafuso MAI CDU POD RSN COI FUC SBI SAA MAI CDU POD RSN COI SO NE M M’ MAI F. Nera CDU POD RSN COI MAS MAI CDU POD RSN FUC SBI SAA MAI SAA POD POD SAA SBI FUC MAI CDU SO N N’ M. Porche ? SBI MAI CDU FUC MAI MAI 500 1000 1500 0 A 2000 500 1000 1500 0 2000 500 1000 1500 0 2000 2500 500 1000 1500 0 2000 2500 -500 500 1000 1500 0 2000 2500 NE 500 1000 1500 0 2000 2500 NE SBI SBI L M. Rotondo M. Prata

Outside the polygon

Geology from Pierantoni et al (2013) Geology constrained by this workInside the polygon:

Th ~ 130 m Th ~ 250 m Th ~ 120 m Th ~ 500 m Th ~100 m Th ~ 100 m Th ~160 m Th ~ 50 m Th ~ 470 m Th ~ 300 m Th ~ 450 m Th ~ 250 m Th ~ 300 m Th ~ 500 m Th ~ 500 m Th ~ 550 m Th ~ 500 m Th ~ 500 m Th ~ 420 m Th ~ 420 m Th ~ 500 m Th ~ 400 m SO E E’ NE MAI FUC SBI SAA MAI MAI Outside the polygon

Geology from Pierantoni et al (2013)

Inside the polygon:

Geology constrained by this work

Th = 20m 2100 2200 2000 2300 2100 2200 2000 2300 Profile 7 2100 2200 2000 2300 2400 2100 2200 2000 2300 2400 Profile 8 Th = 21 m Th = 12 m 2100 2200 2000 2300 2400 2100 2200 2000 2300 2400 Profile 9 Th = 17.5 m Profile 1 2100 2000 2100 2000 Th = 12.5 m Pro le 3 2100 2200 2000 2300 2100 2200 2000 2300 Th = 9.5 m Profile 4 Th = 8 m 2100 2200 2000 2300 2100 2200 2000 2300 Profile 5 Th = 18 m 2100 2200 2000 2300 1900 2100 2200 2000 2300 1900 Profile 6 1900 1800 2000 1900 1800 2000 1700 1700 Th = 10 m 1900 1800 2000 2100 1900 1800 2000 2100 Pro le 2

c)

Tn T Tbt ά1 ά2 ά3 Geometric model

Scarp profile from laser scanning

T = Throw on main fault; Tn = Net throw; Tbt = Throw caused by back - tilting; , = Far field slope; = back-tilting; = Slip vector.

ά

1

ά

3

ά

2 A 20.3 B 16.5 3.5 18.5 19.0 3.5 17.5 22.5 T (m) Tn (m) Tbt (m) Back-tilting(%) MEAN ≈18

Topographic Profile (Scale 1:10,000)

A1

A2

Area 1 (A1) = Area 2 (A2)

50 0 50 m 100 120 0 5000 10000 15000 20000 25000 30000

1

0.8 0.6 0.4 0.2 0 50 100 150 200 250 300 0 10 20 30 40 Maximum Displacement (cm)

Surface Rupture Length (km)

0 20 40 60 80 0 10 20 30 40 Average Displacement (cm)

Surface Rupture Length (km)

W&C94 (N) log(AD) = -1.99 + 1.24 log(SRL) Wes 08 (N) AD = 0.03 SRL

W&C94 (N) log (MD) = -1.98 + 1.51 log(SRL) Wes 08 (N) MD = 0.09 SRL 0 50 100 150 200 250 300 5.5 6.0 7 0 10 20 30 40 50 60 70 80 90 100 W&C94 (N) log(AD) = -4.45 + 0.63 Mw W&C94 30 Oct. 24 Aug. W&C94 (N) log(MD) = -5.9 + 0.89 Mw P&C04 log(MD) = 1.14 Ms - 7.82 (assum. Ms=Mw)

0 5 10 15 20 25 30 35 40 7 Mw Average Displacement (cm) Maximum Displacement (cm) Surface Rupture Length (k m) P&C04 6.5 6.5 6.7 5.5 6.0 6.5 7 5.5 6.0 Cumulative W&C94 6.7 Mw 24 Aug. Cumulative 24 Aug. P&C04 6.7 Mw 30 Oct. 24 Aug. Cumulative W&C94 W&C94 W&C94 (N) log (SRL) = -2.01 + 0.5 Mw P&C04 log(SRL) = 0.78 Ms - 3.93 (assum. Ms=Mw)

30 Oct. Cumulative W&C94 G08 G08 Mw = 4.7248 (SRL) 0.1046 Cumulative 24 Aug.

A-A’

B-B’

C-C’

D-D’

E-E’

F-F’

G-G’

H-H’

I-I’

D-D’

L-L’

M-M’

N-N’

B-B’

A-A’ C-C’ E-E’

F-F’

P.1 P.2 P.3 P.4 P.5 P.6P.7 P.8 P.9

Brozzetti et al, 2019

Geological Throw Brozzetti el al, 2019 Coseismic Throw Topog raphic Throw

0

0.1

0.2

0.3

0.4

AD

/MD

McC&S W es08

ADa/MD ADi/MD ADs/MD

ADl.t./MDl.t.

Global Data (Normal Faulting)

2016 cumulative

Long term Data (Post LGM)

STRUCTURAL (LONG TERM) DATA

MD - SRL AD - SRL SRL -Mw AD - Mw MD - Mw geologic fault coseismic rupture

covered by rock slide

Cupi - Ussita Segment Mt. Bove - Mt. Porche Segment Vettoretto - Redentore Segment

1.0 2.0 3.0 4.0 5.0 6.0 0.0 0.0 0.2 0.4 0.6 0.8 1.0 Normalized Length

D/AD

7.0 (Wesnousky, 2008) 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 1.0

D/MD

1.0 Normalized Length f) (Wesnousky, 2008)

McC&S = Mc Calpin & Slemmons (1998) Wes08 = Wesnousky (2008)

ADa/MD = AD arithmetic/MD ADi/MD = AD integral/MD ADs/Md = AD summ/MD ADl.t./MDl.t. (long term)

ADi/MD(24A) = AD integral / MD (24 August)

COSEISMIC PARAMETERS SRL MD AD integral AD arithmetic 30 km (<32 km) ≥ 22 km 240 cm 222 cm 36 cm 37 cm 24 August (Mw 6.0) 5.8 km 28.5 cm 12.7 cm 30 October (Mw 6.5) Cumulative (Mw 6.7)

Net Displacement (cm)

2016 (cumulative)

Global normal faulting surface ruptures (Wesnousky, 2008)

Along Strike Distribution of Cumulative Net Displacement Solid: Principal Fault

Dashed: Secondary Fault

SW

- Dipping

NE - Dipping

g) 2016 (cumulative)

Global normal faulting surface ruptures (Wesnousky, 2008)

Cupi

Section Mt. Banditella Section

Mt. Rotondo Section Mt. Bove Section Mt.Porche Section Quarto S. Lortenzo Section Redentore Section Vettoretto Section Cupi Section Mt. Banditella Section Mt. Rotondo Section Mt. Bove Section

Mt. Porche Section Q. S. Lortenzo Section

Redentore Section Vettoretto Section

a)

b)

c)

d)

e)

a)

c)

0.5

ADi/MD(24A) 24 August

Distance (km)

Along Strike Distribution of Cumulative Throw and Opening (Principal Fault) Throw Solid: Principal fault

Opening Dashed: Secondary Fault

Throw / Opening (cm)

b)

0 5 10 15 20 25 30 0 5 10 15 20 25 30 SW - Dipping NE - Dipping BP Segment Geological Throw Coseismic Throw Cupi - Ussita Segment Mt. Bove - Mt. Porche Segment Vettoretto - Redentore Segment

Average fault attitude: 225/65

Average slip vector: 231/59

Slip vector Average slip vector

Average fault attitude: 232/65

Average slip vector: 239/62

Average fault attitude: 232/65

Average slip vector: 232/65

CU Segment VR Segment

SRL = Surface Rupture Length MD = Maximum Displacement AD = Average Displacement

44°

44°

42°

12°

12°

14°

14°

4

10°

FUC SO E E’ SAA SBI NE

Croce Di Monte Rotondo

CDU POD RSA MAS SAA SBI MAI FUC CDU BU CDU Th ~ 20 m Th ~ 200 m POD RSA ?

Vertical component of 2016 cumulative coseismic displacement (throw) compared with geologic (a) and topographic (b) throws. The throw values were normalized to the maximum throw in order to make coseismic, topographic and geologic data comparable. Topographic throw is interpreted to be the throw accumulated after the Late Glacial Maximum (post - LGM; e.g., Roberts and Michetti, 2004).

Topographic profiles are realized from a 50 cm - resolution Digital Surface Model (DSM) obtained from Pléiades Images (©CNES_2016) (from CEOS Seismic Hazard Pilot group, IPGP, France). Topographic throw was calculated by measuring the vertical offset of the far - field topographic slope across the fault scarp.

The geologic throw along the Cupi - Ussita and Mt. Bove - Mt. Porche segments was calculated from geologic sections in Frame 5. The geologic throw along the Vettoretto - Redentore segment is from Brozzetti et al. (2019).

c) Quantification of post - LGM back-tilting in the zone of MD by means of topographic profiles from Laser scanning (solid line, hanging wall and basal fault scarp) and Pléiades DSM (dotted lines, footwall) (location of topographic profiles in the inset of the map).

b)

Normalized Throw

(Throw/Throw Max)

Normalized Throw

(Throw/Throw Max)

DISTANCE (m)

0

5000

10000

15000

20000

25000

30000

1

0.8

0.6

0.4

0.2

a)

2250 1950 2000 2200 2150 29 ° 27 ° Hangingwall Footwall Change in slope Fault

Eroded scarp

Far field slope 2050

1

Location Map of Topographic Profiles

A B A A’ Rotated fault Fault Thrust Section traces Bedding Reactivated normal fault

Uncertain/buried reactivated normal fault Not reactived normal fault

Uncertain/buried not reactivated normal fault 32

- Continental deposits:

Slope deposits: well sorted or heterometric unconsolidated deposits of variable size. Clasts are angular to moderately rounded. (Pleistocene - Holocene)

Alluvial deposits: fluvial calcareous gravel deposits. (Pleistocene - Holocene) - Marine succession:

Scaglia Cinerea (SCC): grey and green calcareous marls, marls and clayey marls in medium thin beds. In the lower part there are marly limestones levels. 200 m of thickness

(Bartonian p.p. - Aquitanian p.p.)

Scaglia Variegata (VAS): alternation of gray, red and green coulored limestones and marly limestones in thin to medium beds and red and grey calcareous marls. 50 m of thickness.

(Lutetian p.p. - Bartonian p.p.)

Scaglia Rossa (SAA): limestones and marly limestones, pink, red and rarely withe coloured, in medium beds, with thin pelitic levels. There are also nodules and ribbons of red and pink chert, in the lower and upper parts. 250 - 400 m of thickness. (Lower Turonian p.p. - Lutetian p.p.) Scaglia Bianca (SBI): withe limestones and marly limestones in medium beds, with black chert in the upper part and pink chert in the lower one. In the uppermost part, a 1.5 m thick level made of black anoxic organic-rich shales named “Livello Bonarelli” is present. 50 - 70 m of thickness.

(Upper Albian p.p. - Lower Turonian p.p.)

Marne a Fucoidi (FUC): marls, shaly marls, marly limestone grey, green and red coulored with organic-rich clay levels. In the upper part, marly limeston prevails and green chert is present. 50 - 80 m of thickness. (Lower Aptian - Upper Albian)

Maiolica (MAI): white mudstones in thin-medium beds with gray or white chert in the lower part and black chert in the upper part. 150 - 450 m of thickness. (Upper Tithonian - Lower Aptian)

- Complete Jurassic succession:

Calcari Diasprigni (CDU): the lower part is made up of thinly bedded green, red and gray siliceous mudstones with green, red or gray chert and marly levels. Clastic and bioclastic limestones are also present. The upper part is named “Calcari ad Aptici”, and is composed of grey, green and red cherty limestones in medium - thin beds with aptychi. 150 m of thickness. (Upper Bajocian - Lower Titonian) Calcari e Marne a Posidonia (POD): whitish - brown limestones and marly limestones in medium beds, sometimes nodular. Posidonia filaments are abundant. Clastic and bioclastic limestones are present and chert increases upward. 200 m of thickness. (Upper Toarcian p.p. - Lower Bajocian)

Rosso Ammonitico (RSA): pink and red nodular limestones and marly limestones in medium to thin beds alternating with red marls and shaly marls. The unit can be partially or totally replaced by the

“Marne del Serrone” Formation. 40 m of thickness. (Toarciano p.p.)

Marne del Serrone (RSN): green and grey marly limestones of various thickness, marls and shaly marls and clastic limestones in medium beds. Variable thickess, from a few to 150 m.

(Pleinsbachian p.p. - Toarcian p.p.)

Corniola (COI): grey and brown limestones in thin to thick beds. Gray and white nodules or ribbons of chert are present. Olistoliths of Calcare Massiccio are present. The upper part can be replaced by the “Marne del Serrone” Formation. Thickness of 500 m or more. (Lower Sinemurian p.p. Lower Toarcian p.p.)

- Condensed Jurassic succession

Bugarone group (BU): nodular and locally dolomitized grey, brown or pink mudstones in medium beds. Marls are present in the middle part. There are ammonites, crinoids and brachiopods.

40 m of thickness. (Carixian p.p. - Lower Titonian)

Calcare Massiccio (MAS): white, or more rarely gray or brown grainstones, packstones and sometimes wackstones, massive or coarsely bedded with cyclothemic features. Ooid and bioclastic grainstones are present in the uppermost part. Maximum 700 m of thickness. (Hettangian - Carixian)

LEGEND

2

3

4

5

6

7

9

8

Horizontal bedding Overturned bedding Vertical bedding Fault attitude 53 A B

Topographic profiles in fig. c

73

Mapping the geology of the 2016 Central Italy earthquake fault (Mt. Vettore - Mt. Bove fault, Sibillini Mts.): geological

details on the Cupi - Ussita and Mt. Bove - Mt. Porche segments and overall pattern of coseismic surface faulting.

Alessio Testa

1

, Paolo Boncio

1

, Michele Di Donato

1

, Giovanni Mataloni

2

,

Francesco Brozzetti

1

, Daniele Cirillo

1

1

CRUTS DiSPUTer, University G. D’Annunzio of Chieti - Pescara, Via dei Vestini 31, 66100, Chieti, Italy

2

Dipartimento di Architettura, University G. D’Annunzio of Chieti - Pescara, Viale Pindaro 65127, Pescara, Italy

Profile A 2100 2250 2200 2050 Profile B

Topographic profiles from Laser Scanning and DSM from Pléiades Images (©CNES_2016)

2200 2050 2250 2100 20.3 m 16.5 m 3.8 m 21 m 17.3 m 3.7 m Pléiades DSM (average of 4 profiles) Laser scanning Laser scanning Pléiades DSM (average of 4 profiles) ≈ 40 m ≈ 40 m

Coordinate system: WGS84 - UTM 33N

I I’ M M’ N N’ A A’ B B’ C C’ D D’ E E’ F F’ G G’ H H’ L L’ A A’ B B’ C C’ D D’ E E’ F F’ A A’

1. Geological Map of Mts. Sibillini Area

2. Structural Map of Mt. Vettore - Mt. Bove Fault System

6. Coseismic Surface Parameters

Displacement Distribution Map

5. Geological Sections (Scale 1:25,000)

Mt. Vettore Mt. Bove Fault System (length: 30 km):

7. Comparison with Global Data

- Stratigraphy:

- Tectonics:

LEGEND

8. Comparison of Geologic, Topographic and Coseismic Displacement

h)

(a) Along-strike distribution of the net coseismic displacement (D) measured after the October 30, M 6.5 shock (cumulative D of the August 24 and October 26 and 30 earthquakes; modified from Brozzetti et al., 2019). Each fault segment, represented by lines of different colour, shows a peak of displacement. The Vettoretto - Redentore segment has a very localized high displacement zone.

(b) Along-strike distribution of the cumulative throw (black line) and opening (horizontal aperture measured perpendicular to rupture strike; red lines). The coseismic parameters are listed in the following table. AD integral is the average D obtained by integrating the D distribution over the entire length of the surface rupture. AD arithmetic is the arithmetic mean of all the measured D values.

Coseismic parameters of the 2016 earthquakes compared with empirical relationships MD vs Mw (a), AD vs Mw (b), SRL vs Mw (c), AD vs SRL (d) and MD vs SRL (e) proposed in the literature for global normal faulting earthquakes. Key to abbreviations: W&C94 = Wells and Coppersmith (1994); Wes 08 = Wesnousky (2008); P&C04 = Pavlides and Caputo (2004); G08 = Galli et al. (2008).

The relations that best fit the 2016 data are those between SRL and Mw. Note that both integral and arithmetic AD are lower than the expected values, while MD is higher than the expected values. Low values of AD are likely caused by attenuation of the coseismic displacement toward the surface, due to the high segmentation of the fault system. High values of MD are possibly due to localized tectonic phenomena (e.g., back-tilting, see Frame 8) caused by volumetric accommodation of fault irregularities at shallow depths. f) 2016 cumulative displacement profile, normalized by MD, compared with the envelope of normalized displacement profiles (light blue area) obtained from a set of global normal faulting earthquakes (dashed lines) surface ruptures (from Wesnousky, 2008). Note that the 2016 profile is at the lower edge of the global data, due to the anomalously high MD.

g) 2016 cumulative displacement profile, normalized by AD (integral), compared with the envelope of normalized displacement profiles (light blue area) obtained from a set of global normal faulting earthquakes (dashed lines) surface ruptures (from Wesnousky, 2008). Note that the 2016 profile is more consistent with global data compared to the D/MD profile.

h) Mt. Vettore – Mt. Bove D/MD values in comparison with global data obtained from compilations of normal faulting surface ruptures. ADsumm. is the integral mean of the displacement distribution obtained by summing the contribution of all the synthetic and antithetic distributed (secondary) faults. The long term values (ADl.t./MDl.t.) refer to the post-Late Glacial Maximum (post-LGM) displacement calculated on topographic profiles across fault scarps (see Frame 8).

D D’

Fault Normal fault Jurassic fault Thrust

Survey areas boundary Cupi - Ussita Mt. Bove - Mt. Porche Section trace (this work) Section trace

(Brozzetti et al. 2019) Slope Deposits: slope, landslide and alluvial deposits (Holocene)

Fluvio - lacustrine deposits (Middle/Upper Pleistocene - Holocene) Laga Formation, Schlier, marne con cerrogna, Bisciaro

(Aquitanian - Messinian)

Scaglia Cinerea, scaglia variegata, Scaglia Rossa, Scaglia Bianca, (Upper Albian p.p. - Aquitanian p.p.) Marne a Fucoidi (Lower Aptian - Upper Albian) Maiolica Fm. (Upper Tithonian - Lower Aptian p.p.)

Jurassic complete succession (Calcari Diasprigni, Calcari e Marne a Posidonia, Rosso Ammonitico, marne del Serrone, Corniola)

and condensed successions (Bugarone group) (Carixian p.p. - Lower Tithonian) Calcare Massiccio (Hettangian - Carixian)

Main Secondary

- Cupi-Ussita Segment (9 km) a: Cupi section (4 km); b: Mt. Banditella section (5 km); c: Mt. Rotondo section (3 km).

- Mt. Bove-Mt. Porche Segment (12 km)

d: Mt. Bove section (10 km); e: Mt Porche section (4 km).

- Vettoretto-Redentore Segment (10 km)

f: Quarto.S.Lorenzo section (2.5 km); g: Redentore section (2 km); h: Vettoretto section (2 km).

Outcropping Buried/Uncertain Outcropping Buried/Uncertain

4

3

Surface faulting survey area

b

d

e

f

g

h

Fault - Coseismic Throw: 0-20 cm 20-40 cm 40-80 cm 80-160 cm 160-240 cm Mw 5.9 26 October 2016 Mw 5.4 26 October 2016 Mw 6.5 30 October 2016 Mw 6.0 24 August 2016

a

c

4

3

0 1 2 km

Coordinate system: WGS84 - UTM 33N Coordinate system: WGS84 - UTM 33N Coordinate system: WGS84 - UTM 33N

10

15

15

10

15

15

10

10

10

20

10

10

20

20

11

33

35

15

13

5

15

4

8

20

29

48 42

26

12

30

22

64

23

36

40

16

23

18

14

44

29

29

65

17

17

16

23

5

6

7

20

20

7

11

14

9

22

12

41

23

36

8

5

8

13

21

23

14

24

38

53

33

55

71

63

73

42

10

27

3

23

24

45

20

30

10

10

10

10

10

7

29

14

5

17

26

64

A

'

B

B'

C

C'

D

D'

E'

E

MAI SAA VAS SCC FUC SBI FUC SCC VAS VAS VAS SCC SAA SAA SBI SBI SBI FUC FUC SBI MAI MAI COI CDU MAS CDU POD RSA CDU MAI SAA SAA SAA

A

BU

3. Geological Map of the Cupi - Ussita Area

500 m SCC VAS SAA SBI FUC MAI BU CDU POD RSN RSA COI MAS Anidridi di Burano BUR

Stratigraphic scheme

76

59

87

52

73

87

Point of view of cover page Fig. B (right) Picture from Fig. 2 of the main text 2a

1

1:25,000

0

1 km

(Field survey on 1:10,000 scale topographic map)

Coordinate system: WGS84 - UTM 33N

SAA SAA SAA BU 2g

85

71

71

65

54

64

75

F

F'

G'

G

H

I

I'

H'

L

L'

M

M'

10

10

20

25

20

27

12

25

10

29

30

25

40

30

35

35

20

40

20

20

35

20

20

20

45

20

20

40

30

35

10

40

33

26

48

71

33

39

19

18 16

23

30

17

17

13 21

67

55

69

12

27

29

25

31

33

52

9

18

19

15

15

80

15

25

25

20

35

30

20

25

15

10

10

10

16

30

29

52

20

25

5

10

10

19

18

22

28

33

36

27

10

6

27

7

35

13

50

MAI CDU CDU CDU CDU CDU CDU CDU CDU CDU CDU CDU CDU CDU MAI MAI MAI MAI MAI MAI MAI MAI MAI FUC FUC FUC FUC FUC FUC FUC FUC FUC FUC MAI SBI SBI SBI SBI SBI SBI SAA SAA SAA SAA POD POD POD POD POD POD CDU MAS MAS MAS MAS MAS MAS BU BU

4. Geological Map of the Mt. Bove - Mt. Porche Area

RSN COI RSN COI SAA SBI 2f 2e 2d

Point of view of cover page Fig. B (left) Picture from Fig. 2 of the main text 2a

1

1:25,000

0

1 km

(Field survey on 1:10,000 scale topographic map)

Coordinate system: WGS84 - UTM 33N

BU 2c 2a 2b NO NE A’ SO NE B B’ SAA VAS SCC FUC SAA VAS SCC FUC Il Poggiolo Costa Tranquilla Colle S. Giovanni Pian Terrena SAA FUC SBI M. La Banditella SO NE C C’ SBI VAS SCC SO NE D D’ MAI SAA FUC SBI FUC MAI SAA SBI VAS FUC MAI SAA SBI FUC SAA FUC SO NE F F’ SAA SBI MAI CDU POD POD CDU MAI RSA COI MAS MAS POD CDU MAI RSA COI Pian Dell’Arco M. Bove Nord MAI SO NE G G’ SAA SBI MAI CDU POD FUC MAS BUR CDU POD COI RSA M. Cornaccione M. Bicco MAI CDU POD RSA COI MAS MAJ SO NE H SAA BU MAI CDU POD FUC MAS CDU POD CDU CDU MAI COI SAA SBI FUC RSN H’ M.Bove Sud M.Cornaccione MAI CDU POD BU MAS MAI RSN CDU POD MAS COI POD CDU MAI COI RSN RSN POD CDU COI MAS BUR SO NE I I’ Passo Cattivo SO L’ Colle La Croce Cima Cannafuso MAI CDU POD RSN COI FUC SBI SAA MAI CDU POD RSN COI SO NE M M’ MAI F. Nera CDU POD RSN COI MAS MAI CDU POD RSN FUC SBI SAA MAI SAA POD POD SAA SBI FUC MAI CDU SO N N’ M. Porche ? SBI MAI CDU FUC MAI MAI 500 1000 1500 0 A 2000 500 1000 1500 0 2000 500 1000 1500 0 2000 2500 500 1000 1500 0 2000 2500 -500 500 1000 1500 0 2000 2500 NE 500 1000 1500 0 2000 2500 NE SBI SBI L M. Rotondo M. Prata

Outside the polygon

Geology from Pierantoni et al (2013) Geology constrained by this workInside the polygon:

Th ~ 130 m Th ~ 250 m Th ~ 120 m Th ~ 500 m Th ~100 m Th ~ 100 m Th ~160 m Th ~ 50 m Th ~ 470 m Th ~ 300 m Th ~ 450 m Th ~ 250 m Th ~ 300 m Th ~ 500 m Th ~ 500 m Th ~ 550 m Th ~ 500 m Th ~ 500 m Th ~ 420 m Th ~ 420 m Th ~ 500 m Th ~ 400 m SO E E’ NE MAI FUC SBI SAA MAI MAI Outside the polygon

Geology from Pierantoni et al (2013)

Inside the polygon:

Geology constrained by this work

Th = 20m 2100 2200 2000 2300 2100 2200 2000 2300 Profile 7 2100 2200 2000 2300 2400 2100 2200 2000 2300 2400 Profile 8 Th = 21 m Th = 12 m 2100 2200 2000 2300 2400 2100 2200 2000 2300 2400 Profile 9 Th = 17.5 m Profile 1 2100 2000 2100 2000 Th = 12.5 m Pro le 3 2100 2200 2000 2300 2100 2200 2000 2300 Th = 9.5 m Profile 4 Th = 8 m 2100 2200 2000 2300 2100 2200 2000 2300 Profile 5 Th = 18 m 2100 2200 2000 2300 1900 2100 2200 2000 2300 1900 Profile 6 1900 1800 2000 1900 1800 2000 1700 1700 Th = 10 m 1900 1800 2000 2100 1900 1800 2000 2100 Pro le 2

c)

Tn T Tbt ά1 ά2 ά3 Geometric model

Scarp profile from laser scanning

T = Throw on main fault; Tn = Net throw; Tbt = Throw caused by back - tilting; , = Far field slope; = back-tilting; = Slip vector.

ά

1

ά

3

ά

2 A 20.3 B 16.5 3.5 18.5 19.0 3.5 17.5 22.5 T (m) Tn (m) Tbt (m) Back-tilting(%) MEAN ≈18

Topographic Profile (Scale 1:10,000)

A1

A2

Area 1 (A1) = Area 2 (A2)

50 0 50 m 100 120 0 5000 10000 15000 20000 25000 30000

1

0.8 0.6 0.4 0.2 0 50 100 150 200 250 300 0 10 20 30 40 Maximum Displacement (cm)

Surface Rupture Length (km)

0 20 40 60 80 0 10 20 30 40 Average Displacement (cm)

Surface Rupture Length (km)

W&C94 (N) log(AD) = -1.99 + 1.24 log(SRL) Wes 08 (N) AD = 0.03 SRL

W&C94 (N) log (MD) = -1.98 + 1.51 log(SRL) Wes 08 (N) MD = 0.09 SRL 0 50 100 150 200 250 300 5.5 6.0 7 0 10 20 30 40 50 60 70 80 90 100 W&C94 (N) log(AD) = -4.45 + 0.63 Mw W&C94 30 Oct. 24 Aug. W&C94 (N) log(MD) = -5.9 + 0.89 Mw P&C04 log(MD) = 1.14 Ms - 7.82 (assum. Ms=Mw)

0 5 10 15 20 25 30 35 40 7 Mw Average Displacement (cm) Maximum Displacement (cm) Surface Rupture Length (k m) P&C04 6.5 6.5 6.7 5.5 6.0 6.5 7 5.5 6.0 Cumulative W&C94 6.7 Mw 24 Aug. Cumulative 24 Aug. P&C04 6.7 Mw 30 Oct. 24 Aug. Cumulative W&C94 W&C94 W&C94 (N) log (SRL) = -2.01 + 0.5 Mw P&C04 log(SRL) = 0.78 Ms - 3.93 (assum. Ms=Mw)

30 Oct. Cumulative W&C94 G08 G08 Mw = 4.7248 (SRL) 0.1046 Cumulative 24 Aug.

A-A’

B-B’

C-C’

D-D’

E-E’

F-F’

G-G’

H-H’

I-I’

D-D’

L-L’

M-M’

N-N’

B-B’

A-A’ C-C’ E-E’

F-F’

P.1 P.2 P.3 P.4 P.5 P.6P.7 P.8 P.9

Brozzetti et al, 2019

Geological Throw Brozzetti el al, 2019 Coseismic Throw Topog raphic Throw

0

0.1

0.2

0.3

0.4

AD

/MD

McC&S W es08

ADa/MD ADi/MD ADs/MD

ADl.t./MDl.t.

Global Data (Normal Faulting)

2016 cumulative

Long term Data (Post LGM)

STRUCTURAL (LONG TERM) DATA

MD - SRL AD - SRL SRL -Mw AD - Mw MD - Mw geologic fault coseismic rupture

covered by rock slide

Cupi - Ussita Segment Mt. Bove - Mt. Porche Segment Vettoretto - Redentore Segment

1.0 2.0 3.0 4.0 5.0 6.0 0.0 0.0 0.2 0.4 0.6 0.8 1.0 Normalized Length

D/AD

7.0 (Wesnousky, 2008) 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 1.0

D/MD

1.0 Normalized Length f) (Wesnousky, 2008)

McC&S = Mc Calpin & Slemmons (1998) Wes08 = Wesnousky (2008)

ADa/MD = AD arithmetic/MD ADi/MD = AD integral/MD ADs/Md = AD summ/MD ADl.t./MDl.t. (long term)

ADi/MD(24A) = AD integral / MD (24 August)

COSEISMIC PARAMETERS SRL MD AD integral AD arithmetic 30 km (<32 km) ≥ 22 km 240 cm 222 cm 36 cm 37 cm 24 August (Mw 6.0) 5.8 km 28.5 cm 12.7 cm 30 October (Mw 6.5) Cumulative (Mw 6.7)

Net Displacement (cm)

2016 (cumulative)

Global normal faulting surface ruptures (Wesnousky, 2008)

Along Strike Distribution of Cumulative Net Displacement Solid: Principal Fault

Dashed: Secondary Fault

SW

- Dipping

NE - Dipping

g) 2016 (cumulative)

Global normal faulting surface ruptures (Wesnousky, 2008)

Cupi

Section Mt. Banditella Section

Mt. Rotondo Section Mt. Bove Section Mt.Porche Section Quarto S. Lortenzo Section Redentore Section Vettoretto Section

Cupi Section Mt. Banditella Section

Mt. Rotondo Section

Mt. Bove Section

Mt. Porche Section Q. S. Lortenzo Section

Redentore Section Vettoretto Section

a)

b)

c)

d)

e)

a)

c)

0.5

ADi/MD(24A) 24 August

Distance (km)

Along Strike Distribution of Cumulative Throw and Opening (Principal Fault) Throw Solid: Principal fault

Opening Dashed: Secondary Fault

Throw / Opening (cm)

b)

0 5 10 15 20 25 30 0 5 10 15 20 25 30 SW - Dipping NE - Dipping BP Segment Geological Throw Coseismic Throw Cupi - Ussita Segment Mt. Bove - Mt. Porche Segment Vettoretto - Redentore Segment

Average fault attitude: 225/65

Average slip vector: 231/59

Slip vector Average slip vector

Average fault attitude: 232/65

Average slip vector: 239/62

Average fault attitude: 232/65

Average slip vector: 232/65

CU Segment VR Segment

SRL = Surface Rupture Length MD = Maximum Displacement AD = Average Displacement

44°

44°

42°

12°

12°

14°

14°

4

10°

FUC SO E E’ SAA SBI NE

Croce Di Monte Rotondo

CDU POD RSA MAS SAA SBI MAI FUC CDU BU CDU Th ~ 20 m Th ~ 200 m POD RSA ?

Vertical component of 2016 cumulative coseismic displacement (throw) compared with geologic (a) and topographic (b) throws. The throw values were normalized to the maximum throw in order to make coseismic, topographic and geologic data comparable. Topographic throw is interpreted to be the throw accumulated after the Late Glacial Maximum (post - LGM; e.g., Roberts and Michetti, 2004).

Topographic profiles are realized from a 50 cm - resolution Digital Surface Model (DSM) obtained from Pléiades Images (©CNES_2016) (from CEOS Seismic Hazard Pilot group, IPGP, France). Topographic throw was calculated by measuring the vertical offset of the far - field topographic slope across the fault scarp.

The geologic throw along the Cupi - Ussita and Mt. Bove - Mt. Porche segments was calculated from geologic sections in Frame 5. The geologic throw along the Vettoretto - Redentore segment is from Brozzetti et al. (2019).

c) Quantification of post - LGM back-tilting in the zone of MD by means of topographic profiles from Laser scanning (solid line, hanging wall and basal fault scarp) and Pléiades DSM (dotted lines, footwall) (location of topographic profiles in the inset of the map).

b)

Normalized Throw

(Throw/Throw Max)

Normalized Throw

(Throw/Throw Max)

DISTANCE (m)

0

5000

10000

15000

20000

25000

30000

1

0.8

0.6

0.4

0.2

a)

2250 1950 2000 2200 2150 29 ° 27 ° Hangingwall Footwall Change in slope Fault

Eroded scarp

Far field slope 2050

1

Location Map of Topographic Profiles

A B A A’ Rotated fault Fault Thrust Section traces Bedding Reactivated normal fault

Uncertain/buried reactivated normal fault Not reactived normal fault

Uncertain/buried not reactivated normal fault 32

- Continental deposits:

Slope deposits: well sorted or heterometric unconsolidated deposits of variable size. Clasts are angular to moderately rounded. (Pleistocene - Holocene)

Alluvial deposits: fluvial calcareous gravel deposits. (Pleistocene - Holocene) - Marine succession:

Scaglia Cinerea (SCC): grey and green calcareous marls, marls and clayey marls in medium thin beds. In the lower part there are marly limestones levels. 200 m of thickness

(Bartonian p.p. - Aquitanian p.p.)

Scaglia Variegata (VAS): alternation of gray, red and green coulored limestones and marly limestones in thin to medium beds and red and grey calcareous marls. 50 m of thickness.

(Lutetian p.p. - Bartonian p.p.)

Scaglia Rossa (SAA): limestones and marly limestones, pink, red and rarely withe coloured, in medium beds, with thin pelitic levels. There are also nodules and ribbons of red and pink chert, in the lower and upper parts. 250 - 400 m of thickness. (Lower Turonian p.p. - Lutetian p.p.) Scaglia Bianca (SBI): withe limestones and marly limestones in medium beds, with black chert in the upper part and pink chert in the lower one. In the uppermost part, a 1.5 m thick level made of black anoxic organic-rich shales named “Livello Bonarelli” is present. 50 - 70 m of thickness.

(Upper Albian p.p. - Lower Turonian p.p.)

Marne a Fucoidi (FUC): marls, shaly marls, marly limestone grey, green and red coulored with organic-rich clay levels. In the upper part, marly limeston prevails and green chert is present. 50 - 80 m of thickness. (Lower Aptian - Upper Albian)

Maiolica (MAI): white mudstones in thin-medium beds with gray or white chert in the lower part and black chert in the upper part. 150 - 450 m of thickness. (Upper Tithonian - Lower Aptian)

- Complete Jurassic succession:

Calcari Diasprigni (CDU): the lower part is made up of thinly bedded green, red and gray siliceous mudstones with green, red or gray chert and marly levels. Clastic and bioclastic limestones are also present. The upper part is named “Calcari ad Aptici”, and is composed of grey, green and red cherty limestones in medium - thin beds with aptychi. 150 m of thickness. (Upper Bajocian - Lower Titonian) Calcari e Marne a Posidonia (POD): whitish - brown limestones and marly limestones in medium beds, sometimes nodular. Posidonia filaments are abundant. Clastic and bioclastic limestones are present and chert increases upward. 200 m of thickness. (Upper Toarcian p.p. - Lower Bajocian)

Rosso Ammonitico (RSA): pink and red nodular limestones and marly limestones in medium to thin beds alternating with red marls and shaly marls. The unit can be partially or totally replaced by the

“Marne del Serrone” Formation. 40 m of thickness. (Toarciano p.p.)

Marne del Serrone (RSN): green and grey marly limestones of various thickness, marls and shaly marls and clastic limestones in medium beds. Variable thickess, from a few to 150 m.

(Pleinsbachian p.p. - Toarcian p.p.)

Corniola (COI): grey and brown limestones in thin to thick beds. Gray and white nodules or ribbons of chert are present. Olistoliths of Calcare Massiccio are present. The upper part can be replaced by the “Marne del Serrone” Formation. Thickness of 500 m or more. (Lower Sinemurian p.p. Lower Toarcian p.p.)

- Condensed Jurassic succession

Bugarone group (BU): nodular and locally dolomitized grey, brown or pink mudstones in medium beds. Marls are present in the middle part. There are ammonites, crinoids and brachiopods.

40 m of thickness. (Carixian p.p. - Lower Titonian)

Calcare Massiccio (MAS): white, or more rarely gray or brown grainstones, packstones and sometimes wackstones, massive or coarsely bedded with cyclothemic features. Ooid and bioclastic grainstones are present in the uppermost part. Maximum 700 m of thickness. (Hettangian - Carixian)

LEGEND

2

3

4

5

6

7

9

8

Horizontal bedding Overturned bedding Vertical bedding Fault attitude 53 A B

Topographic profiles in fig. c

73

Mapping the geology of the 2016 Central Italy earthquake fault (Mt. Vettore - Mt. Bove fault, Sibillini Mts.): geological

details on the Cupi - Ussita and Mt. Bove - Mt. Porche segments and overall pattern of coseismic surface faulting.

Alessio Testa

1

, Paolo Boncio

1

, Michele Di Donato

1

, Giovanni Mataloni

2

,

Francesco Brozzetti

1

, Daniele Cirillo

1

1

CRUTS DiSPUTer, University G. D’Annunzio of Chieti - Pescara, Via dei Vestini 31, 66100, Chieti, Italy

2

Dipartimento di Architettura, University G. D’Annunzio of Chieti - Pescara, Viale Pindaro 65127, Pescara, Italy

Profile A 2100 2250 2200 2050 Profile B

Topographic profiles from Laser Scanning and DSM from Pléiades Images (©CNES_2016)

2200 2050 2250 2100 20.3 m 16.5 m 3.8 m 21 m 17.3 m 3.7 m Pléiades DSM (average of 4 profiles) Laser scanning Laser scanning Pléiades DSM (average of 4 profiles) ≈ 40 m ≈ 40 m

Coordinate system: WGS84 - UTM 33N

I I’ M M’ N N’ A A’ B B’ C C’ D D’ E E’ F F’ G G’ H H’ L L’ A A’ B B’ C C’ D D’ E E’ F F’ A A’

1. Geological Map of Mts. Sibillini Area

2. Structural Map of Mt. Vettore - Mt. Bove Fault System

6. Coseismic Surface Parameters

Displacement Distribution Map

5. Geological Sections (Scale 1:25,000)

Mt. Vettore Mt. Bove Fault System (length: 30 km):

7. Comparison with Global Data

- Stratigraphy:

- Tectonics:

LEGEND

8. Comparison of Geologic, Topographic and Coseismic Displacement

h)

(a) Along-strike distribution of the net coseismic displacement (D) measured after the October 30, M 6.5 shock (cumulative D of the August 24 and October 26 and 30 earthquakes; modified from Brozzetti et al., 2019). Each fault segment, represented by li

Riferimenti

Documenti correlati

Siu, The Hong Kong Polytechnic University, Hong Kong Pierre-André Marcel Doudin, University of Lausanne – University of Fribourg – University of Teacher Education,

Il principio del contraddittorio nella formazione della prova: l’apporto innovativo della Corte Europea dei Diritti dell’Uomo………p.. Il diritto a confrontarsi con l’accusatore

La richiesta di tale partnership sta diventando più forte e le ricerche in questo campo, provenienti soprattutto dalla Germania, sottolineano che un’efficace programma iniziale

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-5/W5, 2015 Underwater 3D Recording and Modeling, 16–17 April 2015, Piano

The first section asked respondents to assess the extent to which seven different information sources (i.e. travel agent, service provider, tourist office,

MEDICINALI: una pratica abbastanza nota è l’uso di cerotti antidolorifici, realizzati utilizzando un panno sul quale si cola la resina scaldata, da applicare localmente; a Villa

INTERNAL ROTATION BY OTHER METHODS As we have pointed out in the previous section, asteroseis- mic inversion of a set of 14 dipole-mode rotational splittings enables an estimate of