• Non ci sono risultati.

Studio delle interazioni tra piccole molecole organiche e modelli di membrane cellulari mediante NMR

N/A
N/A
Protected

Academic year: 2021

Condividi "Studio delle interazioni tra piccole molecole organiche e modelli di membrane cellulari mediante NMR"

Copied!
7
0
0

Testo completo

(1)

[1] Bueno, M. A., and Jones, O. Alternative methods for controlling the olive fly, Bactrocera oleae, involving semiochemicals. IOBC wprs Bulletin, 25, 2002.

[2] http://www.cbceurope.it/index.php/biocontrol-home/biocontrol-bibliografia/teoria. [3] Insect Pheromones, Biochemistry and Molecular Biology. Eds. G. J. Blomquist and R.

Vogt, 2003.

[4] Smith, D.P. Odor and pheromone detection in Drosophilia melanogaster. Eur. J. Physiol., 454:749–758, 2007.

[5] http://www.dowagro.com/PublishedLiterature/dh_0400/0901b80380400902.pdf.

[6] Haniotakis, G., Francke, W., Mori, K., Redlich, H., and Schurig, V. Sex-specific acti-vity of (R)-(-) and (S)-(+) 1,7-dioxaspiro[5.5]undecane, the major pheromone of Dacus Oleae. J. Chem. Ecol., 12:1559–1568, 1986.

[7] Baker, R.; Herbert, R.; Howse, P.E.; Jones. O.T.; Francke, W., and Reith, W. Journal of the Chemical Society, Chemical Communications, 2:52–53, 1980.

[8] Izquierdo Cubero, I.; Lopez-Espinosa M.T.P., and Acuna Castillo R. Journal of Chemical Ecology, 17:1529–1541, 1991.

[9] Franke, W., and Kitching, W. Current Organic Chemistry, 5:233–251, 2001. [10] Forrest, B.J., and Mattai, J. Biochemistry, 24:7148–7153, 1985.

[11] Forrest, B.J., and Rodham, D.K. . Biochim. Biophys. Acta, 814:281–288, 1985.

[12] Phonphok, N.; Chidichimo, G., and Westerman, P.W. Chemistry and Physics of Lipids, 83:25–37, 1996.

(2)

[13] Baciu, M.; Holmes, M.C., and Leaver, M.S. J. Phys. Chem. B, 111:909–917, 2007. [14] P.L.Yeagle. Phospholipid Headgroup Behaviour in Biological Assemblies. Accounts of

chemical research, 11:321–327, September 1978.

[15] Chen, Z.; Van Gorkom, L. C. M.; Epand, R. M. and Stark, R.E. Nuclear Magnetic Re-sonances Studies of Lipid Hydration in Monomethyldioleoylphosphatidylethanolamine Dispersions. Biophysical Journal, 70:1412–1418, March 1996.

[16] Cullis, P. R. and De Kruijff B. Polimorphic phase behaviour of lipid mixtures as detec-ted by 31P NMR: evidence that cholesterol may destabilize bilayer structure in mem-brane systems containing phosphatidylethanolamine. Biochimica et Biophysica Acta, 507:207–218, 1978.

[17] Larsson, K. Effect of anesthetics on a planar to curved lipid bilayer transition. Acta Chemica Scandinavica A, 40:313–314, 1986.

[18] Larsson, K. Anesthetic effect and a lipid bilayer transition involving periodic curvature. Langmuir, 4:215–217, 1988.

[19] Duer, M. J., Ed. Solid-State NMR Spectroscopy-Principles and Applications. Black-well Science: Oxford, 2002.

[20] Levitt, M.H. Spin Dinamics-Basis of Nuclear Magnetic Resonance. John Wiley & Sons: Chichester, 2003.

[21] McBrierty, V.J., and Packer, K.J. Nuclear Magnetic Resonance in Solids Polymers. Cambridge University Press: Cambridge, 1993.

[22] Mason, J. Conventions for the reporting of nuclear magnetic resonance shielding (or shift) tensors suggested by partecipants in the NATO ARW on NMR Shielding Constants at the University of Maryland, College Park, July 1992. Solid State Nuclear Magnetic Resonance, 2:285–288, 1993.

[23] Cory, D.G., and Ritchey, W.M. Suppression of Signals from the Probe in Bloch Decay Spectra. Journal of Magnetic Resonance, 80:128–132, 1988.

[24] Chidichimo, G.; Vaz, N.A.P.; Yaniv, Z., and Doane, J.W. Investigation of the Ribbon Structure of a Lyotropic Liquid Crystal by Deuterium Nuclear Magnetic Resonance. Physical Review Letters, 49:1950–1954, 1982.

(3)

[25] Griffin, R.G.; Powers, L., and Pershan, P.S. Head-Group Conformation in Phospholi-pids : A Phosphorous-31 Nuclear Magnetic Resonance Study of Oriented Monodomain Dipalmitoylphosphatidylcholine Bilayers. Biochemistry, 17:2718, 1978.

[26] Powers, L., and Clark, N.A. Proc. Natl. Acad. Sci. USA, 72:840–845, 1975.

[27] Herzfeld, J.; Griffin, R.G., and Haberkorn, R.A. Phosphorus-31 Chemical-Shift Ten-sors in Barium Diethyl Phosphate and Urea-Phosphoric Acid: Model Compounds for Phospholipid Head-Group Studies. American Chemical Society, 17:2711, 1978.

[28] Seelig, J., and Gally, H.U. Investigation of Phosphatidylethanolamine Bilayers by Deuterium and Phosphorous-31 Nuclear Magnetic Resonance. Biochemistry, 15:5199, 1976.

[29] Stockton, G.W. et all. A study of mobility and order in model membranes using2H NMR

relaxation rates and quadrupole splittings of specifically deuterated lipids. Biochemical and Biophysical Research Communications, 60:844–850, 1974.

[30] Seelig, A., and Seelig, J. Biochem. Biophys. Res. Commun., 60:844–850, 1974.

[31] Seelig, J.; Gally, H.U., and Wohlgemuth, R. Orientation and flexibility of the choline head group in phosphatidylcholine bilayers. Biochimica et Biophysica Acta, 467:109– 119, 1977.

[32] Seelig, J. [2H]Hydrogen and [31P]Phosphorus Nuclear-Magnetic-Resonance and Neutron-Diffraction Studies of Membranes. Biochemical Society Transactions, 6:40–42, 1978.

[33] Seelig, J. 31P Nuclear Magnetic Resonance and the head group structure of

phospholipids in membranes. Biochimica et Biophysica Acta, 515:105–140, 1978. [34] Tilcock, C.P.S.; Cullis, P.R., and Gruner, S. M. On the validity of 31P-NMR

determina-tions of phospholipid polymorphic phase behaviour. Chemistry and Physics of Lipids, 40:47–56, 1986.

[35] Pastor, R.W.; Venable, R.M., and Karplus, M. Model for the structure of the lipid bilayer. Proc. Natl. Acad. Sci. USA, 88:892–896, 1991.

[36] Lee, A.G.; Birdsall, N.J.M.; Metcalfe, G.B.; Warrent, G.B., and Roberts, G.C.K. A de-termination of the mobility gradient in lipid bilaters by13C nuclear magnetic resonance.

(4)

[37] Seelig, J. and Sarcevic, N.W. Molecular Order in Cis and Trans Unsaturated Phospholipid Bilayers. Biochemistry, 17:3313, 1978.

[38] Warschawski, D.E., and Devaux, P.F. Order parameters of unsaturated phospholipids in membranes and the effect of cholesterol: a 1H-13C solid-state NMR study at natural abundance. Eur Biophys J, 34:987–996, 2005.

[39] Volke, F.; Eisenblatter, S.; Galle, J., and Klose, G. Dynamic properties of water at phosphatidylcholine lipid-bilayer as seen by deuterium and pulsed field gradient proton NMR. Chemistry and Physics of Lipids, 70:121–131, 1994.

[40] Bergenståhl, B. A., and Stenius, P. Phase Diagrams of Dloleoylphosphatldylcholine with Formamide, Methylformamide, and Dimethylformamlde. J. Phys. Chem, 91:5944– 5948, 1987.

[41] Reviakinea, I.; Rossetti, F.F.; Morozov, A.N., and Textor, M. Investigating the properties of supported vesicular layers on titanium dioxide by quartz crystal microbalance with dissipation measurements. The Journal of chemical physics, 122:204711– 1–8, 2005. [42] Eichele, K., and Wasylishen, R. E. WSOLIDS NMR Simulation Package . 2000. [43] Bouchard, M.; la Guerneve, C., and Auger, M. Comparison between the dynamics of

lipid/gramicidin A systems in the lamellar and hexagonal phases : a solid-state13C NMR

study. Biochimica et Biophysica Acta, 1415:181–192, 1998.

[44] Sjolund, M.; Lindblom, G.; Rilfors, L., and Arvidson, G. Hydrophobic molecules in lecithin-water systems: formation of reversed hexagonal phases at high and low water contents. Biophysical Journal, 52:145–153, 1987.

[45] Eriksson, P.O., and Lindblom, G. Lipid and water diffusion in bicontinuous cubic phases measured by NMR. Biophysical Journal, 64:129–136, 1993.

[46] Zhou, Z.; Sayer, B.G.; Hughes, D.W.; Stark, R.E., and Epand, R.M. Studies of Phospholipid Hydration by High-Resolution Magic-Angle Spinning Nuclear Magnetic Resonance. Biophysical Journal, 76:387–399, 1999.

[47] Soderman, O.; Arvidson, G.; Lindblom, G., and Fontell, K. The Interactions between Monovalent Ions and Phosphatidyl Cholines in Aqueous Bilayers. Eur. J. Biochem, 134:309–314, 1983.

(5)

[49] Killian, J.A., and de Kruiff, B. Importance of Hydration for Gramicidin-Induced Hexagonal HII Phase Formation in Dioleoylphosphatidylcholine Model Membranes.

Biochemistry, 24:7890–7898, 1985.

[50] Weldon, A. J., and Tschumper, G. S. Energetics of Oxaspirocycle Prototypes: 1,7-Dioxaspiro[5.5]undecane and 1,7,9-Trioxadispiro[5.1.5.3]hexadecane. J. Org. Chem., 71:9212–9216, 2006.

[51] Lukas, K.T., and Seelig, J. Lipid Solvation of Cytochrome c Oxidase. Deuterium, Nitrogen-14, and Phosphorus-31 Nuclear Magnetic Resonance Studies on the Pho-sphocholine Head Group and on Cis-Unsaturated Fatty Acyl Chains. Biochemistry, 22:1474–1483, 1983.

[52] Sternin, E.; Fine, B.; Bloom, M.; Tilcock, C.P.S.; Wong, K.F., and Cullis, P.R. Acyl chain orientational order in the hexagonal HII phase of phospholipid-water dispersions.

Biophysical Journal, 54:689–694, 1988.

[53] Epand, R. M. Chemistry and Physics of Lipids, 81:101–104, 1996.

[54] Gawrisch, K., and Holte, L.L. Chemistry and Physics of Lipids, 81:105–116, 1996. [55] Slater, S.J; Kelly, M.B.; Taddeo, F.J.; Ho, C.; Rubin, E., and Stubbs, C.D. The

Modula-tion of Protein Kinase C Activity by Membrane Lipid Bilayer Structure. The Journal of Biological Chemistry, 269:4866–4871, 1994.

[56] Poupko, R., and Luz, Z. Dynamic deuterium NMR in liquid crystalline solvents: Ring inversion of cyclohexane - d12. J. Chem. Phys, 75 (4):1675–1681, 1981.

[57] Boden, N.; Jones, S. A., and Sixl, F. On the Use of Deuterium Nuclear Magnetic Re-sonance as a Probe of Chain Packing in Lipid Bilayers. American Chemical Society, 30:2146–2155, 1991.

[58] Pothier, N.; Rowan, D.D.; Deslongchamps, P., and Saunders, J.K. 13C chemical

shift data for 1,7-dioxaspiro[5.5]undecanes and related compounds. CAN. J. CHEM, 59:1132–1139, 1981.

[59] Blackburn, J.C., and Kilpatrick, P.K. Using Deuterium NMR Line Shapes To Analyze Lyotropic Liquid Cristalline Phase Transitions. Langmuir, 8:1679–1687, 1992.

[60] Feiweier, T.; Geil, B.; Pospiech, E-M.; Fujara, F., and Winter, R. NMR study of translational and rotational dynamics in monoolein-water mesophases: Obstruction and hydration effects. Physical Review E, 62:8182–8194, 2000.

(6)

[61] HANDBOOK of chemistry an physics 57th edition. CRE-PRESS, 1976-1977.

[62] http://www.sigmaaldrich.com/italy.html.

[63] Rand, R. P., and Fuller, N. L. Biophysical Journal, 66:2127–2138, 1994.

[64] Ulrich, A. S.; Sami, M., and Watts, A. Hydration of DOPC bilayers by Differential Scanning Calorimetry. Biochim.ica et Biophysica Acta, 1191:225–230, 1994.

[65] Costigan, S.C.; Booth, P.J., and Templer, R.H. Biochim. Biophys. Acta, 1468:41–54, 2000.

[66] Ge, M., and Freed, J.H. Biophysical Journal, 85:4023–4040, 2003.

[67] Tristram-Nagle, S.; Petrache, H. I., and Nagle, J.F. Biophysical Journal, 75:917–925, 1998.

[68] Blanton, T. N. et all. Powder Diffraction, 10:91–95, 1995. [69] Lake, J.A. Acta Crystallogr., 23:191–194, 1967.

[70] Lewis, R.N.A.; Sykes, B.D., and McElhaney, R.N. Biochemistry, 27:880–887, 1988. [71] Nilsson, A.; Holmgren, A., and Lindblom, G. Biochemistry, 30:2126–2133, 1991.

(7)

Al termine di questo lavoro, impegnativo ma anche molto soddisfacente, desidero ringraziare per primi mamma e babbo, che con il loro costante sostegno mi hanno supportato e sopportato fin dall’inizio. Ringrazio Irene per l’enorme gioia con cui mi ha fatto vivere questi mesi, insieme a Tiziano e Leonardino, Marta, per la sua allegra e un po’ stravagante visione del mondo che arricchisce la mia, e Pietro, il mio piccolo (ormai) grande “amore dolce”. Un grande pensiero va anche al Nonno, sempre presente e disponibile, e ai nonni Tito e Francesca, che da sempre credono in me. Ringrazio tutti gli amici che mi sono stati vicini, Fede, Anila, Ambra, con un particolare dolce e affettuoso pensiero per Sofia, insieme alle fedeli amiche di sempre, Gianna, Ele, Cassy e Sabry. Ringrazio anche Nunzia, Alberto, Giulia e Gigi per le allegre serate in loro compagnia, Agny, che da quasi venti anni non si scorda mai di me, e Claudia, perchè ormai ci basta ben poco per capirci.

Un ringraziamento sincero va a tutto il gruppo di “NMR a stato solido”: ai miei relatori Marco, per i suoi illuminanti e preziosi insegnamenti a tutte le ore del giorno e della notte, e Silvia, per i suoi affettuosi consigli ed i sempre precisi chiarimenti, a Francesca, per la dolcezza e la pazienza con cui mi parla in ogni occasione, a Uma, per le nostre lunghe e sincere chiacchierate in inglese, ad Elisa, per la sua affettuosa e affidabile presenza anche da lontano, e a Mario, per i brevi ma simpatici momenti insieme.

Ringrazio anche Pierandrea Lo Nostro e Niccolò per il loro lavoro che mi ha da subito in-curiosito e stimolato, e per la loro sempre disponibile risposta ai miei dubbi, ed anche Simone Capaccioli per il suo contributo “fisico” a questo lavoro di tesi.

Ed infine un grazie a Sandro, che con il suo infinito entusiasmo ha saputo smussare molte mie rigidità e starmi accanto in tutti i momenti, dandomi spesso non solo l’aiuto pratico, ma soprattutto la forza di cui avevo bisogno.

Riferimenti

Documenti correlati

At these energies, nuclear reactions are dominated by fusion and transfer processes, and are strongly influenced by the structure of the interacting nuclear systems.

describes the spin responses in fp-shell niclei → new GT strengths in Ni isotopes which reproduce recent experimental data, ν- 56 Fe cross section. • Electron capture rates in

use only.. Main steps used in NMR metabolomics. This may pass through extractive procedures or may consists of a mere water solution of the metabolites. In HR-MAS NMR this step

The purpose of this study was to determine the reproducibility of patient-specific, intensity-modulated radiation therapy (IMRT) quality assurance (QA) results in a clinical

Measurements were performed using a broadband system for Time-Resolved Diffuse Optical Spectroscopy (TRS) to assess mean absorption and reduced scattering spectra in the 600–1200

A classical olive oil, such as Lametia DOP, is characterized by very different levels of fatty acids with respect to hempseed oils because it is a source naturally rich

Nitrogen increased total leaf area conferring to birch trees more resistance to ozone stress in terms of increased biomass production (Pääkkönen and Holopainen, 1995)