XXV CICLO DEL DOTTORATO DI RICERCA IN SCIENZE e TECNOLOGIE CHIMICHE e FARMACEUTICHE
PEPTIDES AS RECOGNITION AND SENSING ELEMENTS
CHIM/06
Ph.D. program Director Prof. Mauro Stener Ph.D. Student
Silvia Pavan
Thesis Supervisor Dr. Federico Berti
Anno Accademico 2011/2012
one must still have chaos within oneself, to give birth to a dancing star. ” 1
1 Nietzsche F (1885) Thus Spoke Zarathustra
Table of Contents
Table of Contents!...i
Abstract - Riassunto!...v
List of Abbreviations!...ix
1. Introduction!...1
1.1 Drug Monitoring of Efavirenz...! 3
! 1.1.1 Efavirenz!...3
! 1.1.2 Drug Monitoring!...3
1.2 Recognition and Sensing Elements!...11
! 1.2.1 Biosensors!...11
! 1.2.2 Molecular Recognition Elements Biosensors!...13
! ! 1.2.2.1 Receptors!...13
! ! 1.2.2.2 Antibodies!...13
! ! 1.2.2.3 Lectins!...14
! ! 1.2.2.4 Aptamers!...14
! ! 1.2.2.5 Peptide Nucleic Acids!...16
! ! 1.2.2.6 Supramolecular Architectures!...17
1.3 Short Peptides as Biosensor Transducers!...21
! 1.3.1 Designed Synthetic Peptides!...22
! 1.3.2 Short Peptides from Random Phage Display!...25
! 1.3.3 Peptide Receptors for Ligand Sensing!...27
! 1.3.4 Peptide Ligands for Receptor Sensing!...28
! ! 1.3.4.1 Antimicrobial and Cell-Penetrating Peptides!...28
! ! 1.3.4.2 Antigens...! 30
! ! 1.3.4.3 Enzyme Substrates and Inhibitors !...30
1.4 Molecularly Imprinted Polymers!...39
! 1.4.1 Molecular Imprinting!...39
! 1.4.2 Strategies of Molecular Imprinting...! 40
! 1.4.3 Optimization of the Polymer Structure!...42
! 1.4.4 Target...! 43
! 1.4.5 Highlighted Applications!...44
1.5 Human Serum Albumin!...51
! 1.5.1 Miniaturized Natural Receptors...! 51
! 1.5.2 Human Serum Albumin!...52
! 1.5.3 Structure and Properties!...53
! 1.5.4 Binding Sites!...54
! ! 1.5.4.1 Site I!...55
! ! 1.5.4.2 Site II!...57
! ! 1.5.4.3 Other Binding Sites!...58
! 1.5.5 HSA Binding Interactions...! 58
! 1.5.6 HSA Structural Properties!...59
! ! 1.5.6.1 Flexibility!...59
! ! 1.5.6.2 Conformational Equilibrium...! 59
! 1.5.7 HSA Spectroscopic Features!...60
! ! 1.5.7.1 UV Spectral Properties...! 60
! ! 1.5.7.2 Circular Dichroism...! 60
! ! 1.5.7.3 Fluorescence!...61
2. Aim of Research!...67
3. Results and Discussion!...71
3.1 Synthesis of Efavirenz Derivates!...73
! 3.1.1 Design of Efavirenz Analogues!...73
! 3.1.2 Preparation of EFV!...75
! 3.1.3 First Generation Analogue of EFV...! 77
! 3.1.4 Second Generation Analogue of EFV!...78
! 3.1.5 Third Generation Analogue of EFV!...79
3.2 De novo Artificial Receptors!...81
! 3.2.1 Design of Binder Peptides!...81
! 3.2.2 Computational Tools!...83
! ! 3.2.2.1 Docking...! 84
! ! 3.2.2.2 Replica Exchange!...84
! ! 3.2.2.3 Optimizing the Length of the Peptide...! 85
! 3.2.3 Synthesis of YYGW!...86
! 3.2.4 Peptide Syntheses on Solid Phase!...87
! ! 3.2.4.1 Synthesis on Solid Phase of YYGW-NH2...! 89
! ! 3.2.4.2 Synthesis on Solid Phase of FFWPPFLNVW-COOH!...90
! 3.2.5 Peptide Characterization!...91
! ! 3.2.5.1 NMR of FFWPPFLNVW!...91
! ! 3.2.5.2 Circular Dichroism of FFWPPFLNVW!...96 Table of Contents
ii
! ! 3.2.5.3 Fluorescence of FFWPPFLNVW !...98
! ! 3.2.5.4 NMR of YYGW!...98
! ! 3.2.5.5 Circular Dichroism of YYGW!...101
! ! 3.2.5.6 Fluorescence of YYGW !...101
! 3.2.6 Peptide - EFV Interaction!...102
! ! 3.2.6.1 NMR spectroscopy!...102
! ! 3.2.6.2 Circular Dichroism!...107
! ! 3.2.6.3 Fluorescence Spectroscopy !...107
! 3.2.7 Selectivity for EFV...! 111
! 3.2.8 Improvements in de novo Peptide Design!...112
! 3.2.9 Cyclo-pepHA!...112
! 3.2.10 Further Perspectives for de novo Peptide Receptors!...107
3.3 Molecularly Imprinted Polymers!...123
! 3.3.1 Design of Molecularly Imprinted Polymers!...123
! 3.3.2 Synthesis of Functional Monomers!...124
! 3.3.3 Cooperative Monomers!...125
! 3.3.4 Synthesis of Molecularly Imprinted Polymers!...128
! 3.3.5 Characterization of the Polymers!...132
! ! 3.3.5.1 NMR!...132
! ! 3.3.5.2 Dynamic Laser Light Scattering!...134
! 3.3.6 Binding Properties!...137
! ! 3.3.6.1 ITC...! 137
! ! 3.3.6.2 HPLC!...139
3.4 A Binder Peptide from a Natural Host: Human Serum Albumin!...145
! 3.4.1 HSA100 Identification and Optimization!...145
! 3.4.2 Expression of HSA100!...147
! 3.4.3 Structural Characterization of GST-HSA100!...148
! ! 3.4.3.1 LC-MS/MS and Peptide Sequencing!...148
! ! 3.4.3.1 Circular Dichroism!...148
! 3.4.4 Small Molecule Binding Activity of GST-HSA100!...150
! ! 3.4.4.1 Fluorescence!...150
! ! 3.4.4.2 ELISA Assay!...152
! 3.4.5 Biosensing Application: SPR !...154
! 3.4.6 Towards a Library of HSA100-based Receptors!...161
! ! 3.4.6.1 Structural Analysis!...161
! ! 3.4.6.2 HSA100 Site-directed Mutagenesis!...162
! ! 3.4.6.3 Binding Activity of the Mutant Clones!...163
4. Experimental Procedures!...169
4.1 Experimental Procedures!...171
! 4.1.1 Instrumentation !...171
! 4.1.2 Materials and General Methods!...172
! 4.1.3 Experimental Procedures!...172
! 4.1.4 Peptide Synthesis!...197
! 4.1.5 De novo Artificial Peptides Measurements!...205
! ! 4.1.5.1 NMR spectroscopy...! 205
! ! 4.1.5.2 Fluorescence spectroscopy!...207
... ! ! 4.1.5.3 CD Spectroscopy! 208 ! 4.1.6 Molecularly Imprinted Polymers Synthesis and Measurements!...209
! ! 4.1.6.1 Nanogels Synthesis!...209
! ! 4.1.6.2 Dynamic Laser Light Scattering!...211
! ! 4.1.6.3 UV-visible Spectroscopy!...211
! ! 4.1.6.4 ITC...! 211
! ! 4.1.6.5 RP-HPLC!...212
! 4.1.7 GST-HSA100 and Clones Measurements!...213
! ! 4.1.7.1 Fluorescence Spectroscopy!...213
! ! 4.1.7.2 CD Spectroscopy...! 213
! ! 4.1.7.3 SPR!...213
5. Conclusions!...217
Acknowledgements!...221
! !
!
Table of Contents
iv
University of Trieste
Peptides as Recognition and Sensing Elements
PhD Thesis
PhD candidate: Silvia Pavan Supervisor: Dr. Federico Berti
Abstract
! Antiretroviral therapy (ART) is the recommended treatment of people infected with HIV and involves taking a combination of three or more anti-HIV medications from at least two different drug classes every day to suppress HIV replication. Efavirenz (EFV) is a potent and selective non- nucleoside inhibitor of the HIV-1 reverse transcriptase, used for over a decade as an essential component of antiretroviral therapy, due to its relatively long half-life that allows convenient once- daily dosing. High intrapatient variability in EFV plasma is a clinical problem demanding a rapid measure of pharmacokinetic parameters on each patient to improve the compliance and efficiency of the therapy and to limit the appearance of resistant mutant strains1.
! The aim of this project has been the design and development of new peptidic artificial receptors for EFV to be developed as recognition and sensing elements in biosensor systems for therapeutic drug monitoring.
! A novel computational tool was implemented for designing short peptides (between 5 and 15 amino acids) with high affinity for a desired small target molecule. Starting from a poly-alanine, this new algorithm had selected a decapeptide (FFWPPFLNVW) with a theoretical binding energy of "12.1 kcal/mol for experimental validation2. The peptide was synthesized by solid-phase techniques, and its structure was studied by NMR. The sequential chemical shifts assignments were provided by 1H,1H TOCSY and 1H,1H NOESY experiments. Circular dichroism data and the range of JH!-NH coupling constants suggested a #-turn secondary structure. Fluorescence quenching measurements gave a ligand-protein dissociation constant value KD = 64 nM $ "14.7 kcal/mol for the dissociation constant of the EFV-peptide complex and this is in good agreement with the theoretical value obtained with the algorithm. 1H,1H NOESY and the variation of proton chemical shifts in the titration of EFV to a peptide solution confirmed the intermolecular contacts of the EFV-peptide complex, described by the theoretical model.
! For biosensor purpose this short peptide was incorporated in molecularly imprinted polymers to increase the solubility in water and selectivity for EFV. A set of imprinting nanoparticles with a combination of peptidic functional monomers was currently tested with several techniques (UV, HPLC and ITC) to compare their re-binding capacity towards our target and their selectivity.
! Another approach to develop a peptidic receptor for EFV was based on miniaturizing a natural binder of this molecule. We have identified a 101-amino-acid polypeptide derived from the sequence surrounding the IIA binding site of human serum albumin. Codon usage optimization was used to express a GST fusion protein in E. coli in high yields. This fusion protein retains its structural integrity, its catalytic activity, its ability to direct the stereochemical outcome of a diketone reduction, and its binding capacity to warfarin and EFV3. Notably, this newly cloned polypeptide represents a valuable starting point for the construction of libraries of binders and catalysts with
improved proficiency. Three libraries of clones were designed by site directed mutagenesis and fast screening was performed with surface plasmon resonance experiments. Then novel synthetic pathways were pursued to yield two EFV analogues with a spacer arm placed on different position of EFV molecule and with a suitable free amine group for immobilizing on a SPR golden chip.
! This work contributes to design artificial peptidic receptors for small molecules and to advance several methodologies to define their interaction and the structure of ligand-peptide complex. Our peptides developed toward the highly-used HIV-drug EFV are worthwhile in biosensor devices. Prospectively electrochemical assays with the albumin-derived fragment and solid-phase extraction cartridges, exploiting our short peptides incorporated within imprinted nanoparticles, may be applied for therapeutic drug monitoring of EFV in patient plasma.
Up to date, the results have been published in the following articles:
Pavan S, Berti F (2012) Short peptides as biosensor transducers. Anal Bioanal Chem 402(10):
3055-3070
Hong R, Pavan S, Benedetti F, Tossi A, Savoini A, Berti F, Laio A (2012) Designing Short Peptides with High Affinity for Organic Molecules: A Combined Docking, Molecular Dynamics, And Monte Carlo Approach. J Chem Theor Comput 8:1121-1128
Luisi I, Pavan S, Fontanive G, Tossi A, Benedetti F, Savoini A, Maurizio E, Sgarra R, Sblattero D, Berti F (2013) An albumin-derived Peptide scaffold capable of binding and catalysis. PLoS One 8(2):e56469
Further papers will be submitted in a short time.
Abstract
vi
Università di Trieste
Peptidi: Elementi Attivi nel Riconoscimento Molecolare
Tesi di dottorato
Dottoranda: Silvia Pavan Relatore: Dr. Federico Berti
Riassunto
! Nella cura di persone affette da AIDS, l"attuale terapia di prima scelta è quella antiretrovirale (ART) che prevede l"assunzione giornaliera combinata di tre o più farmaci anti-HIV, appartenenti ad almeno due diverse classi per sopprimere la replicazione del virus. Efavirenz (EFV) è un potente inibitore non nucleosidico della trascrittasi inversa del virus HIV-1. É usato da oltre un decennio come componente essenziale della terapia antiretrovirale in quanto possiede un tempo di emivita sufficientemente elevato da permetterne un"unica somministrazione giornaliera.
L"alta variabilità della concentrazione plasmatica di EFV nel singolo paziente, e da paziente a paziente, rappresenta un grave problema clinico. Una rapida misura dei suoi parametri farmacocinetici in ciascun paziente migliorerebbe la collaborazione, l"efficacia della terapia e ridurrebbe la comparsa di ceppi virali resistenti1.
! L"obiettivo di questo lavoro è la progettazione e lo sviluppo di nuovi recettori peptidici artificiali per EFV da poter utilizzare come elementi attivi nel riconoscimento molecolare in sistemi biosensoristici per il dosaggio di farmaci.
! É stato applicato un innovativo strumento computazionale per “disegnare” piccoli peptidi (lunghi dai 5 ai 15 amminoacidi) che presentino alta affinità per una piccola molecola target. A partire da una poli-alanina, questo nuovo algoritmo ha selezionato un decapeptide (FFWPPFLNVW) con una teorica energia di legame di #12.1 kcal/mol da validare sperimentalmente2. Il peptide è stato sintetizzato su fase solida e la sua struttura è stata studiata con tecniche NMR. L"assegnazione ordinata degli spostamenti chimici dei protoni è stata effettuata con esperimenti NMR 1H,1H TOCSY e 1H,1H NOESY. I dati di dicroismo circolare e il calcolo delle constanti di accoppiamento JH!-NH concordano nell"attribuire al decapeptide una struttura secondaria di tipo $-turn. Le misure di quenching della fluorescenza hanno fornito una costante di dissociazione ligando-proteina pari a KD = 64 nM % #14.7 kcal/mol per la dissociazione del complesso EFV-peptide, concordando con il valore teorico ottenuto con l"algoritmo. Esperimenti NMR 1H,1H NOESY e la variazione degli spostamenti chimici dei protoni, a seguito di una titolazione di EFV ad una soluzione di peptide, hanno confermato i contatti intermolecolari già descritti dal modello teorico.
! Con lo scopo di creare sensori biomimetici, questo peptide è stato incorporato in polimeri ad imprinting molecolare in modo da aumentarne la solubilità in acqua e la selettività per EFV. Un set di nanoparticelle con combinazioni di diversi monomeri funzionali peptidici sono attualmente in fase di studio tramite varie tecniche (UV, HPLC e ITC) per determinare la loro capacità di catturare EFV e la loro selettività per il nostro target.
! Un altro approccio per sviluppare recettori peptidi per EFV ha coinvolto la riduzione della sequenza di un recettore naturale di questa molecola. Abbiamo identificato un polipeptide di 101
amminoacidi, che deriva dalla sequenza nell!intorno del sito di legame IIA dell!albumina umana.
Grazie all!ottimizzazione dei codoni, il peptide è stato espresso, con elevate rese, in fusione con la proteina GST in E. coli. Questa proteina di fusione ha dimostrato di mantenere la sua integrità strutturale, la sua attività catalitica, la sua abilità di controllare la sterochimica della riduzione di dichetoni, e la capacità di legare warfarin ed EFV3. É da notare che questo polipeptide, clonato per la prima volta, rappresenta un prezioso punto di partenza per la costruzione di librerie di binders e catalizzatori, che potrebbero presentare miglioramenti nelle sue proprietà. Sono state progettate tre librerie di cloni da generare tramite mutagenesi sito specifica ed è stato ottimizzato un screening veloce dei cloni tramite esperimenti SPR. Sono state seguite nuove vie sintetiche per ottenere due analoghi di EFV con uno spaziatore posizionato in diversi punti della molecola EFV, e con un!ammina libera adatta per immobilizzare i due nuovi derivati di EFV su un chip d!oro di SPR.
" Questo lavoro ha contribuito alla progettazione di recettori artificiali per piccole molecole ed all!ottimizzazione di varie tecniche per definire la loro interazione e la struttura del complesso ligando-peptide. I nostri peptidi sviluppati verso il farmaco EFV, ampiamente usato in terapia anti- HIV, sono adatti a dispositivi biosensoristici. In futuro, misure elettrochimiche con il frammento di albumina o cartucce d!estrazione in fase solida, sfruttando i piccoli peptidi incorporati in nanopolimeri ad imprinting molecolare, potrebbero esser utilizzati per il dosaggio del farmaco EFV nel plasma dei pazienti.
Finora, i risultati sono stati pubblicati nei seguenti articoli:
Pavan S, Berti F (2012) Short peptides as biosensor transducers. Anal Bioanal Chem 402(10):
3055-3070
Hong R, Pavan S, Benedetti F, Tossi A, Savoini A, Berti F, Laio A (2012) Designing Short Peptides with High Affinity for Organic Molecules: A Combined Docking, Molecular Dynamics, And Monte Carlo Approach. J Chem Theor Comput 8:1121-1128
Luisi I, Pavan S, Fontanive G, Tossi A, Benedetti F, Savoini A, Maurizio E, Sgarra R, Sblattero D, Berti F (2013) An albumin-derived Peptide scaffold capable of binding and catalysis. PLoS One 8(2):e56469
Ulteriori articoli saranno inviati a breve.
"
Abstract
viii
1 Maggiolo F (2009) Efavirenz: a decade of clinical experience in the treatment of HIV. J Antimicrob Chemother 64:910-928
2 Hong R, Pavan S, Benedetti F, Tossi A, Savoini A, Berti F, Laio A (2012) Designing Short Peptides with High Affinity for Organic Molecules: A Combined Docking, Molecular Dynamics, And Monte Carlo Approach. J Chem Theor Comput 8:1121-1128
3 Luisi I, Pavan S, Fontanive G, Tossi A, Benedetti F, Savoini A, Maurizio E, Sgarra R, Sblattero D, Berti F (2013) An albumin-derived Peptide scaffold capable of binding and catalysis. PLoS One 8(2):e56469
List of Abbreviations
Å ! Ångström
AcCN! acetonitrile
ACCP! activatable cell-penetrating peptide
AFM! atomic force microscopy
AIBN! 2,2"-azobisisobutyronitrile
AMP! antimicrobial peptide
ART! antiretroviral therapy
Asn! asparagine
Boc! tert-butoxycarbonyl
bm ! backbone monomer
BMPs! bacterial magnetic particles
bp! base pair
br ! broad signal
BSA! bovine serum albumin
°C ! centigrade degree
CE! capillary electrophoresis
cl! cross-linker
CM! monomer concentration
CMPF! 3-carboxy-4-methyl-5-propyl-2-furanepropanoic acid
CNS! central nervous system
CPP! cell-penetrating peptide
1H-1H COSY! Proton-Proton homonuclear Correlation Spectroscopy
d! doublet
DCM ! dichloromethane
dd ! doublet of doublets
DE ! diethyl ether
DIEA ! N,N-diisopropylethylamine
DMF! dimethylformamide
DMSO! dimethyl sulfoxide
dmso-d6! deuterated dimethyl sulfoxide
DODT! 3,6-dioxa-1,8-octanedithiol
dt ! double of triplets
ddt ! doublet of doublet of triplets
EDC! 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide
EDC-Cl ! N-(3-Dimethylaminopropyl)-N"-ethylcarbodiimide hydrochloride
EFV! efavirenz
ELISA! enzyme-linked immunosorbent assay
ESI! electrospray ionization
F! phenylalanine
Fc! ferrocene
fm! functional monomer
Fmoc! 9-fluorenylmethyloxycabonyl
FRET! Förster resonance energy transfer
G! glycine
gCOSY! gradient COrrelation SpectroscopY
gHSQCAD! gradient Heteronuclear Single-Quantum with ADiabatic
Gly! glycine
GST! glutathione S-transferase
HIV! human immunodeficiency virus
HOBt ! 1-hydroxybenzotriazole hydrate HPLC! high-performance liquid chromatography
HPLC-UV! high performance liquid chromatography with ultraviolet detection
HSA! human serum albumin
Hz! hertz
I! initiator
IR! infrared
ITC! Isothermal Titration Calorimetry
°K! Kelvin degree
L! leucine
Leu! leucine
LC/MS! liquid chromatography with mass spectrometry detection LC-MS/MS! liquid chromatography with tandem mass spectrometry detection
LFM! AFM-based lateral force microscopy
LOD! limit of detection
MS! mass spectrometry
N ! asparagine
NHS! N-hydroxysuccinimide
NMM ! N-methylmorpholine
m ! multiplet
MALDI-TOF-MS! matrix-assisted laser desorption/ionization time-of-flight mass
! spectrometry
MHz ! megahertz
MIP! molecularly imprinted polymer
mp ! melting point
MPA! mercaptoproprionic acid
MS ! mass spectrometry
NMP ! N-methyl-2-pyrrolidone
NMR! nuclear magnetic resonance
NNRTI! non-nucleoside reverse transcriptase inhibitor
1H-1H NOESY! Nuclear Overhauser Effect Spectroscopy
P! proline
PCR! polymerase chain reaction
PE! petroleum ether
Phe! phenylalanine
PNA! peptide nucleic acid
PPFs! plasma polymerized films
ppm! parts per million
Pro! proline
PyBop ! benzotriazol-1-yl-oxytripyrrolidinophosphonium hexafluorophosphate List of Abbreviations
x
q ! quartet
qt ! quartet of triplets
QCM! quartz crystal microbalance
QD! quantum dot
QDs-DDTC ! quantum dots with dopamine dithiocarbamate
Rf ! retardation factor
RP-HPLC! reverse phase high-performance liquid chromatography
rpm! revolutions per minute
rt ! room temperature
RT! reverse transcriptase
s! singlet
SAM! self-assembled monolayer
SAR ! structure–activity relationship
SELEX! Systematic Evolution of Ligands by EXponential enrichment SNAP-25! synaptosomal-associated protein 25
SPE! solid-phase extraction
SPR! surface plasmon resonance
SPRI! surface plasmon resonance imaging
t! triplet
TAT! transactivator of transcription
TFA ! trifluoroacetic acid
TMEDA ! tetramethylethylenediamine
THF ! tetrahydrofuran
TIPS! triisopropylsilane
TLC ! thin layer chromatography
1H-1H TOCSY! Total Correlation Spectroscopy
TNT! 2,4,6-trinitrotoluene
Trp! tryptophan
Tyr! tyrosine
UV! ultraviolet
V! valine
Val! valine
Y! tyrosine
W! tryptophan
1.1 Drug Monitoring of Efavirenz
1.1.1 Efavirenz
! Current treatments for human immunodeficiency virus (HIV) infection are designed to interfere with the viral replication by inhibiting either HIV protease or HIV reverse transcriptase (RT). Antiretroviral therapy (ART) is the recommended treatment of people infected with HIV and involves taking a combination of three or more anti-HIV medications from at least two different drug classes every day to suppress HIV replication. ART is used in order to reduce the likelihood of the virus developing resistance and has prolonged the survival of HIV-infected individuals and to improve their quality of life1.
! Efavirenz (EFV), marketed by Bristol-Myers Squibb with the brand name Sustiva®, is one of the FDA-approved drugs used in the treatment of patients infected with HIV. EFV is a potent and selective non-nucleoside inhibitor of the HIV-1 reverse transcriptase, used for over a decade as an essential component of antiretroviral therapy2. Efavirenz is currently used worldwide in first-line regimens, coformulated with emtricitabine and tenofovir, due to the convenience of a single pill taken once daily and resultantly high treatment adherence3.
! Peak EFV plasma concentrations are reached by 5 h following single oral doses. The time to peak plasma concentrations is !3-5 h and steady-state plasma concentrations of EFV are reached in 6-7 days. The bioavailability of a single 600 mg dose of EFV hard capsules in is increased by 17%-22% by food4.
EFV is highly bound (!99.5%-99.75%) to human plasma proteins, predominantly albumin.
! EFV is extensively metabolized in humans by CYP2B6 to inactive hydroxy metabolites, 8-hydroxyefavirenz, which is subsequently hydroxylated to 8,14-di-hydroxyefavirenz by the same enzyme2.These metabolites are excreted predominantly in urine as glucuronides and to some extent as sulphate conjugates5. The elimination half-life of EFV after single oral doses is 55–76 h4. EFV is a well-known victim and perpetrator of drug– drug interactions and induces its own metabolism and clearance6. Central nervous system side effects (including dizziness, insomnia, impaired concentration, somnolence, and abnormal dreams) occur commonly and a relatively low genetic barrier to HIV-1 resistance is reported2, 4.
! Although HIV infection is generally well controlled by EFV-containing regimens, a number of patients develop resistance to the drug. In these patients, the K103N mutation is present in over 90% of the RT sequences examined7. In an e!ort to develop new generation drug with improved
activity against K103N and other resistant mutants, SAR (structure–activity relationship) investigations were launched to describe the e!ect of varying the aromatic substitution pattern of EFV, of modifying and replacing the acetylenic side chain8.
! The emergence of EFV-resistant HIV mutants could be a result of repeated exposure to ineffective of sub-therapeutic drug level due to the high intra- and inter-patient variability in plasma EFV concentrations9. Moreover, 20-40% of patients receiving EFV reported central nervous system side effects that are associated high EFV plasma levels. A plasma therapeutic range of 1–4
"g/mL has been established for EFV10 and its pharmacokinetics vary between individuals and populations causing variation in drug concentrations11. Factors reported to be associated with interpatient variability in EFV concentration include gender, ethnicity12 and genetic polymorphisms, while autoinduction13 and adherence may contribute to both inter- and intrapatient variability14.
! Furthermore EFV is one of the anti HIV drugs with poor aqueous solubility (4 µg/ml)15. The low solubility of the EFV in aqueous medium hinders the absorption and biodistribution of the drug from the gastrointestinal tract16. The oral bioavailability of the drug is around 40–45% and the interindividual variability observed demands therapeutic drug monitoring17. Therefore EFV dosage individualization based on plasma concentration monitoring might improve the patient compliance and clinical outcomes, reducing associated toxicities, potential drug-drug and food-drug interactions and the development of resistance.
1.1.2 Drug monitoring
! The development of rapid, accurate, and portable diagnostic tools is very important for the monitoring of drug concentrations in plasma samples from patients affected by chronic diseases. It should be noticed that there is no cure or established primary prevention measure (such as a vaccine) against HIV; a universal “test-and-treat” strategy has been proposed for HIV infected patients and antiretroviral therapy is essentially required for HIV positive patients18. The main objective of clinical research is to systematically identify and quantify drug molecules in a given sample. Therefore, it is necessary to detect accurately the concentration of anti-HIV drugs in HIV infected human plasma for evaluation of drug pharmacokinetics in clinical trials with efficacy19. In recent years, the development of facile and rapid analytical methods for detection and quantification of anti-HIV drugs in human plasma has become a popular subject20.
Drug Monitoring of Efavirenz
4
Fig 1.1.1 Structures of EFV and of its main metabolites.
NH Cl O
F3C
O NH
Cl O F3C
O
Efavirenz
OH
NH Cl O
F3C
O OH
OH
8-Hydroxyefavirenz 8,14-Dihydroxyefavirenz
! Indeed a number of methods have been reported for the analysis of EFV alone in biological fluids, and in combination with other drug including high performance liquid chromatography with ultraviolet detection HPLC-UV21 22 23 24, liquid chromatography with mass spectrometry detection LC-MS25, HPLC with fluorescence detection26 and a capillary electrophoresis method27. More recently, different innovative techniques were combined for therapeutic drug monitoring of EFV, using functionalized quantum dots as matrix in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analyses (MALDI-TOF-MS)28 or liquid chromatography with tandem mass spectrometry detection (LC-MS/MS)29. The detection efforts have been extended to its metabolites30 (LC-MS/MS), to its dosage in pharmaceutical formulations (reverse phase HPLC31, 19F-NMR32) and to its intracellular quantification (HPLC–UV33, HPLC–
MS34) that may provide further understanding of therapeutic failure, especially where virological rebound occurs despite adequate plasma levels. The impressive number of these papers confirm the worldwide importance of therapeutic EFV monitoring35. However, all these methods are impractical for commercial use because they suffer from a long sample preparation time, or a long assay time, or a lack of an adequate sensitivity. Some of these methods require expensive equipments, that are not available in most laboratories, or involve laborious liquid-liquid sample extraction procedures that negatively affect the accuracy of the results. Furthermore, these methods, as relied on sequential samples analysis, are not suited for screening of large number of specimens. Immunoassays are preferable in the field of clinical analysis because of their applicability for a wide range of analytes, high-throughput, low cost, convenience for screening of a large number of samples, and their specificity for the analyte of interest even in multi-component complex sample matrix such as plasma36. The antibody is the most important key reagent in the development of any immunoassay system. As well, specificity of the antibody to the analyte of interest is the limiting factor in the validity of the assay and the mode to link the small target molecule or hapten to the larger immunogenic carrier protein results the key step for generating highly sensitive and specific antibodies. Several immunoassay attempts were reported with different types of immunogen conjugates between a protein carrier and EFV derivatives37. However, no immunoassay has been commercially available as portable device for use in clinica to date.
! Accordingly, the development of a new alternative analytical technology for the determination of EFV in plasma with adequate sensitivity, improved simplicity, lower cost, and higher throughput is urgently needed.
1 The Panel on Clinical Practices for Treatment of HIV Infection (2013) Guidelines for the use of antiretroviral agents in HIV-1–infected adults and adolescents. http://www.aidsinfo.nih.gov/guidelines (28 February 2013, date last accessed)
2 (a) Maggiolo F (2009) Efavirenz: a decade of clinical experience in the treatment of HIV. J Antimicrob Chemother 64:910-928
(b) Rakhmanina NY, van den Anker JN (2010) Efavirenz in the therapy of HIV infection. Expert Opin Drug Metab Toxicol 6:95-103
3 Staszewski S, Morales-Ramirez J, Tashima KT, Rachlis A, Skiest D, Stanford J, Stryker R, Johnson P, Labriola DF, Farina D, Manion DJ, Ruiz NM (1999) Efavirenz plus zidovudine and lamivudine, efavirenz plus indinavir, and indinavir plus zidovudine and lamivudine in the treatment of HIV-1 infection in adults. Study 006 Team. New Engl J Med 341(25):1865-1873
Drug Monitoring of Efavirenz
6
4 Bristol-Myers Squibb Pharmaceuticals Ltd (2012) Efavirenz: Summary of Product Characteristics. European Medicines Evaluation Agency. http://emc.medicines.org.uk/medicine/11284/SPC/Sustiva+600+mg+Film-Coated +Tablets/ (28 February 2013, date last accessed)
5 (a) Ward BA, Gorski JC, Jones DR, Hall SD, Flockhart DA, Desta Z (2003) The cytochrome P450 2B6 (CYP2B6) is the main catalyst of efavirenz primary and secondary metabolism: implication for HIV/AIDS therapy and utility of efavirenz as a substrate marker of CYP2B6 catalytic activity. J Pharmacol Exp Ther 306(1):
287-300
(b) Mutlib AE, Chen H, Nemeth GA, Markwalder JA, Seitz SP, Gan LS, Christ DD (1999) Identification and characterization of efavirenz metabolites by liquid chromatography/mass spectrometry and high field NMR:
species differences in the metabolism of efavirenz. Drug Metab Dispos 27(11):1319-1333
6 (a) Kharasch ED, Whittington D, Ensign D, Hoffer C, Bedynek PS, Campbell S, Stubbert K, Crafford A, London A, Kim T (2012) Mechanism of efavirenz influence on methadone pharmacokinetics and pharmacodynamics.
Clin Pharmacol Ther 91(4):673-684
(b) Barrett JS, Joshi AS, Chai M, Ludden TM, Fiske WD, Pieniaszek HJ Jr (2002) Population pharmacokinetic meta-analysis with efavirenz. Int J Clin Pharmacol Ther 40:507–519
(c) Ngaimisi E, Mugusi S, Minzi OM, Sasi P, Riedel KD, Suda A, Ueda N, Janabi M, Mugusi F, Haefeli WE, Burhenne J, Aklillu E (2010) Long-term efavirenz autoinduction and its effect on plasma exposure in HIV patients. Clin Pharmacol Ther 88(5):676-684
7 Ribaudo HJ, Haas DW, Tierney C, Kim RB, Wilkinson GR, Gulick RM, Clifford DB, Marzolini C, Fletcher CV, Tashima KT, Kuritzkes DR, Acosta EP; Adult AIDS Clinical Trials Group Study (2006) Pharmacogenetics of plasma efavirenz exposure after treatment discontinuation: an Adult AIDS Clinical Trials Group Study. Clin Infect Dis 42(3):401-407
8 (a) Cocuzza AJ, Chidester DR, Cordova BC, Jeffrey S, Parsons RL, Bacheler LT, Erickson-Viitanen S, Trainor GL, Ko SS (2001) Synthesis and evaluation of efavirenz (Sustiva™) analogues as HIV-1 reverse transcriptase inhibitors: replacement of the cyclopropylacetylene side chain. Bioorg Med Chem Lett 11(9):1177-1179 (b) Patel M, Ko SS, McHugh RJ Jr, Markwalder JA, Srivastava AS, Cordova BC, Klabe RM, Erickson-Viitanen S, Trainor GL, Seitz SP (1999) Synthesis and evaluation of analogs of Efavirenz (SUSTIVA) as HIV-1 reverse transcriptase inhibitors. Bioorg Med Chem Lett 9(19):2805-2810
(c) Patel M, McHugh RJ Jr, Cordova BC, Klabe RM, Erickson-Viitanen S, Trainor GL, Ko SS (1999) Synthesis and evaluation of benzoxazinones as HIV-1 reverse transcriptase inhibitors. Analogs of Efavirenz (SUSTIVA).
Bioorg Med Chem Lett 1999 9(22):3221-3224
(d) Zhu L, Miao Z, Sheng C, Yao J, Zhuang C, Zhang W (2010) An alternative route for synthesis of o- trifluoroacetylanilines as useful fluorine-containing intermediates. J Fluorine Chem 131(7):800-804
(e) Mai A, Artico M, Rotili D, Tarantino D, Clotet-Codina I, Armand-Ugón M, Ragno R, Simeoni S, Sbardella G, Nawrozkij MB, Samuele A, Maga G, Esté JA (2007) Synthesis and biological properties of novel 2-
aminopyrimidin-4(3H)-ones highly potent against HIV-1 mutant strains. J Med Chem 50(22):5412-5424
9 Ribaudo HJ, Haas DW, Tierney C, Kim RB, Wilkinson GR, Gulick RM, Clifford DB, Marzolini C, Fletcher CV, Tashima KT, Kuritzkes DR, Acosta EP (2006) Pharmacogenetics of plasma efavirenz exposure after treatment discontinuation: an Adult AIDS Clinical Trials Group Study. Clin Infect Dis. Feb 42(3):401-407
10 (a) Tseng A, Foisy M (21012) Selected Properties of Efavirenz, 2010. Available at www.hivclinic.ca/main/
drugs_properties.html (28 February 2013, date last accessed)
(b) Brundage RC,Yong FH, Fenton T, Spector SA, Starr SE, Fletcher CV (2004) Intrapatient variability of efavirenz concentrations as a predictor of virologic response to antiretroviral therapy. AntimicrobAgents Chemother 48:979-984
(c) Burger D, van der Heiden I, la Porte C, van der Ende M, Groeneveld P, Richter C, Koopmans P, Kroon F, Sprenger H, Lindemans J, Schenk P, van Schaik R (2006) Interpatient variability in the pharmacokinetics of the HIV non-nucleoside reverse transcriptase inhibitor efavirenz: the effect of gender, race, and CYP2B6
polymorphism. Br J Clin Pharmacol 61(2):148-54
11 Burger D, van der Heiden I, Porte CL et al. Interpatient variability in the pharmacokinetics of the HIV non- nucleoside reverse transcriptase inhibitor efavirenz: the effect of gender, race, and CYP2B6 polymorphism. Br JClin Pharmacol 2005; 61: 148–154.
12 Stöhr W, Back D, Dunn D, Sabin C, Winston A, Gilson R, Pillay D, Hill T, Ainsworth J, Pozniak A, Leen C, Bansi L, Fisher M, Orkin C, Anderson J, Johnson M, Easterbrook P, Gibbons S, Khoo S; Liverpool TDM Database; UK CHIC Study (2008) Factors influencing efavirenz and nevirapine plasma concentration: effect of ethnicity, weight and co-medication. Antivir Ther 13(5):675-685
13 Zhu M, Kaul S, Nandy P, Grasela DM, Pfister M (2009) Model-based approach to characterize efavirenz autoinduction and concurrent enzyme induction with carbamazepine. Antimicrob Agents Chemother 53(6):
2346-2353
14 Nanzigu S, Eriksen J, Makumbi F, Lanke S, Mahindi M, Kiguba R, Beck O, Ma Q, Morse GD, Gustafsson LL, Waako P (2012) Pharmacokinetics of the nonnucleoside reverse transcriptase inhibitor efavirenz among HIV- infected Ugandans. HIV Med 13(4):193-201
15 Chiappetta DA, Hocht C, Taira C, Sosnik A (2010) Efavirenz-loaded polymeric micelles for pediatric anti-HIV pharmacotherapy with significantly higher oral bioavailability [corrected]. Nanomedicine (Lond) 5(1):11-23
16 (a) Rabel SR, Sun S, Maurin MB (2001) Electronic and resonance effects on the ionization of structural analogues of efavirenz. AAPS PharmSciTech 3(4):1-4
(b) Gao JZh, Hussain MA, Motheram R, Gray DA, Benedek IH, Fiske WD, Doll WJ, Sandefer E, Page RC, Digenis GA (2007) Investigation of human pharmacoscintigraphic behavior of two tablets and a capsule formulation of a high dose, poorly water soluble/highly permeable drug (efavirenz). J Pharm Sci 96(11):
2970-2977
17 (a) Csajka C, Marzolini C, Fattinger K, Décosterd LA, Fellay J, Telenti A, Biollaz J, Buclin T (2003) Population pharmacokinetics and effects of efavirenz in patients with human immunodeficiency virus infection. Clin Pharmacol Ther 73(1):20-30
(b) Aarnoutse RE, Schapiro JM, Boucher CA, Hekster YA, Burger DM (2003) Therapeutic drug monitoring: an aid to optimising response to antiretroviral drugs? Drugs 63(8):741-753
18 Dieffenbach CW, Fauci AS (2009) Universal voluntary testing and treatment for prevention of HIV transmission. J Am Med Assoc 301:2380-2382
19 Gerber JG, Acosta EP (2003) Therapeutic drug monitoring in the treatment of HIV-infection. J Clin Virol 27(2):
117–128
20 Aarnoutse RE, Schapiro JM, Boucher CA, Hekster YA, Burger DM (2003) Therapeutic drug monitoring: an aid to optimising response to antiretroviral drugs? Drugs 63(8):741-753
21 (a) Veldkamp AI, van Heeswijk RP, Meenhorst PL, Mulder JW, Lange JM, Beijnen JH, Hoetelmans RM (1999) Quantitative determination of efavirenz (DMP 266), a novel non-nucleoside reverse transcriptase inhibitor, in human plasma using isocratic reversed-phase high-performance liquid chromatography with ultraviolet detection. J Chromatogr B Biomed Sci Appl 734(1):55-61
(b) Villani P, Pregnolato M, Banfo S, Rettani M, Burroni D, Seminari E, Maserati R, Regazzi MB (1999) High- performance liquid chromatography method for analyzing the antiretroviral agent efavirenz in human plasma.
Ther Drug Monit 21(3):346-350
(c) Aymard G, Legrand M, Trichereau N, Diquet B (2000) Determination of twelve antiretroviral agents in human plasma sample using reversed-phase high-performance liquid chromatography. J Chromatogr B Biomed Sci Appl 744(2):227-240
(d) Marzolini C, Telenti A, Buclin T, Biollaz J, Decosterd LA (2000) Simultaneous determination of the HIV protease inhibitors indinavir, amprenavir, saquinavir, ritonavir, nelfinavir and the non-nucleoside reverse transcriptase inhibitor efavirenz by high-performance liquid chromatography after solid-phase extraction. J Chromatogr B Biomed Sci Appl 740(1):43-58
Drug Monitoring of Efavirenz
8
22 (a) Langmann P, Schirmer D, Väth T, Zilly M, Klinker H (2001) High-performance liquid chromatographic method for the determination of HIV-1 non-nucleoside reverse transcriptase inhibitor efavirenz in plasma of patients during highly active antiretroviral therapy. J Chromatogr B Biomed Sci Appl 755(1-2):151-156
(b) Saras-Nacenta M, López-Púa Y, Lípez-Cortés LF, Mallolas J, Gatell JM, Carné X (2001) Determination of efavirenz in human plasma by high-performance liquid chromatography with ultraviolet detection. J Chromatogr B Biomed Sci Appl 763(1-2):53-59
(c) Simon VA, Thiam MD, Lipford LC (2001) Determination of serum levels of thirteen human immunodeficiency virus-suppressing drugs by high-performance liquid chromatography. J Chromatogr A 913(1-2):447-453
(d) Titier K, Lagrange F, Péhourcq F, Edno-Mcheik L, Moore N, Molimard M (2002) High-performance liquid chromatographic method for the simultaneous determination of the six HIV-protease inhibitors and two non- nucleoside reverse transcriptase inhibitors in human plasma. Ther Drug Monit 24(3):417-424
23 (a) Turner ML, Reed-Walker K, King JR, Acosta EP (2003) Simultaneous determination of nine antiretroviral compounds in human plasma using liquid chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 784(2):331-341
(b) Usami Y, Oki T, Nakai M, Sagisaka M, Kaneda T (2003) A simple HPLC method for simultaneous determination of lopinavir, ritonavir and efavirenz. Chem Pharm Bull (Tokyo) 51(6):715-718
(c) Kappelhoff BS, Rosing H, Huitema AD, Beijnen JH (2003) Simple and rapid method for the simultaneous determination of the non-nucleoside reverse transcriptase inhibitors efavirenz and nevirapine in human plasma using liquid chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 792(2):353-362
(d) Rezk NL, Tidwell RR, Kashuba AD (2004) High-performance liquid chromatography assay for the quantification of HIV protease inhibitors and non-nucleoside reverse transcriptase inhibitors in human plasma. J Chromatogr B Analyt Technol Biomed Life Sci 805(2):241-247
24 (a) Notari S, Bocedi A, Ippolito G, Narciso P, Pucillo LP, Tossini G, Donnorso RP, Gasparrini F, Ascenzi P (2006) Simultaneous determination of 16 anti-HIV drugs in human plasma by high-performance liquid chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 831(1-2):258-266
(b) Ramachandran G, Kumar AK, Swaminathan S, Venkatesan P, Kumaraswami V, Greenblatt DJ (2006) Simple and rapid liquid chromatography method for determination of efavirenz in plasma. J Chromatogr B Analyt Technol Biomed Life Sci 835(1-2):131-135
(c) Lakshmi SA, Kishore KK, Ravi KDVR, Mohan KC, Yugandhar NM, Srinubabu G (2007) Development and validation of a liquid chromatographic method for determination of efavirenz in human plasma.
Chromatographia 65 (5-6):359-361 Chromatographia 65 (2007) 359–361.
Weller DR, Brundage RC, Balfour HH Jr, Vezina HE (2007) An isocratic liquid chromatography method for determining HIV non-nucleoside reverse transcriptase inhibitor and protease inhibitor concentrations in human plasma. J Chromatogr B Analyt Technol Biomed Life Sci 848(2):369-373
(d) Choi SO, Rezk NL, Kashuba AD (2007) High-performance liquid chromatography assay for the determination of the HIV-protease inhibitor tipranavir in human plasma in combination with nine other antiretroviral medications. J Pharm Biomed Anal 43(4):1562-1567
(e) Mogatle S, Kanfer I (2009) Rapid method for the quantitative determination of efavirenz in human plasma. J Pharm Biomed Anal 49(5):1308-1312
25 Rouzes A, Berthoin K, Xuereb F, Djabarouti S, Pellegrin I, Pellegrin JL, Coupet AC, Augagneur S, Budzinski H, Saux MC, Breilh D (2004) Simultaneous determination of the antiretroviral agents: amprenavir, lopinavir, ritonavir, saquinavir and efavirenz in human peripheral blood mononuclear cells by high-performance liquid chromatography-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 813(1-2):209-216
26 Matthews CZ, Woolf EJ, Mazenko RS, Haddix-Wiener H, Chavez-Eng CM, Constanzer ML, Doss GA, Matuszewski BK (2002) Determination of efavirenz, a selective non-nucleoside reverse transcriptase inhibitor, in human plasma using HPLC with post-column photochemical derivatization and fluorescence detection. J Pharm Biomed Anal 28(5):925-934
27 Pereira EA, Micke GA, Tavares MF (2005) Determination of antiretroviral agents in human serum by capillary electrophoresis. J Chromatogr A 1091(1-2):169-176
28 Kailasa SK, Wu HF (2012) Functionalized quantum dots with dopamine dithiocarbamate as the matrix for the quantification of efavirenz in human plasma and as affinity probes for rapid identification of microwave tryptic digested proteins in MALDI-TOF-MS. J Proteomics 75(10):2924-2933
29 Bedor DCG, De Souza Filho JH, Ramos VLS, Gonçalves TM, Miranda CE, De Santana SEDP (2011) A sensitive and robust Lc-Ms/Ms method with monolithic column and electrospray ionization for the quantitation of efavirenz in human plasma: Application to a bioequivalence study. Quimica Nova 34(6):950-955
30 Kim KB, Kim H, Jiang F, Yeo CW, Bae SK, Desta Z, Shin JG, Liu KH (2011) Rapid and simultaneous determination of efavirenz, 8-hydroxyefavirenz, and 8,14-dihydroxyefavirenz using LC-MS-MS in human plasma and application to pharmacokinetics in healthy volunteers. Chromatographia 73 (3-4):263-271
31 Prashanth, R., Kiran Kumar, V., Appala Raju, N(2011) Estimation of efavirenz in tablet dosage forms by RP- HPLC. Research J Pharm and Tech 4(1):63-6
32 Shamsipur M, Sarkouhi M, Hassan J, Haghgoo S (2011) Fluorine-19 nuclear magnetic resonance (19F NMR) as a powerful technique for the assay of anti-hiv drug efavirenz in human serum and pharmaceutical
formulations. Afr J Pharm Pharmacol 5(13):1573-1579
33 Almond LM, Hoggard PG, Edirisinghe D, Khoo SH, Back DJ (2005) Intracellular and plasma pharmacokinetics of efavirenz in HIV-infected individuals. J Antimicrob Chemother 56(4):738-744
34 Colombo S, Beguin A, Telenti A, Biollaz J, Buclin T, Rochat B, Decosterd LA (2005) Intracellular measurements of anti-HIV drugs indinavir, amprenavir, saquinavir, ritonavir, nelfinavir, lopinavir, atazanavir, efavirenz and nevirapine in peripheral blood mononuclear cells by liquid chromatography coupled to tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 819(2):259-276
35 Fayet Mello A, Buclin T, Decosterd LA, Delhumeau C, di Iulio J, Fleurent A, Schneider MP, Cavassini M, Telenti A, Hirschel B, Calmy A (2011) Successful efavirenz dose reduction guided by therapeutic drug monitoring. Antivir Ther 16(2):189-197
36 Darwish IA (2006) Immunoassay methods and their applications in pharmaceutical analysis: basic methodology and recent advances. Int J Biomed Sci 2:217-235
37 (a) Roucairol C, Azoulay S, Nevers MC, Créminon C, Grassi J, Burger A, Duval D (2007) Development of a competitive immunoassay for efavirenz: hapten design and validation studies. Anal Chim Acta 589(1):142-149 (b) Singler G, Ghoshal M, Arabshahi L (2007) US 7,271,252 B2
(c) Ghoshal M, Sigler G, Ouyang A, Root R (2005) US Pat 2005/0131216 A1 (d) Ghoshal M, Sigler G, Ouyang A, Root R (2008) US Pat 2008/0227959 A1