• Non ci sono risultati.

HΛ3 and H‾Λ‾3 lifetime measurement in Pb–Pb collisions at sNN=5.02 TeV via two-body decay

N/A
N/A
Protected

Academic year: 2021

Condividi "HΛ3 and H‾Λ‾3 lifetime measurement in Pb–Pb collisions at sNN=5.02 TeV via two-body decay"

Copied!
12
0
0

Testo completo

(1)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

3



H and

3



H lifetime

measurement

in

Pb–Pb

collisions

at

s

NN

=

5

.

02 TeV via

two-body

decay

.ALICE

Collaboration



a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory:

Received26July2019

Receivedinrevisedform22August2019 Accepted29August2019

Availableonline3September2019 Editor: L.Rolandi

Animprovedvalueforthelifetimeofthe(anti-)hypertritonhasbeenobtainedusingthedatasampleof Pb–Pbcollisionsat√sNN=5.02 TeVcollectedbytheALICEexperimentattheLHC.The(anti-)hypertriton

has been reconstructedvia its charged two-body mesonic decay channel and the lifetime has been determinedfromanexponentialfittothedN/d(ct)spectrum.Themeasuredvalue,

τ

=242+3438(stat.)± 17(syst.)ps,iscompatiblewithrepresentativetheoreticalpredictions,thuscontributingtothesolution ofthelongstandinghypertritonlifetimepuzzle.

©2019TheAuthor.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

Hypernuclei are bound states of nucleons and hyperons and they are mainly produced by means of (K

,

π

−), (

π

+

,

K+) and (e,eK+)reactions onstablenucleartargets[1,2].Hypernuclei are particularly interesting because they can be used as experimen-talprobes forthestudyofthehyperon-nucleon(Y–N)interaction. The knowledge of this interaction has become more relevant in recentyears dueto its connectionto the modeling of astrophys-icalobjects like neutron stars [3,4]. Inthe inner core ofneutron stars,the creation of hyperons isenergetically favored compared toapurelynucleonicmattercomposition[5].The presenceof hy-peronsas additional degrees of freedom leads to a considerable softeningofthematterequationofstate(EOS).The resultingEOS inhibitstheformationoflargemassneutron stars.Thisis incom-patible with the observation of neutron stars as heavy as two solarmasses[3],constituting whatisreferred toasthe“hyperon puzzle”. Many attempts were made to solve this puzzle, e.g. by introducing three-body forces leading to an additional repulsion thatcancounterbalancethelargegravitationalpressureandallow forlarger star masses. To constrain the parameter space of such models, a detailed knowledge of the Y–N interaction and of the three-bodyY–N–Ninteractionismandatory,including



,



and



states.The lifetimeofahypernucleus dependson thestrengthof theY–Ninteraction, andthereforeaprecise determinationofthe lifetimeof hypernuclei provides informationon the Y–N interac-tionstrength[6,7].

Therecentobservationofhypernucleiandthedeterminationof theirlifetimesinexperimentswithrelativisticheavyioncollisions

 E-mailaddress:alice-publications@cern.ch.

hastriggereda particularinterest.Alltheresultspublishedso far arerelatedtothelightesthypernucleus,thehypertriton3

H,which

isa bound stateformed by aproton,a neutronanda



,andits charge conjugatethe anti-hypertriton 3

H. The results have been

obtainedatthe RelativisticHeavy IonCollider (STAR experiment) [8],attheSIS18(HypHICollaboration)[9] andattheLargeHadron Collider(ALICECollaboration)[10].

The separation energy of the



in this hypernucleus is only about130keV[11],whichresultsinan RMSradius(average dis-tance of the



to the deuteron) of 10.6 fm [12,13]. A very low binding energy implies a small change of the wave function of the



in a nucleus and hence one can expect the lifetime of the hypertriton to be very close to that of the free



hyperon (

τ



= (

263

.

2

±

2

.

0

)

ps [14]).

Earlyhypertritonlifetimemeasurementsweredonewith imag-ing techniques(i.e. emulsions, bubble chambers) and the results are lower than or consistent with the value of the free



life-time[15–20].However,mostofthemeasurementsperformedwith thesetechniquesarebasedonvery smallsamplesofevents,thus resulting in a large statistical uncertainty. The recent measure-ments of the lifetime of (anti-)3

H produced in ultra-relativistic

heavy-ioncollisions orinrelativisticionfragmentation[21], even though affected by statistical andsystematic uncertainties bigger than10%,areinagreementamongeach otherandarelowerthan thefree



lifetime[9,10,22].

However, the few existingtheoretical calculationspredict that the lifetime of the 3

H should be very close to the lifetime of

free



. The most comprehensive 3H lifetime calculation is from RayetandDalitz[23];theyobtainedanestimateintherangefrom 239.3–255.5ps.MorerecentcalculationsfromCongleton[24] and Kamadaetal.[7] yieldavalueof232ps and256ps,respectively.

https://doi.org/10.1016/j.physletb.2019.134905

0370-2693/©2019TheAuthor.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

Thisscenariostimulated,inthelastyears,anewinterestfromboth experimentalistsandtheoreticiansformoreprecisemeasurements ofthe3H lifetime.

Inthisletter,thelifetimeofthe (anti-)3H measuredinPb–Pb collisions at

sNN

=

5

.

02 TeV by the ALICE experiment is

pre-sented. In Section 2,the ALICE detectoris briefly described. The details ofthedatasample, analysistechnique andsystematic un-certaintiesare presented inSection 3,wherealso a newanalysis approach to crosscheck the results is introduced in the subsec-tion 3.1. Finally the result is compared with previous measure-mentsandwiththeoreticalpredictionsinSection4.

2. TheALICEapparatus

AdetaileddescriptionoftheALICEapparatusanddata acquisi-tionframework canbefound in[25,26]. Themaindetectorsused in this analysis are the V0 detector, the Inner Tracking System (ITS) andthe Time Projection Chamber (TPC), which are located inside a solenoid creatinga magnetic field of 0.5 T.The V0 de-tector[27] consistsoftwoarraysofscintillatorcounters(V0Aand V0C), placedaround the beam-pipeonboth sidesof the interac-tion region. They coverthe pseudorapidity ranges 2.8

<

η

<

5.1 and

3

.

7

<

η

<

1

.

7,respectively.TheV0detectorisusedto de-fine theMinimum Bias (MB) trigger, which ischaracterized by a coincidence signal in the V0Aand inthe V0C, andto determine thecentralityofthecollisions[28].TheITS[29] istheclosest de-tectortotheinteraction pointwithinALICE. Itiscomposedofsix layersofsilicondetectors,withradiibetween3.9and43cmfrom theinteraction point. Thesix layersuse threedifferent technolo-gies:silicon pixeldetector (SPD), silicondrift detector(SDD) and silicon strip detector (SSD). The ITS has full azimuthal coverage 0

ϕ

2

π

andcoversthepseudorapidityrange

|

η

|

<

0.9.TheTPC [30] isagaseousdetector,mainlyusedfortrackingandforparticle identification(PID)viathespecificenergyloss(dE/dx),witha to-talsensitivevolumeof90m3 filledwithamixtureof88%Arand 12%CO2.ThereconstructedclustersinTPCandITSarethestarting

point ofthetrackfinder algorithm,whichadopts theKalman fil-tertechnique[31].Thesetracksareusedtodeterminetheprimary collision vertexwith a precision better than 50 μmin the plane transversetothecollidingbeams[26].

3. Datasampleandanalysistechnique

Inthisletter,thelifetimeofthe(anti-)hypertritonisdetermined byexploitingthe2-body mesonicdecaychannelwithcharged pi-ons, namely3

H

3He

+

π

− and 3H

3He

+

π

+.Both 3H

and3

H candidatesareusedforthismeasurement.

TheanalysisisperformedusingthedatasampleofPb–Pb colli-sionsat

sNN

=

5

.

02 TeVcollectedbytheALICEexperimentatthe

endof 2015. To ensure a uniformacceptance andreconstruction efficiencyinthepseudorapidityregion

|

η

|

<

0.9,onlythoseevents areselectedwhosereconstructed primaryvertexwaswithin

±

10 cmfrom the nominalposition ofthe interaction point along the beamaxis.Theanalyzed samplecontainsapproximately90million eventsinthecentralityinterval0-90%.

The3H and3

H identificationisbasedonthetopologyoftheir

weakdecaysandonthereconstructionofthetracksoftheirdecay products, referred to as daughter particles. The weakly decaying hypernucleiarereconstructedusingthealgorithmwhichwas pre-viouslyusedfortheK0

S and



productionanalyses[32] andwhich

istypicallyadoptedfora2-bodyweakdecaytopology.Atfirst,the algorithmusestheTPCandITSclusterstoreconstructthedaughter tracksandthencombinestheminordertoobtainaV-shaped de-cayvertex.Moredetailsonthisalgorithmcanbefoundin[26,33].

Table 1

Selection criteriaappliedfor the identification ofthe daughter candidatetracksandforthereconstructionofthehypertriton can-didate. Selection criteria Track selections |η| <0.9 Number of TPC clusters >70 χ2per TPC cluster <5

Kink topology Rejected

|nσ|for TPC PID ≤3

Daughter candidate selections

πpT(GeV/c) 0.2-1.2

DCA betweenπ±and primary vertex (cm) >0.1 3He p

T(GeV/c) ≥1.8

DCAtracks(cm) <0.7

Hypertriton candidate selections

cos(θpointing) ≥0.995

|y| ≤0.8

pT(GeV/c) 2–9

The daughter tracks are selectedin the pseudorapidity region

|

η

|

<

0.9andarerequiredtohaveatleast70clustersout of159 intheTPC,inordertoguaranteearesolution

σ

betterthan5% on track momentum andof about6% for the dE/dx [26]. Moreover, the

χ

2perTPCclusterisrequiredtobelessthan5andtrackswith

kink topologies are rejected. The particle identification (PID) of the daughters(3He, 3He,

π

±) isperformedfollowingthemethod

described in [33], which is used in many analyses of the ALICE Collaboration.Itisbasedonthedifferencebetweenthemeasured andtheexpecteddE/dx foraselectedparticlespeciesnormalized totheenergylossresolutioninthedetector,

σ

forshort,andis re-ferred toasthen

σ

methodinthisletter.Inparticular,an

|

n

σ

| ≤

3isrequired,inatrack-by-trackapproach,withrespecttothe ex-pected

π

and3He specificenergy lossinthe TPC. Thepions can

beidentifieduptoamomentumofabout1.2GeV/c,beyondwhich there isconsiderablecontamination fromkaons andprotons.The

3He, havinga charge of z

=

2e, can beidentified cleanly upto 7

GeV/c. The 3He is alsoproduced in the detectormaterial due to spallation.Theseare producedatlow transversemomenta,as re-ported by the ALICEexperiment [34]. As a consequence the 3He

candidateisrequiredtohaveatransversemomentum(pT)greater

than1.8GeV/c,wherethespallationprocessesarenegligible. The3

H and3H candidatesareselectedbyapplyingtopological

and kinematic selection criteriaon the decay products. The dis-tanceofclosestapproach (DCA)betweenthetwodaughtertracks andtheDCAof

π

±tracksfromtheprimaryvertexarerequiredto belowerthan0.7cmandlargerthan0.1cmrespectively.The can-didates areselected whosecosineof theanglebetweenthe total momentumofthedaughtertracksatthesecondaryvertexandthe vectorconnectingtheprimaryandsecondaryvertex(pointing an-gle)islargerthan0.995.Twoadditionalselectionsonthe3H and

3

H rapidity (

|

y

|

<

0.8) andtransverse momentum (2

<

pT

<

9

GeV/c) are applied. Allthe selection criteriapreviously described havebeenstudiedwithadedicatedMonteCarloproduction,in or-der to improvethebackground rejection,andare summarizedin Table1.

The sample of3

H and 3H candidatesis divided in fourct

=

M Lc/p intervals for the lifetime determination, where c is the speedoflight,t isthepropertimeofthecandidate,M isthemass ofthecandidate,L isthedecaydistanceandp isthereconstructed momentum. Themass M of thehypertriton isobtainedfromthe measured values of massof p, n and



[14] andof the binding energy[11],andhasbeenfixedatM

=

2

.

99116

±

0

.

00005 GeV/c2. Thefourct intervalsare 4

ct

<

7 cm,7

ct

<

10 cm,10

ct

<

(3)

Fig. 1. Invariantmassdistributionof(3He,π)and(3He,π+)forthefourct intervalsusedtodeterminethe3 H and

3

H lifetime.Thesolidbluecurverepresentsthe functionusedtoperformthefitandthereddashedcurverepresentsthebackgroundcomponent.

15 cmand15

ct

<

28 cm.Thecorrespondinginvariantmass dis-tributions are shownin Fig.1 andare fitted, ineach ct interval, withafunctionwhichisthesumofaGaussian,usedtointerpolate the signal, and a second order polynomial, used to describe the background. The fit is performed using the maximum-likelihood estimateandthefitfunctionisrepresentedasasolidblueline.

From the fit, the mean values

μ

and the widths

σ

of each distributionareextracted. Inparticular,thesignal widthisinthe range1.7–2.1 MeV/c2,depending onthe ct interval,andisdriven bythedetectorresolution.Therawyieldofthesignalisdefinedas theintegraloftheGaussianfunctionina

±

3

σ

regionaroundthe meanvalueabovethebackground.Thesignificanceofthesignalin thefourct intervalsvariesintherange3.1–4.9.

The yield is corrected in each ct bin for the detector accep-tance,thereconstruction efficiencyandtheabsorption ofthe3H (3

H)inthedetectormaterial.Theefficiency

×

acceptanceis

deter-minedwithadedicatedMonteCarlosimulation,wherethe3 H and 3

H are injectedontopofaHIJING event[35] andare allowedto

decayintochargedtwo-bodyandthree-bodyfinalstates.The sim-ulatedparticles arepropagatedthrough theALICEdetectorsusing theGEANT3transportcode[36] andthenreconstructedfollowing thesameprocedureasadoptedforthedata.

Theaforementionedtransport codedoesnot properlydescribe the interactions of the (anti-)(hyper-)nuclei with the material of

the apparatus. Thus, acorrection factor forthe absorptionof 3 H

(3

H) and

3He (3He) isestimated, based onthe p (p) absorption

probabilitymeasuredintheALICEdetector[37].Theusage ofthis experimental measurement offers the advantage of taking auto-maticallyintoaccount thecrosssection andtheeffectivematerial of the detector crossed by a charged particle. The same absorp-tion probability forprotons and neutrons hasbeen assumedand the3He(3He)hasbeenconsideredasastateofthreeindependent p (p)asverified in[10]. Theabsorption probability,computedas the third powerof that of one proton,goesfrom 11% atlow pT

to 6% athigh pT for3He while it isconstant at6% for 3He.The

evaluationof the3H (3

H) absorption probability isdone

follow-ing the same approach. However, to take into account the small



separationenergy(B

=

0

.

13

±

0

.

05 MeV[11]),the3H

absorp-tion cross-sectionis increasedby 50% withrespectto theone of the 3He [38,39], as described in the ALICE measurement in Pb–

Pbcollisionsat

sNN

=

2

.

76 TeV[10].Thisleadstoanabsorption

probabilitybetween16% and9% for3

H asafunctionof pT while

itisconstantat9% for3

H.Thecorrectionfactortobeappliedis: k

=

kabs,3

H

+ (

1

kabs,3H

)

kabs,3He (1)

where kabs,3

H is the probability that the

3

H is absorbed

(4)

Fig. 2. Efficiency×acceptance asa functionofct for 3

H (redsquare),3H (blue square)and3

H+3H (blackopencircle)inthesamect intervalsselectedforthe rawyieldsextraction.

the probability that the daughter 3He is absorbed between the

secondary vertex and the TPC inner wall. For each ct interval, the efficiency x acceptance has been calculated using the ab-sorption corrected numbers of reconstructed 3H and 3

H. Fig. 2

shows the efficiency

×

acceptance (black marker) which is used forthe lifetime determination andis obtained by combining 3H and 3

H after the absorption correction is applied. This

distribu-tion is alsoshown separately for 3

H and 3H and the difference

is dueto the absorption correction which is bigger forthe anti-matter.

The main sources of systematic uncertainties on each ct bin usedforthe lifetimeevaluationaretheabsorptioncorrection,the singletrackefficiencyandtheuncertaintyonthedetectormaterial budget.Thesystematicuncertaintyontheabsorptioncorrectionis mainlyduetotheassumptionusedforthe3

H (3H)cross-section.

Thisuncertaintyisevaluatedby varyingthisassumptionbetween alowerandanupperlimit.Thefirstoneisobtainedbysettingthe

3 H (

3

H) cross-section equal to the

3He (3He) absorption

cross-section and the second one as twice the 3He (3He) absorption cross-section.Thisleads to an uncertaintyof5.2% for each ct in-terval,asreportedinTable2.

The second source ofsystematic uncertainty is relatedto the material budget description inthe simulation. An uncertaintyon theknowledgeoftheALICEdetectormaterialbudgetof4.5% was determinedinapreviousstudy[26].Thesystematicuncertaintyis estimated usingtwo dedicated Monte Carloproductions, varying thematerialbudgetaccordingly,andamountsto1% fortheyields inallct intervals.

The systematic uncertainty due to the single-track efficiency andthedifferentchoices ofthetrackquality selectionshasbeen investigated[40] andamountsto4%. Fortheanalysisofthe two-bodydecayof3H anuncertaintyof8% isassumedinallct inter-vals. The summary of thesystematic uncertainties is reportedin Table2,wherethetotaluncertaintyisobtainedassumin quadra-tureofeachcontributionoftheindividualsources.

ThecorrecteddN/d(ct) spectrumisshowninFig. 3wherethe blue markers are the corrected yield withtheir statistical uncer-tainty,whiletheboxrepresentsthesystematicuncertainty.

Thelifetimeisdeterminedwithanexponentialfit(redline)and thesloperesultsinaproperdecaylengthofc

τ

=

7

.

25+1.021.13 (stat.)

±

0.51 (syst.) cm,corresponding to a lifetime

τ

=

242+3438 (stat.)

±

17(syst.) ps. Thesystematic uncertaintyforthe lifetimevalue

Table 2

Summary ofthe systematic uncertainties usedin the lifetimeanalysis.Thetotaluncertaintyassignedineach

ct intervalisthesuminquadratureofthesinglesources. Systematic uncertainties

Source Value

Absorption 5.2%

Material budget 1%

Single track efficiency 8%

Total 9.5%

Fig. 3. CorrecteddN/d(ct)spectrumfittedwithanexponentialfunction(redline) usedtoextractthe(3

H+ 3

H)lifetime.Thebarsandboxesrepresentthestatistical andsystematicuncertainties,respectively.

isdeterminedbyassumingthesystematicuncertaintiesineachct intervalasuncorrelated.

3.1. Unbinnedfitmethodforlifetimeextraction

In order to enforce the result described in Sec. 3, an addi-tionalanalysisonthesamedatasamplehasbeencarriedoutthat reliesonatwo-dimensional(invariantmassvs.ct)unbinnedfit ap-proach.Themethodcanbesummarizedinthreesteps:i)fittothe ct-integratedinvariantmassdistribution;ii)tunethefunctionused todescribethecombinatorialbackground;iii)fittothect distribu-tion withafunction whichisthe sumof threeexponentials, one todescribethesignalandtwotodescribethebackground.

The firststep isperformedwithafunction that isthesumof a Gaussian,forthesignal, andasecond orderpolynomial,forthe background. The mean value

μ

and the

σ

are 2.9913

±

0.0004 GeV/c2 and 0.0020

±

0.0005 GeV/c2 respectively and are used

to define theboundaries ofthe signal region andthe sidebands, which correspond to the intervals

μ

±

3

σ

and

±

3

σ

to

±

9

σ

withrespecttothemeanvalue,respectively.

The second step consists in fitting the ct distribution of the background inthe sidebands usinga function that isthe sumof two exponentials. Thefitis performedsimultaneouslyinthetwo sidebandregions withtheROOFITpackage [41].The resultisthen used asbackground parameterizationforthe fit inthe signal re-gion.

The(3H

+

3

H)lifetimemeasurementisobtainedby

perform-ing the unbinned fit to the ct distribution in the signal region. The total probability densityfunction used forthefit is thesum ofthetwoexponentials(background)andtheexponentialadopted toreproduce thesignal.Sincethect distributionisunbinned,the efficiency

×

acceptancecorrection,evaluatedasdescribed inSec.3, is parametrized with a polynomial plus an exponential and it is

(5)

Fig. 4. Lifetimevalueτdeterminedfromtheminimizationofthelog-likelihoodratio –log(λ(τ)).Thestatisticaluncertaintyisevaluatedataconfidencelevelof68% (red dashedlines)withthelog-likelihoodratio(blueline).

usedtoscalethesignalfunction.Theobservedsignal distribution is described as the product of the function used for the signal andthe efficiencyparametrization. Thus, the lifetime isobtained withthe unbinnedmaximum-likelihoodestimate(MLE)fit tothe ct distribution,performedinthesignalregion,leadingtoavalueof

τ

=

240+4031(stat.)

±

18(syst.)ps,asreportedinFig.4.The statis-ticaluncertaintyofthemeasurementisassessedbyprovidingthe intervaloftheestimated

τ

[42],ataconfidencelevelof68%,which isrepresentedbythereddashedlines,basedonthelog-likelihood ratio (log

λ(

τ

)

), shown as a blue line. The result corresponds to aproperdecaylength c

τ

=

7

.

20+1.200.93(stat.)

±

0.54 (syst.) cm.The sources of systematicuncertainties are the sameas described in Sec.3(Table2)andcontributetoatotalsystematicuncertaintyof 9.5% ontheestimatedlifetime.

The value obtained with this approach is in good agreement within1

σ

withthelifetimeestimationobtainedwiththemethod describedinSec.3,whichweconsiderasthefinalvalueforthe3

H

lifetime.Additionalfiguresanddetailsfortheunbinnedfitmethod arepresentedin[43].

4. Discussionandconclusions

Thanks to the large data sample of heavy-ion collisions at

sNN

=

5

.

02 TeVprovidedbytheLHCandtotheexcellenttracking

andparticleidentificationperformance oftheALICEapparatuswe havedeterminedaprecisevalueforthe3H lifetime.Themeasured

τ

=

242+3438(stat.)

±

17(syst.)ps isshownasafullred diamond inFig.5together withother experimental resultsandtheoretical estimates.

Early experiments [15–20] were performed with visualizing techniques,namely photographic emulsion and3He filled bubble chambers,wherethetracksformedduetopassageofcharged par-ticles were recorded visually. Most ofthe results obtainedusing thesetechniques hadlarge uncertainties due to the limited size ofthedatasample atdisposal.Furthermore,thesemeasurements preventedadefinite conclusion onthe agreementwiththe theo-retical predictions, whichforesee a lifetimecloseto the value of thefree



hyperon. Itisworthwhiletonote thatthe small bind-ingenergyofthehypertritonmakesthe



spendmostofthetime farfromthedeuteron corethereby not affectingthelifetimedue toY-Ninteraction.

The recent determination of the lifetime

τ

of (anti-)3H of 182+8945 (stat.)

±

27(syst.) ps,measured forthefirst timeinAu–

Aucollisionsviatwo-bodydecaybytheSTARexperimentatRHIC [8], revived the interest for a more precise determination of the lifetime. The HypHI Collaborationat GSI reporteda value of

τ

=

183+4232(stat.)

±

37(syst.)ps[9],whichwas obtainedbystudying the projectilefragmentationof 6Liat2AGeV on acarbontarget.

Very recently,the ALICEexperiment atthe LHCmeasured a life-time value

τ

=

181+5438(stat.)

±

33 (syst.) ps [10] using the data fromPb–Pbcollisions at

sNN

=

2

.

76 TeV and theinvariant mass

analysisof the two-bodydecaychannel. The average value ofall resultsavailable upto2016was

τ

=

215+1816 ps [10],muchlower thanthetheoreticalestimates,motivatingtheneedfora measure-mentwithimprovedprecision.TheSTARCollaborationperformed a newanalysis[22] combiningthetwo-body andthethree-body decay channels usingthe datasample of the RHIC beam energy scan, resultinginaneven lowervalue of

τ

=

142+2421 (stat.)

±

29 (syst.) ps.The ALICECollaborationexploitedthe datacollected in Pb–Pb collisions at

sNN

=

5

.

02 TeV to carry out a newanalysis

ofthetwo-bodydecaychannel,reportedinthisletter.Thesetwo mostrecentvalues arereported inFig.5. Thenewmeasurement bySTARyieldsaverylowvalueascomparedtothelifetimeofthe free



, while theresult presented inthis paperis in agreement withthetheoretical predictionsandit ischaracterized byan im-provedprecision withrespecttoprevious experiments.Thisvalue isalsoinagreementwiththepreviousALICEresult[10] obtained by analyzingthe datasample ofPb–Pb collisions at

sNN

=

2

.

76

TeV.

Besidestheexperimentalresults,thetheoreticalpredictionsfor the 3H lifetime are reported in Fig. 5 for comparison with the data. The calculation performed by Dalitz and Rayet [23], repre-sented with a dot-long dashed cyan line, took into account the phasespacefactorsandthePauliprinciple,includingalso correc-tionstoaccountforfinalstatepionscatteringandthenon-mesonic weak decaychannel. More recently,a prediction forthe 3H life-time quitecloseto theoneofthe free



hyperonwas published by Congleton [24] (dashed green line in Fig. 5), obtained using updatedvaluesforN–NandY–Npotentials.Thepredictionby Ka-mada et al.[7] (dotted-dashed blue line) was performed witha rigorousdeterminationofthe hypernucleuswave function andof thethreenucleonsscatteringstates,thusfindingavalueof256ps, whichistheclosesttothefree



lifetimevalue.Recently,Garcilazo andGalperformedacalculation[44] usingthewavefunction gen-erated by solving three-body Faddeev equations and adding the final-stateinteractions of thepions. Theirpredictionof213 ps is shownasadottedpurpleline.

Astatisticalcombinationofalltheexperimentalresults, includ-ing the most recent values determined by the STAR and ALICE experiment, leads to a world average of

τ

=

206+1513 ps for the

3

H lifetimeandisrepresentedwithanorangeband inFig.5.The

methodusedforthisevaluationisthesameasdescribedin[10]. Furthermore world averages were calculated grouping the mea-surementsonthe basisofthe experimentaltechniques,obtaining

τ

visual

=

224+2320ps and

τ

HI

=

189+2220ps for the visualizing

tech-niques andthe heavy-ion experiments,respectively. These values areconsistentandinagreement,alsowiththeworldaverage,and this suggests that the results are not affected by the technique usedforthemeasurement.

Despite the addition of two recent high precision measure-ments of the 3H lifetime, one well below and the other closer to the theoretical predictions, the situation has hardly changed with the current world average, now more than 3

σ

below the lifetime of the free



hyperon. In the future a very large data samplewillbecollectedwithheavy-ioncollisionsduringLHCRun 3(2021-2023) andRun4 (2027-2029)[45].At theendofRun4, ALICEexpectsto reducethestatisticaluncertaintyonthelifetime down to1% andsignificantly improvethe systematicuncertainty,

(6)

Fig. 5. Collectionofthe3

H lifetimemeasurementsobtainedwithdifferentexperimentaltechniques.Theverticallinesandboxesarethestatisticalandsystematic uncertain-tiesrespectively.Theorangebandrepresentstheaverageofthelifetimevaluesandthelinesattheedgecorrespondto1σ uncertainty.Thedashed-dottedlinesarefour theoreticalpredictions.

which at presentis 9.5%. Furthermore, it would be beneficial in viewofamoresolid comparisonwiththetheoreticalpredictions, tohave newmeasurements performedatlower energies atRHIC and SIS and by using different experimental techniques at the J-PARC and MAMI facilities. A measurement of the lifetime to a precisionofafewpercentwillguideandconstrainthetheoretical inputleading toamoreprecisedeterminationoftheY-N interac-tion,eventuallycontributingtosolvingthehyperonpuzzle.

Acknowledgements

The ALICE Collaboration would like to thank all its engineers andtechnicians fortheir invaluablecontributionstothe construc-tion of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collab-oration gratefully acknowledges the resources and support pro-videdbyall GridcentresandtheWorldwide LHCComputingGrid (WLCG) collaboration. The ALICE Collaboration acknowledges the followingfundingagencies fortheirsupport inbuildingand run-ningtheALICEdetector: A.I. AlikhanyanNationalScience Labora-tory(YerevanPhysicsInstitute)Foundation(ANSL),State Commit-teeofScienceandWorldFederationofScientists(WFS),Armenia; Austrian Academy of Sciences, Austrian Science Fund (FWF): [M 2467-N36] and Nationalstiftung für Forschung, Technologie und Entwicklung,Austria; MinistryofCommunicationsandHigh Tech-nologies, National Nuclear Research Center, Azerbaijan; Conselho NacionaldeDesenvolvimentoCientíficoeTecnológico(CNPq), Uni-versidadeFederal doRioGrande doSul(UFRGS), Financiadorade Estudos e Projetos (Finep) and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Brazil; Ministry of Science & Technology of China (MSTC), National Natural Science Founda-tionof China(NSFC) andMinistryof EducationofChina (MOEC), China; Croatian Science Foundation and Ministry of Science and Education, Croatia; Centro de Aplicaciones Tecnológicas y Desar-rollo Nuclear (CEADEN), Cubaenergía, Cuba; Ministry of Educa-tion, Youth and Sports of the Czech Republic, Czech Republic; The Danish Council forIndependent Research| Natural Sciences, the Carlsberg Foundation and Danish National Research Founda-tion (DNRF), Denmark; Helsinki Institute of Physics (HIP), Fin-land; Commissariat à l’Energie Atomique (CEA), Institut National de Physique Nucléaire et de Physique des Particules (IN2P3) and

Centre National de la Recherche Scientifique (CNRS) and Région des Pays de laLoire, France; Bundesministerium für Bildung und Forschung (BMBF) and GSI Helmholtzzentrum für Schwerionen-forschung GmbH, Germany; General Secretariat forResearch and Technology,MinistryofEducation,ResearchandReligions,Greece; National Research, Development and Innovation Office, Hungary; Department of Atomic Energy, Government of India (DAE), De-partment of Science andTechnology, Governmentof India (DST), University Grants Commission, Government of India (UGC) and Council ofScientific andIndustrialResearch(CSIR), India; Indone-sianInstituteofSciences,Indonesia;CentroFermi- MuseoStorico della Fisica e Centro Studi e Ricerche Enrico Fermi and Istituto Nazionale di Fisica Nucleare (INFN), Italy; Institute for Innova-tive ScienceandTechnology,NagasakiInstituteofAppliedScience (IIST),Japan SocietyforthePromotion ofScience(JSPS)KAKENHI and Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan; Consejo Nacional de Ciencia y Tec-nología(CONACYT) throughFondodeCooperaciónInternacionalen CienciayTecnología(FONCICYT)andDirecciónGeneraldeAsuntos delPersonalAcademico(DGAPA),Mexico;NederlandseOrganisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; The Re-search Council of Norway, Norway; Commission on Science and Technology forSustainableDevelopmentintheSouth(COMSATS), Pakistan; Ministryof Science andHigher Education andNational Science Centre,Poland;Korea InstituteofScience andTechnology InformationandNationalResearchFoundationofKorea(NRF), Re-publicofKorea;MinistryofEducationandScientificResearch, In-stituteofAtomic PhysicsandMinistryofResearchandInnovation andInstituteofAtomicPhysics,Romania;JointInstituteforNuclear Research(JINR), MinistryofEducationandScience oftheRussian Federation, National ResearchCentre KurchatovInstitute, Russian Science Foundation and Russian Foundation for Basic Research, Russia; Ministryof Education,Science, ResearchandSport ofthe Slovak Republic, Slovakia; NationalResearch Foundation of South Africa,SouthAfrica;SwedishResearchCouncil(VR)andKnut& Al-iceWallenbergFoundation(KAW),Sweden;EuropeanOrganization for Nuclear Research, Switzerland;National Science and Technol-ogy Development Agency (NSDTA), Suranaree University of Tech-nology(SUT)andOfficeoftheHigherEducationCommissionunder NRU projectofThailand,Thailand;TurkishAtomicEnergy Agency (TAEK),Turkey;NationalAcademyofSciencesofUkraine,Ukraine;

(7)

ScienceandTechnologyFacilitiesCouncil(STFC),UnitedKingdom; NationalScienceFoundationoftheUnitedStatesofAmerica(NSF) andUnitedStatesDepartmentofEnergy,OfficeofNuclearPhysics (DOENP),UnitedStatesofAmerica.

References

[1]E.Botta,T.Bressani,G.Garbarino,Strangenessnuclearphysics:acriticalreview onselectedtopics,Eur.Phys.J.A48(2012),arXiv:1203.5707 [nucl-ex]. [2]A.Gal,E.V.Hungerford,D.J.Millener,Strangenessinnuclearphysics,Rev.Mod.

Phys.88(2016),arXiv:1605.00557 [nucl-th].

[3]J.M.Lattimer, M.Prakash,The physicsofneutron stars,Science304(2004), arXiv:astro-ph/0405262 [astro-ph].

[4]J.Schaffner-Bielich,Hypernuclearphysicsforneutronstars,Nucl.Phys.A804 (2008),arXiv:0801.3791 [astro-ph].

[5]L.Tolos,M.Centelles,A.Ramos,Theequationofstateforthenucleonicand hyperoniccoreofneutronstars,Publ.Astron.Soc.Aust.34(2017),arXiv:1708. 08681 [astro-ph].

[6]R.H.Dalitz,G.Rajasekharan,Thespinsandlifetimesofthelighthypernuclei, Phys.Lett.1(1962).

[7]H.Kamada,J.Golak,K.Miyagawa,H.Witala,W.Gloeckle,π-mesonicdecayof thehypertriton,Phys.Rev.C57(1998),arXiv:nucl-th/9709035 [nucl-th]. [8]STARCollaboration,B.I.Abelev,etal.,Observationofanantimatter

hypernu-cleus,Science328(2010),arXiv:1003.2030 [nucl-ex].

[9]C.Rappold,etal.,Hypernuclearspectroscopyofproductsfrom6Liprojectiles onacarbontargetat2AGeV,Nucl.Phys.A913(2013),arXiv:1305.4871 [nucl -ex].

[10]ALICECollaboration,J.Adam,etal.,3

H and3H productioninPb–Pbcollisions

at√sNN=2.76 TeV,Phys.Lett.B754(2016),arXiv:1506.08453 [nucl-ex].

[11]D.H.Davis,50yearsofhypernuclearphysics:I.Theearlyexperiments,Nucl. Phys.A754(2005).

[12]P.Braun-Munzinger, B.Dönigus, Loosely-boundobjectsproducedinnuclear collisionsattheLHC,Nucl.Phys.A987(2019),arXiv:1809.04681 [nucl-ex]. [13]F.Hildenbrand,H.W. Hammer,Three-BodyHypernuclei inPionless Effective

FieldTheory,arXiv:1904.05818 [nucl-th].

[14]Particle Data Group Collaboration, M. Tanabashi, et al., Review of particle physics,Phys.Rev.D98(2018).

[15]R.J.Prem,P.H.Steinberg,LifetimesofHypernuclei,3 H, 4 H, 5 H,Phys.Rev.136 (1964).

[16]G.Keyes,M.Derrick,T.Fields,L.G.Hyman,J.G.Fetkovich,J.McKenzie,B.Riley, I.T.Wang,Newmeasurementofthe3

H lifetime,Phys.Rev.Lett.20(1968).

[17]R.E.Phillips,J. Schneps,Lifetimesoflighthyperfragments.II,Phys.Rev.180 (1969).

[18]G.Bohm,etal.,Onthelifetimeofthe3

H hypernucleus,Nucl.Phys.B16(1970),

Erratumibid16(1970)523.

[19]G.Keyes,M.Derrick,T.Fields,L.G.Hyman,J.G.Fetkovich,J.Mckenzie,B.Riley, I.-T.Wang,Propertiesof3

H,Phys.Rev.D1(1970).

[20]G.Keyes,J.Sacton,J.H.Wickens,M.M.Block,Ameasurementofthelifetimeof the3Hhypernucleus,Nucl.Phys.B67(1973).

[21]J.Chen,D.Keane,Y.-G.Ma,A.Tang,Z.Xu,Antinucleiinheavy-ioncollisions, Phys.Rep.760(2018),arXiv:1808.09619 [nucl-ex].

[22]STARCollaboration,L.Adamczyk,etal.,Measurementofthe3Hlifetimein

Au+Aucollisions atthe BNLrelativisticheavyion collider,Phys.Rev.C97 (2018),arXiv:1710.00436 [nucl-ex].

[23]R.Dalitz,M.Rayet,Lifetimeof3

H,IlNuovoCim.A46(1966).

[24]J.G.Congleton,Asimplemodelofthehypertriton,J.Phys.G18(1992). [25]ALICECollaboration,K.Aamodt,etal.,TheALICEexperimentattheCERNLHC,

J.Instrum.3(2008).

[26]ALICECollaboration,B.B.Abelev,etal.,PerformanceoftheALICEexperimentat theCERNLHC,Int.J.Mod.Phys.A29(2014),arXiv:1402.4476 [nucl-ex]. [27]ALICECollaboration,E.Abbas,etal.,PerformanceoftheALICEVZEROsystem,

J.Instrum.8(2013),arXiv:1306.3130 [nucl-ex].

[28]ALICE Collaboration, J. Adam,et al., Centrality dependence ofthe charged-particlemultiplicitydensityatmidrapidityinPb–Pbcollisionsat√sNN=5.02

TeV,Phys.Rev.Lett.116(2016),arXiv:nucl-ex/2118084.

[29]ALICECollaboration,K.Aamodt,etal.,AlignmentoftheALICEInnerTracking Systemwithcosmic-raytracks,J.Instrum.5(2010),arXiv:1001.0502 [physics. ins-det].

[30]J. Alme, et al.,The ALICE TPC, alarge 3-dimensionaltrackingdevice with fastreadoutforultra-highmultiplicityevents,Nucl.Instrum.MethodsA622 (2010),arXiv:1001.1950 [physics.ins-det].

[31]R.Frühwirth,ApplicationofKalmanfilteringtotrackandvertexfitting,Nucl. Instrum.MethodsA262(1987).

[32]ALICECollaboration,B.B.Abelev,etal.,K0

SandproductioninPb-Pbcollisions

at√sN N=2.76 TeV,Phys.Rev.Lett.111(2013),arXiv:1307.5530 [nucl-ex].

[33]ALICECollaboration,K.Aamodt,etal.,Strangeparticleproductionin proton-proton collisionsat√s=0.9 TeVwith ALICEattheLHC,Eur.Phys.J.C71 (2011),arXiv:1012.3257 [hep-ex].

[34]ALICECollaboration,J.Adam,etal.,Productionoflightnucleiandanti-nucleiin ppandPb-PbcollisionsatenergiesavailableattheCERNLargeHadronCollider, Phys.Rev.C93(2016),arXiv:1506.08951 [nucl-ex].

[35]X.-N.Wang,M.Gyulassy,HIJING:aMonteCarlomodelformultiplejet produc-tioninpp,p–AandA–Acollisions,Phys.Rev.D44(1991).

[36]R.Brun,F.Bruyant,F.Carminati,S.Giani,M.Maire,A.McPherson,G.Patrick, L.Urban,GEANT:DetectorDescriptionandSimulationTool,CERNProgram Li-braryLongWrite-up,vol. W5013,1994.

[37]ALICECollaboration,E.Abbas,etal.,Mid-rapidityanti-baryontobaryonratios inppcollisionsat√s=0.9,2.76and7TeVmeasuredbyALICE,Eur.Phys.J.C 73(2013),arXiv:1305.1562 [nucl-ex].

[38]M.Evlanov,A.Sokolov,V.Tartakovsky,S.Khorozov,J.Lukstins,Interactionof hypertritonswithnucleiathighenergies,Nucl.Phys.A632(1998).

[39]S.Kox,A.Gamp,C.Perrin,J.Arvieux,R.Bertholet,J.Bruandet,M.Buenerd,Y.E. Masri,N.Longequeue,F.Merchez,Transparencyeffectsinheavy-ioncollisions overtheenergyrange100-300MeV/nucleon,Phys.Lett.B159(1985). [40]ALICECollaboration,S.Acharya,etal.,Transversemomentumspectraand

nu-clearmodificationfactorsofchargedparticlesinpp,p-PbandPb-Pbcollisions attheLHC,J.HighEnergyPhys.11(2018),arXiv:1802.09145 [nucl-ex]. [41] V.Verkerke,D.Kirkby,RooFitUserManual,v2.91,2008.

[42]S.S.Wilks,Thelarge-sampledistributionofthelikelihoodratiofortesting com-positehypotheses,Ann.Math.Stat.9(1938).

[43] ALICECollaboration,Supplementalfigures:3Hand 3

H lifetimemeasurement inPb-Pbcollisionsat √sN N=5.02 TeV viatwo-bodydecay,

ALICE-PUBLIC-2019-003,https://cds.cern.ch/record/2682029,2019. [44]A.Gal,H.Garcilazo,Towardsresolvingthe3

Hlifetimepuzzle,Phys.Lett.B791

(2019),arXiv:1811.03842 [nucl-th].

[45]Z.Citron,etal.,Futurephysicsopportunitiesforhigh-densityQCDattheLHC with heavy-ionand protonbeams,in: HL/HE-LHCWorkshop:Workshopon thePhysicsofHL-LHC,andPerspectivesatHE-LHC,Geneva,Switzerland,June 18–20,2018,2018,arXiv:1812.06772 [hep-ph].

ALICECollaboration

S. Acharya

141

,

D. Adamová

93

,

S.P. Adhya

141

,

A. Adler

73

,

J. Adolfsson

79

, M.M. Aggarwal

98

,

G. Aglieri Rinella

34

, M. Agnello

31

,

N. Agrawal

10

,

48

,

53

, Z. Ahammed

141

, S. Ahmad

17

,

S.U. Ahn

75

,

A. Akindinov

90

,

M. Al-Turany

105

,

S.N. Alam

141

,

D.S.D. Albuquerque

122

,

D. Aleksandrov

86

,

B. Alessandro

58

,

H.M. Alfanda

6

,

R. Alfaro Molina

71

,

B. Ali

17

,

Y. Ali

15

,

A. Alici

10

,

27

,

53

,

A. Alkin

2

,

J. Alme

22

, T. Alt

68

,

L. Altenkamper

22

,

I. Altsybeev

112

,

M.N. Anaam

6

,

C. Andrei

47

,

D. Andreou

34

,

H.A. Andrews

109

,

A. Andronic

144

,

M. Angeletti

34

, V. Anguelov

102

,

C. Anson

16

,

T. Antiˇci ´c

106

,

F. Antinori

56

,

P. Antonioli

53

, R. Anwar

125

,

N. Apadula

78

, L. Aphecetche

114

,

H. Appelshäuser

68

,

S. Arcelli

27

, R. Arnaldi

58

, M. Arratia

78

,

I.C. Arsene

21

,

M. Arslandok

102

,

A. Augustinus

34

,

R. Averbeck

105

,

S. Aziz

61

, M.D. Azmi

17

,

A. Badalà

55

, Y.W. Baek

40

,

S. Bagnasco

58

,

X. Bai

105

,

R. Bailhache

68

,

R. Bala

99

,

A. Baldisseri

137

, M. Ball

42

,

S. Balouza

103

,

R.C. Baral

84

, R. Barbera

28

,

L. Barioglio

26

,

G.G. Barnaföldi

145

,

L.S. Barnby

92

,

V. Barret

134

, P. Bartalini

6

,

K. Barth

34

, E. Bartsch

68

,

F. Baruffaldi

29

,

N. Bastid

134

,

(8)

C. Bedda

63

,

N.K. Behera

60

,

I. Belikov

136

, F. Bellini

34

, R. Bellwied

125

, V. Belyaev

91

,

G. Bencedi

145

,

S. Beole

26

,

A. Bercuci

47

,

Y. Berdnikov

96

,

D. Berenyi

145

,

R.A. Bertens

130

,

D. Berzano

58

,

M.G. Besoiu

67

,

L. Betev

34

,

A. Bhasin

99

,

I.R. Bhat

99

,

M.A. Bhat

3

,

H. Bhatt

48

,

B. Bhattacharjee

41

, A. Bianchi

26

,

L. Bianchi

26

,

N. Bianchi

51

, J. Bielˇcík

37

, J. Bielˇcíková

93

,

A. Bilandzic

103

,

117

,

G. Biro

145

,

R. Biswas

3

,

S. Biswas

3

,

J.T. Blair

119

, D. Blau

86

, C. Blume

68

,

G. Boca

139

,

F. Bock

34

,

94

,

A. Bogdanov

91

,

L. Boldizsár

145

,

A. Bolozdynya

91

,

M. Bombara

38

, G. Bonomi

140

,

H. Borel

137

,

A. Borissov

91

,

144

,

M. Borri

127

,

H. Bossi

146

,

E. Botta

26

,

L. Bratrud

68

, P. Braun-Munzinger

105

, M. Bregant

121

,

T.A. Broker

68

,

M. Broz

37

, E.J. Brucken

43

,

E. Bruna

58

,

G.E. Bruno

33

,

104

,

M.D. Buckland

127

,

D. Budnikov

107

,

H. Buesching

68

,

S. Bufalino

31

,

O. Bugnon

114

,

P. Buhler

113

,

P. Buncic

34

, Z. Buthelezi

72

,

J.B. Butt

15

, J.T. Buxton

95

,

S.A. Bysiak

118

,

D. Caffarri

88

,

A. Caliva

105

,

E. Calvo Villar

110

,

R.S. Camacho

44

,

P. Camerini

25

, A.A. Capon

113

,

F. Carnesecchi

10

, J. Castillo Castellanos

137

,

A.J. Castro

130

, E.A.R. Casula

54

,

F. Catalano

31

,

C. Ceballos Sanchez

52

,

P. Chakraborty

48

,

S. Chandra

141

, B. Chang

126

,

W. Chang

6

,

S. Chapeland

34

,

M. Chartier

127

,

S. Chattopadhyay

141

, S. Chattopadhyay

108

, A. Chauvin

24

, C. Cheshkov

135

,

B. Cheynis

135

,

V. Chibante Barroso

34

,

D.D. Chinellato

122

, S. Cho

60

, P. Chochula

34

,

T. Chowdhury

134

,

P. Christakoglou

88

,

C.H. Christensen

87

, P. Christiansen

79

, T. Chujo

133

,

C. Cicalo

54

,

L. Cifarelli

10

,

27

, F. Cindolo

53

,

J. Cleymans

124

,

F. Colamaria

52

, D. Colella

52

,

A. Collu

78

, M. Colocci

27

,

M. Concas

58

,

ii

,

G. Conesa Balbastre

77

, Z. Conesa del Valle

61

,

G. Contin

59

,

127

,

J.G. Contreras

37

,

T.M. Cormier

94

,

Y. Corrales Morales

26

,

58

,

P. Cortese

32

,

M.R. Cosentino

123

, F. Costa

34

, S. Costanza

139

,

J. Crkovská

61

,

P. Crochet

134

,

E. Cuautle

69

,

P. Cui

6

,

L. Cunqueiro

94

,

D. Dabrowski

142

,

T. Dahms

103

,

117

,

A. Dainese

56

,

F.P.A. Damas

114

,

137

,

S. Dani

65

,

M.C. Danisch

102

, A. Danu

67

, D. Das

108

,

I. Das

108

,

P. Das

3

,

S. Das

3

,

A. Dash

84

, S. Dash

48

,

A. Dashi

103

,

S. De

49

,

84

,

A. De Caro

30

,

G. de Cataldo

52

,

C. de Conti

121

,

J. de Cuveland

39

,

A. De Falco

24

, D. De Gruttola

10

, N. De Marco

58

,

S. De Pasquale

30

,

R.D. De Souza

122

,

S. Deb

49

,

H.F. Degenhardt

121

,

K.R. Deja

142

, A. Deloff

83

,

S. Delsanto

26

,

131

,

D. Devetak

105

,

P. Dhankher

48

,

D. Di Bari

33

,

A. Di Mauro

34

, R.A. Diaz

8

,

T. Dietel

124

,

P. Dillenseger

68

,

Y. Ding

6

,

R. Divià

34

,

Ø. Djuvsland

22

,

U. Dmitrieva

62

,

A. Dobrin

34

,

67

,

B. Dönigus

68

,

O. Dordic

21

,

A.K. Dubey

141

, A. Dubla

105

,

S. Dudi

98

,

M. Dukhishyam

84

,

P. Dupieux

134

, R.J. Ehlers

146

, D. Elia

52

,

H. Engel

73

, E. Epple

146

,

B. Erazmus

114

,

F. Erhardt

97

,

A. Erokhin

112

,

M.R. Ersdal

22

,

B. Espagnon

61

, G. Eulisse

34

,

J. Eum

18

,

D. Evans

109

,

S. Evdokimov

89

,

L. Fabbietti

103

,

117

, M. Faggin

29

,

J. Faivre

77

,

F. Fan

6

,

A. Fantoni

51

,

M. Fasel

94

,

P. Fecchio

31

,

A. Feliciello

58

,

G. Feofilov

112

,

A. Fernández Téllez

44

, A. Ferrero

137

,

A. Ferretti

26

,

A. Festanti

34

,

V.J.G. Feuillard

102

,

J. Figiel

118

,

S. Filchagin

107

,

D. Finogeev

62

,

F.M. Fionda

22

,

G. Fiorenza

52

,

F. Flor

125

, S. Foertsch

72

,

P. Foka

105

,

S. Fokin

86

,

E. Fragiacomo

59

,

U. Frankenfeld

105

,

G.G. Fronze

26

,

U. Fuchs

34

,

C. Furget

77

,

A. Furs

62

, M. Fusco Girard

30

, J.J. Gaardhøje

87

,

M. Gagliardi

26

,

A.M. Gago

110

, A. Gal

136

,

C.D. Galvan

120

,

P. Ganoti

82

,

C. Garabatos

105

,

E. Garcia-Solis

11

,

K. Garg

28

,

C. Gargiulo

34

, A. Garibli

85

,

K. Garner

144

,

P. Gasik

103

,

117

, E.F. Gauger

119

, M.B. Gay Ducati

70

,

M. Germain

114

, J. Ghosh

108

, P. Ghosh

141

,

S.K. Ghosh

3

,

P. Gianotti

51

,

P. Giubellino

58

,

105

,

P. Giubilato

29

,

P. Glässel

102

,

D.M. Goméz Coral

71

,

A. Gomez Ramirez

73

, V. Gonzalez

105

,

P. González-Zamora

44

,

S. Gorbunov

39

,

L. Görlich

118

, S. Gotovac

35

,

V. Grabski

71

,

L.K. Graczykowski

142

,

K.L. Graham

109

,

L. Greiner

78

, A. Grelli

63

,

C. Grigoras

34

,

V. Grigoriev

91

,

A. Grigoryan

1

,

S. Grigoryan

74

,

O.S. Groettvik

22

,

J.M. Gronefeld

105

,

F. Grosa

31

,

J.F. Grosse-Oetringhaus

34

,

R. Grosso

105

,

R. Guernane

77

, B. Guerzoni

27

,

M. Guittiere

114

,

K. Gulbrandsen

87

,

T. Gunji

132

, A. Gupta

99

,

R. Gupta

99

,

I.B. Guzman

44

,

R. Haake

146

,

M.K. Habib

105

, C. Hadjidakis

61

,

H. Hamagaki

80

,

G. Hamar

145

,

M. Hamid

6

,

R. Hannigan

119

,

M.R. Haque

63

,

A. Harlenderova

105

,

J.W. Harris

146

,

A. Harton

11

,

J.A. Hasenbichler

34

, H. Hassan

77

,

D. Hatzifotiadou

10

,

53

, P. Hauer

42

,

S. Hayashi

132

,

A.D.L.B. Hechavarria

144

,

S.T. Heckel

68

,

E. Hellbär

68

,

H. Helstrup

36

, A. Herghelegiu

47

,

E.G. Hernandez

44

,

G. Herrera Corral

9

, F. Herrmann

144

, K.F. Hetland

36

,

T.E. Hilden

43

,

H. Hillemanns

34

,

C. Hills

127

,

B. Hippolyte

136

,

B. Hohlweger

103

,

D. Horak

37

,

S. Hornung

105

, R. Hosokawa

16

,

133

,

P. Hristov

34

,

C. Huang

61

,

C. Hughes

130

,

P. Huhn

68

,

T.J. Humanic

95

,

H. Hushnud

108

,

L.A. Husova

144

,

N. Hussain

41

, S.A. Hussain

15

,

T. Hussain

17

, D. Hutter

39

,

D.S. Hwang

19

,

J.P. Iddon

34

,

127

,

R. Ilkaev

107

,

M. Inaba

133

, M. Ippolitov

86

,

M.S. Islam

108

,

M. Ivanov

105

,

V. Ivanov

96

,

V. Izucheev

89

, B. Jacak

78

, N. Jacazio

27

,

P.M. Jacobs

78

,

M.B. Jadhav

48

,

S. Jadlovska

116

,

J. Jadlovsky

116

,

S. Jaelani

63

,

C. Jahnke

121

,

M.J. Jakubowska

142

,

M.A. Janik

142

,

M. Jercic

97

,

O. Jevons

109

,

R.T. Jimenez Bustamante

105

,

M. Jin

125

, F. Jonas

94

,

144

,

P.G. Jones

109

,

A. Jusko

109

,

P. Kalinak

64

,

(9)

P. Karczmarczyk

34

,

E. Karpechev

62

,

U. Kebschull

73

,

R. Keidel

46

,

M. Keil

34

,

B. Ketzer

42

, Z. Khabanova

88

,

A.M. Khan

6

,

S. Khan

17

,

S.A. Khan

141

,

A. Khanzadeev

96

, Y. Kharlov

89

,

A. Khatun

17

, A. Khuntia

49

,

118

,

B. Kileng

36

,

B. Kim

60

,

B. Kim

133

,

D. Kim

147

,

D.J. Kim

126

, E.J. Kim

13

, H. Kim

147

, J. Kim

147

,

J.S. Kim

40

,

J. Kim

102

,

J. Kim

147

,

J. Kim

13

,

M. Kim

102

,

S. Kim

19

,

T. Kim

147

,

T. Kim

147

,

S. Kirsch

39

, I. Kisel

39

,

S. Kiselev

90

, A. Kisiel

142

,

J.L. Klay

5

, C. Klein

68

,

J. Klein

58

, S. Klein

78

,

C. Klein-Bösing

144

,

S. Klewin

102

,

A. Kluge

34

,

M.L. Knichel

34

,

A.G. Knospe

125

,

C. Kobdaj

115

,

M.K. Köhler

102

, T. Kollegger

105

,

A. Kondratyev

74

,

N. Kondratyeva

91

,

E. Kondratyuk

89

,

P.J. Konopka

34

,

L. Koska

116

,

O. Kovalenko

83

,

V. Kovalenko

112

,

M. Kowalski

118

, I. Králik

64

, A. Kravˇcáková

38

,

L. Kreis

105

,

M. Krivda

64

,

109

,

F. Krizek

93

,

K. Krizkova Gajdosova

37

,

M. Krüger

68

,

E. Kryshen

96

,

M. Krzewicki

39

,

A.M. Kubera

95

,

V. Kuˇcera

60

,

C. Kuhn

136

,

P.G. Kuijer

88

,

L. Kumar

98

, S. Kumar

48

,

S. Kundu

84

,

P. Kurashvili

83

,

A. Kurepin

62

,

A.B. Kurepin

62

,

A. Kuryakin

107

,

S. Kushpil

93

,

J. Kvapil

109

,

M.J. Kweon

60

, J.Y. Kwon

60

, Y. Kwon

147

,

S.L. La Pointe

39

,

P. La Rocca

28

,

Y.S. Lai

78

,

R. Langoy

129

,

K. Lapidus

34

,

146

, A. Lardeux

21

,

P. Larionov

51

,

E. Laudi

34

,

R. Lavicka

37

, T. Lazareva

112

,

R. Lea

25

,

L. Leardini

102

,

S. Lee

147

,

F. Lehas

88

,

S. Lehner

113

,

J. Lehrbach

39

,

R.C. Lemmon

92

,

I. León Monzón

120

, E.D. Lesser

20

,

M. Lettrich

34

,

P. Lévai

145

,

X. Li

12

,

X.L. Li

6

,

J. Lien

129

,

R. Lietava

109

, B. Lim

18

,

S. Lindal

21

, V. Lindenstruth

39

, S.W. Lindsay

127

,

C. Lippmann

105

, M.A. Lisa

95

,

V. Litichevskyi

43

, A. Liu

78

,

S. Liu

95

,

W.J. Llope

143

,

I.M. Lofnes

22

,

V. Loginov

91

,

C. Loizides

94

,

P. Loncar

35

,

X. Lopez

134

,

E. López Torres

8

, P. Luettig

68

, J.R. Luhder

144

,

M. Lunardon

29

, G. Luparello

59

, M. Lupi

73

, A. Maevskaya

62

,

M. Mager

34

,

S.M. Mahmood

21

,

T. Mahmoud

42

,

A. Maire

136

,

R.D. Majka

146

,

M. Malaev

96

,

Q.W. Malik

21

,

L. Malinina

74

,

iii

,

D. Mal’Kevich

90

, P. Malzacher

105

,

A. Mamonov

107

,

G. Mandaglio

55

,

V. Manko

86

,

F. Manso

134

,

V. Manzari

52

,

Y. Mao

6

,

M. Marchisone

135

,

J. Mareš

66

,

G.V. Margagliotti

25

,

A. Margotti

53

,

J. Margutti

63

,

A. Marín

105

,

C. Markert

119

, M. Marquard

68

,

N.A. Martin

102

,

P. Martinengo

34

,

J.L. Martinez

125

,

M.I. Martínez

44

,

G. Martínez García

114

,

M. Martinez Pedreira

34

,

S. Masciocchi

105

, M. Masera

26

,

A. Masoni

54

, L. Massacrier

61

,

E. Masson

114

,

A. Mastroserio

138

,

A.M. Mathis

103

,

117

, O. Matonoha

79

,

P.F.T. Matuoka

121

, A. Matyja

118

,

C. Mayer

118

,

M. Mazzilli

33

,

M.A. Mazzoni

57

, A.F. Mechler

68

,

F. Meddi

23

,

Y. Melikyan

91

, A. Menchaca-Rocha

71

,

C. Mengke

6

,

E. Meninno

30

,

M. Meres

14

, S. Mhlanga

124

,

Y. Miake

133

, L. Micheletti

26

, M.M. Mieskolainen

43

,

D.L. Mihaylov

103

,

K. Mikhaylov

74

,

90

,

A. Mischke

63

,

i

,

A.N. Mishra

69

,

D. Mi´skowiec

105

,

C.M. Mitu

67

,

A. Modak

3

,

N. Mohammadi

34

,

A.P. Mohanty

63

,

B. Mohanty

84

, M. Mohisin Khan

17

,

iv

,

M. Mondal

141

,

M.M. Mondal

65

,

C. Mordasini

103

,

D.A. Moreira De Godoy

144

,

L.A.P. Moreno

44

,

S. Moretto

29

,

A. Morreale

114

,

A. Morsch

34

,

T. Mrnjavac

34

,

V. Muccifora

51

,

E. Mudnic

35

,

D. Mühlheim

144

,

S. Muhuri

141

, J.D. Mulligan

78

,

M.G. Munhoz

121

,

K. Münning

42

,

R.H. Munzer

68

,

H. Murakami

132

,

S. Murray

72

,

L. Musa

34

,

J. Musinsky

64

,

C.J. Myers

125

,

J.W. Myrcha

142

, B. Naik

48

,

R. Nair

83

,

B.K. Nandi

48

, R. Nania

10

,

53

,

E. Nappi

52

,

M.U. Naru

15

,

A.F. Nassirpour

79

,

H. Natal da Luz

121

, C. Nattrass

130

, R. Nayak

48

, T.K. Nayak

84

,

141

,

S. Nazarenko

107

,

A. Neagu

21

,

R.A. Negrao De Oliveira

68

, L. Nellen

69

,

S.V. Nesbo

36

,

G. Neskovic

39

,

D. Nesterov

112

,

B.S. Nielsen

87

, S. Nikolaev

86

,

S. Nikulin

86

,

V. Nikulin

96

,

F. Noferini

10

,

53

, P. Nomokonov

74

,

G. Nooren

63

,

J. Norman

77

,

N. Novitzky

133

,

P. Nowakowski

142

, A. Nyanin

86

,

J. Nystrand

22

,

M. Ogino

80

, A. Ohlson

102

,

J. Oleniacz

142

,

A.C. Oliveira Da Silva

121

,

M.H. Oliver

146

,

C. Oppedisano

58

,

R. Orava

43

,

A. Ortiz Velasquez

69

,

A. Oskarsson

79

,

J. Otwinowski

118

,

K. Oyama

80

,

Y. Pachmayer

102

, V. Pacik

87

,

D. Pagano

140

,

G. Pai ´c

69

,

P. Palni

6

,

J. Pan

143

,

A.K. Pandey

48

,

S. Panebianco

137

,

V. Papikyan

1

,

P. Pareek

49

,

J. Park

60

,

J.E. Parkkila

126

,

S. Parmar

98

,

A. Passfeld

144

,

S.P. Pathak

125

,

R.N. Patra

141

,

B. Paul

24

,

58

,

H. Pei

6

,

T. Peitzmann

63

,

X. Peng

6

,

L.G. Pereira

70

, H. Pereira Da Costa

137

, D. Peresunko

86

,

G.M. Perez

8

,

E. Perez Lezama

68

,

V. Peskov

68

,

Y. Pestov

4

,

V. Petráˇcek

37

,

M. Petrovici

47

, R.P. Pezzi

70

,

S. Piano

59

,

M. Pikna

14

,

P. Pillot

114

,

L.O.D.L. Pimentel

87

, O. Pinazza

34

,

53

,

L. Pinsky

125

, C. Pinto

28

, S. Pisano

51

,

D. Pistone

55

,

D.B. Piyarathna

125

,

M. Płosko ´n

78

,

M. Planinic

97

,

F. Pliquett

68

,

J. Pluta

142

,

S. Pochybova

145

,

M.G. Poghosyan

94

,

B. Polichtchouk

89

,

N. Poljak

97

,

W. Poonsawat

115

,

A. Pop

47

, H. Poppenborg

144

,

S. Porteboeuf-Houssais

134

,

V. Pozdniakov

74

,

S.K. Prasad

3

,

R. Preghenella

53

,

F. Prino

58

,

C.A. Pruneau

143

,

I. Pshenichnov

62

, M. Puccio

26

,

34

, V. Punin

107

,

K. Puranapanda

141

,

J. Putschke

143

,

R.E. Quishpe

125

,

S. Ragoni

109

,

S. Raha

3

,

S. Rajput

99

,

J. Rak

126

,

A. Rakotozafindrabe

137

, L. Ramello

32

, F. Rami

136

,

R. Raniwala

100

,

S. Raniwala

100

, S.S. Räsänen

43

,

B.T. Rascanu

68

,

R. Rath

49

,

V. Ratza

42

,

I. Ravasenga

31

,

K.F. Read

94

,

130

,

K. Redlich

83

,

v

,

A. Rehman

22

,

P. Reichelt

68

, F. Reidt

34

,

X. Ren

6

, R. Renfordt

68

,

Figura

Fig. 1. Invariant mass distribution of ( 3 He, π − ) and ( 3 He, π + ) for the four ct intervals used to determine the 3  H and
Fig. 2. Efficiency × acceptance as a function of ct for 3
Fig. 4. Lifetime value τ determined from the minimization of the log-likelihood ratio –log(λ( τ ))
Fig. 5. Collection of the 3

Riferimenti

Documenti correlati

Fondazione per l'analisi, gli studi e le ricerche sulla riforma delle istituzioni democratiche e sull'innovazione nelle amministrazioni pubbliche.. Corso Vittorio Emanuele II, 142

The high energy range implies that the K-edge absorption technique based on beam filtration, as previously described (see Sec. A possible solution is to use Compton scattered

Gabor patch technology RevitalVision™ (RV) is a non-invasive, patient-specific treatment based on visual stimulation and facilitation of neural... connections responsible

Based on these premises, the present research was con- ducted with the objectives to fill the gaps of the chemical and biological knowledge about this species, which is impor- tant

3.15 – Dall’alto verso il basso, modello di resistività realizzato con il georesistivimetro ad accoppiamento galvanico ABEM Terrameter SAS1000 e sezione di resistività

In agricultural economics, land use and its connections with policy are studied under three dif- ferent perspectives, i.e. i) the change in land tenure preferences, ii)

With the aim of describing the correlation between early childhood caries (ECC) and the phenomenon of child neglect, a ques- tionnaire which recorded socio-economic and

A questo percorso storico riassuntivo segue un paragrafo dedicato alle caratteristiche del genere, in primo luogo dal punto di vista letterario con