• Non ci sono risultati.

Lessons from the autumn 2014 flash floods in the city of Nîmes and its neighborhood (France): behavior of several mitigation dams and hydrological analysis

N/A
N/A
Protected

Academic year: 2021

Condividi "Lessons from the autumn 2014 flash floods in the city of Nîmes and its neighborhood (France): behavior of several mitigation dams and hydrological analysis"

Copied!
10
0
0

Testo completo

(1)E3S Web of Conferences 7, 16002 (2016) FLOODrisk 2016 - 3rd European Conference on Flood Risk Management. DOI: 10.1051/ e3sconf/2016 0716002. Lessons from the autumn 2014 flash floods in the city of Nîmes and its neighborhood (France): behavior of several mitigation dams and hydrological analysis 1,a. 1. 2. 3. Catherine Fouchier , Patrice Mériaux , Guillaume Pla2, Jean-Luc Nuel , Etienne Retailleau , Paul Royet. 1. 1.  

(2)     -en-Provence Cedex 5, France City of Nîmes, 152 avenue Robert Bompard, 30000 Nîmes, France 3 Gardon rivers SMAGE, 6 avenue du Général Leclerc, 30000 Nîmes, France 2. Abstract. The Languedoc area, in Southern France, is prone to autumnal flash floods which are characteristic of the Mediterranean climate. To cope with this threat, the local authorities have chosen to build several dams on the main dangerous rivers of the area. We have focused on the flood mitigation facilities of two operators: the City of Nîmes and the Gardons Rivers Managing authority. After the catastrophic flash flood of October 1988, the city of Nîmes built flood mitigation dams on many of its high-risk streams. These flood barriers worked several times during the intense rainfalls of autumn 2014. The on-site conclusions drawn from these floods and the computation carried out with hydrological models confirmed how well the dams functioned. In 2010, the Gardons Rivers Managing authority built a flood mitigation dam on the Esquielle River to protect the village of Saint-Geniès-de-Malgoirès. The spillway of this dam worked for the first time in the autumn of 2014. We analyzed one of the major floods monitored on that occasion at its outlet. The goals of this study are: (i) to evaluate dams efficiency and (ii) to test, on a catchment which was not used for its calibration, the AIGA flash flood warning method, which was developed by IRSTEA.. 1 Introduction      

(3)       

(4)    

(5)   

(6) 

(7)        

(8)   

(9)         

(10)

(11)            

(12)           

(13)    

(14)      

(15)  

(16)    

(17)

(18)    

(19)  

(20)

(21)    

(22)  

(23)    !         "#$% 

(24)    

(25)       &

(26)   

(27) 

(28)   '  

(29) 

(30) ( 

(31) 

(32) 

(33)               

(34)   

(35)     

(36)   

(37)

(38)    ) 

(39)  *+  , 

(40)  - 

(41)   #  .

(42)  

(43)   /  *0 "%   

(44)       12  !3 4   /      ! 

(45)   

(46)      

(47) 

(48)      

(49) 

(50)               5     "#0+  6+  

(51)   

(52)  

(53)  

(54)   -$  ""+/7       $$  * )  "#%+ 

(55)     

(56)        

(57)  5  128 

(58)   9 , 

(59)  "#%%           ) 

(60) %  # 7++7    .

(61) 

(62)     

(63) 

(64)          

(65)     a.         

(66)            "#0+ "#6+       

(67)          

(68)  

(69)        

(70) 

(71)   

(72)        "##+    12    

(73)

(74)   

(75)    

(76)       9      

(77)    

(78)     

(79)

(80)       7+"-      

(81) 

(82)     

(83)   

(84)   

(85)          

(86)     4

(87)   :"7;         

(88)   

(89)  . 2 Flood-mitigation structures in the City of Nîmes 2.1 Presentation of the Flood-mitigation CADEREAU program and of the implemented facilities 2.1.1 Context and Flood Prevention Strategy  12       

(90)    

(91)

(92)   

(93) 

(94)   

(95)     

(96)  

(97)  

(98)     

(99)   <    

(100)         =

(101) 

(102) 

(103) . Corresponding author: catherine.fouchier@irstea.fr. © The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/)..

(104) E3S Web of Conferences 7, 16002 (2016) FLOODrisk 2016 - 3rd European Conference on Flood Risk Management. DOI: 10.1051/ e3sconf/2016 0716002. )B      12   

(105) 

(106)       /

(107)   

(108)   

(109) /        

(110)    

(111)        

(112)  

(113) 

(114)     C!DEFE!G 

(115) 

(116) C 4      

(117)   

(118)     

(119) 

(120) >.  "##+ < 7++0 

(121)       

(122)    HH4 ' H

(123)     H (

(124) 

(125)        AIJK      

(126)   

(127)    L  F   

(128) 

(129)      

(130) 

(131) M.  7++6 < 7+"-  

(132)  

(133)    

(134)   

(135)    

(136)    'H!H4 4    12  

(137)    H

(138)    !   H

(139) 

(140) (

(141) 

(142)          A%6        

(143)   

(144)    L  F   

(145) 

(146)      

(147) 

(148)    12 

(149)    M.  7+"$ < 7+7+  

(150)  

(151)    

(152)   

(153)    

(154)    'H!H4 44(    

(155)      A"+7   F   ') 

(156)  % # 7++7 ) 

(157)  0 % 7++$ , 

(158) "+7+"-(  

(159)    

(160)     

(161)       

(162) 

(163)      

(164)  4  

(165)    

(166)  

(167) 

(168)      C 

(169)

(170)    C  9

(171) 

(172) 

(173)     

(174)   

(175)

(176)  

(177)    7++6     

(178)       

(179)   

(180) 

(181)  

(182)    

(183)   ) 

(184)  0 % 7++$           -+ 

(185) 

(186)  

(187)  

(188)                 

(189) 

(190) >.         

(191)  

(192)     /

(193)       

(194)  

(195)   

(196)  

(197)  M.

(198) 9 

(199)    

(200)  

(201)  M. 

(202)    

(203) 

(204) 

(205)        

(206)  

(207)   

(208)     

(209)  

(210)      =

(211) 

(212) 

(213)        

(214)   

(215)      HH4       "%         -  

(216)       

(217)  

(218)   H!H4 4    

(219)            

(220) 

(221)  

(222) 

(223)  

(224)  

(225)  

(226)   !3

(227)  '

(228)    

(229)     

(230) 7$  "7+*?(  H!H4 44   /      

(231)   

(232) 

(233)  

(234)   !3 

(235)    

(236) 

(237)  

(238) 

(239)   

(240)   G93 

(241)   '

(242)    

(243)       

(244)  "+  %+ *?( N

(245)   

(246) 

(247)  

(248)       

(249)       

(250) 

(251)  9   

(252) 

(253)   

(254)   

(255)                                

(256)  

(257)  AOP . '  "( 

(258)    

(259)  

(260)  

(261)  $  *+ /7

(262)     

(263)    "++/7     

(264)   

(265) > 

(266)  /

(267)      

(268)  

(269)      

(270)   =

(271) 

(272) 

(273)    

(274)          12    

(275) 

(276)         

(277)  

(278)    

(279)   

(280)    

(281)  

(282)  

(283)           

(284)

(285)       

(286)          

(287)  

(288)               

(289)   /

(290)    .

(291)       . .     

(292)  0

(293)      12. . 7+  

(294) 

(295)       

(296)    

(297)      /   

(298) /   

(299)   

(300)

(301)   

(302) 

(303)  

(304)  0++++   0+++       

(305)    

(306)   

(307)  

(308)    

(309)

(310)   

(311)   

(312)          , 

(313)  * "#%%'7(!    

(314)   -7+  6 %

(315)  

(316)   

(317)   

(318)  

(319) 7+ 7$*??/@4 

(320)   

(321)      

(322) 

(323)   7  

(324)  ,

(325)     

(326)   

(327)   

(328)    "-  *    #    -$+++  

(329)                A0"+   '  "#%#  ( 

(330)  

(331)  

(332)             7+++  "++++

(333)       . 2.1.2 The implemented flood mitigation structures. .  ,

(334)    !3

(335)    

(336)  128

(337)  

(338)   , 

(339) *"#%%. Q    

(340)  

(341) /   !DEFE!G 

(342) 

(343)           

(344)  

(345)  

(346)        

(347)  A77 >. "%

(348)              

(349)        6#++++ * '   

(350)       . . 2.

(351) E3S Web of Conferences 7, 16002 (2016) FLOODrisk 2016 - 3rd European Conference on Flood Risk Management.     B

(352)

(353)     H 

(354)   

(355)      

(356) "$ *(M. -  

(357)              

(358)    0+++++*   

(359)          

(360)      9      

(361) 

(362)    - 

(363)   

(364)       -+ 

(365) 

(366)  

(367)  

(368)  

(369)    

(370)      ) 

(371)  0 % 7++$       .     

(372)         

(373)  

(374)     '     /      ( 

(375)  

(376) 

(377)     -+

(378)  D   

(379)     7  "+     

(380)     

(381)   

(382)  "++++  *6++++ *    

(383)  

(384) 

(385) 9  /     

(386)        

(387) 

(388)  

(389)    

(390)  .         9        

(391)     

(392)           

(393)  

(394)     

(395)        

(396) /.     

(397) /  

(398)  

(399)    

(400) .   

(401)  B    

(402)        

(403)  4F)E!8                            

(404)   

(405)

(406)    >. 

(407)   

(408)     / 

(409)        

(410)  

(411) /  

(412) . 

(413)   

(414) /      M. 

(415)        

(416)    

(417)    

(418)  

(419)  

(420)  

(421)       

(422)  /M.    

(423)  

(424) / 

(425)     

(426)   /      

(427)          

(428) 

(429)  

(430)  

(431) M.     

(432)           

(433)  

(434)        

(435)    

(436)  M.     

(437)   9        

(438)  

(439)    

(440)            

(441)     

(442)   '*( . .  E      . DOI: 10.1051/ e3sconf/2016 0716002. 2.1.3 Post-flood maintenance and monitoring of the flood mitigation devices G 

(443)  

(444)  

(445)      

(446)        12 

(447)   

(448)  

(449) 

(450)    

(451)      

(452)  

(453) /     / 

(454) 

(455)      

(456)   

(457) 

(458)    

(459)             

(460)          '   

(461)   (D

(462)    

(463)      

(464)       /    

(465)    

(466)    

(467)  '$     (    

(468)        E    

(469) 

(470)  

(471)   "       

(472) 

(473) 

(474)

(475)   .  

(476) /

(477)   

(478)     7- 

(479)   

(480)  

(481) 

(482) 

(483)     ! 

(484)     

(485) 

(486)  

(487)   

(488)

(489)   9

(490)  

(491) 

(492)  

(493) 

(494)    '7++7 7++$ 7+"+  7+"-(   4 D     !  

(495)  

(496)

(497)      7++% 7+"+  7+"$       

(498)    7+"$ /        , 

(499) "+7+"-!         

(500)    

(501)  

(502)  

(503)  

(504) 

(505)    FB 3

(506)  5        !3 

(507)  

(508)  

(509)     

(510) 

(511)      

(512)  2.2 October 10, 2014 Meteorological Event over the Town of Nîmes  , 

(513)  "+ 7+"-   

(514)

(515)              

(516)   

(517)    

(518)

(519)  

(520)   12  

(521)        

(522)      ) 

(523)  "%  7# 7+"-  

(524)   /

(525)     

(526)      

(527)     

(528)       

(529)        

(530)   

(531)  

(532)        , 

(533)  "+  

(534) -     

(535)   +7$/7   

(536)         

(537)  

(538) 

(539)     7   " 

(540)    -++  

(541)    

(542)    +7$/7  

(543)   

(544)  

(545)        300-400  mm        . .       ! 

(546)     

(547) 

(548)   7  ", 

(549) "+7+"-

(550)  12

(551)  '

(552) >

(553) 

(554)   

(555)   +7$/7F RS 

(556) ? . 

(557) ?=12T(.        

(558)  

(559)  

(560)      

(561) 

(562)      <   :*;<        

(563)    "#%%     

(564)   

(565)  

(566)   . 3.

(567) E3S Web of Conferences 7, 16002 (2016) FLOODrisk 2016 - 3rd European Conference on Flood Risk Management.  

(568)      

(569)     

(570)   

(571) 

(572) >. 76%  7%#      

(573)    

(574)   "/@M. 7%$  *$/@  

(575)  M. 700     6*/@ FB 3

(576)      

(577)    !     

(578)       12          

(579)    

(580) 

(581) 

(582)     ' "(>    )NUFE& !

(583)   

(584)  

(585)      D

(586)  

(587)    

(588)   '?( '( :-; "+ 7+ $  "-- "67% 

(589)  7+ $+ "$  *-- "*60 

(590)  V"++ *+  0$% "*"0 

(591)  V"++ " "+"0 "+"0 

(592)  V"++ "7 7--0 7+- 

(593) .  )    E)H!D!

(594)   . 2.3 General behavior of the hydraulic structures during the event and post-event correcting works D

(595)         

(596)  

(597)        

(598)  

(599)    

(600)     

(601)   

(602)   F

(603)      

(604)        $*6+++*  

(605)    

(606)

(607)  /--$+++ *                

(608)  

(609)  

(610) 

(611)      H   

(612) 

(613)

(614)       , 

(615)  "- 7+"-    

(616)    

(617)  

(618)     ,   

(619)  

(620)  

(621)            

(622) 

(623)     >.  

(624) 

(625) 

(626)      /

(627)    H  FB5  M. 

(628)        

(629)     /    

(630)   ! 95  8       

(631) .  

(632) / 

(633)

(634)      

(635)        "+  ""   "7   , 

(636)  7+"-        

(637)  

(638)

(639)     W 

(640)   

(641) 

(642)  7+"$ 

(643)        

(644)  K AXPPYPPPZ        

(645) 

(646) 

(647)       H     FB 5            ! 9          

(648)  

(649)  

(650)  

(651)      

(652)   

(653)  

(654)   

(655)    

(656)      

(657)   

(658)   

(659) .   ! 

(660)   

(661) 

(662)      

(663)   

(664) 

(665) 

(666)   

(667)       

(668)  

(669) 

(670) . . F       

(671) 

(672)     

(673)   

(674)    !3 

(675)       

(676)       

(677)  

(678) 

(679)    /   

(680)     

(681)     '"7+*?(  

(682)  

(683)      12      

(684)      

(685)     /    

(686)       E)H!D! '

(687)   

(688)   

(689)     ! 

(690)         E       

(691)    H

(692)      G

(693)        E

(694)  Q

(695)   ) ( 4  

(696)   

(697) /  

(698) 

(699)              12L E

(700)  !  H  '  

(701)  ! 

(702) ( N

(703)   

(704)    

(705)     4F)E!8 &F-N   '  $(:$;     

(706)      

(707)   

(708)   

(709)   

(710) 

(711)  

(712)    

(713)    

(714)     

(715)   

(716)         /     

(717) 

(718) 

(719)  

(720) 

(721)   

(722)   

(723) /

(724)  :06;  a. DOI: 10.1051/ e3sconf/2016 0716002. 2.4 The Roquemaillère Dam 2.4.1 Dam presentation  FB 3

(725)          

(726)   

(727)    !3 

(728)          6* /@   

(729)  '0( . IRSTEA and Météo-France regional database of rainfall.. 4. .

(730) E3S Web of Conferences 7, 16002 (2016) FLOODrisk 2016 - 3rd European Conference on Flood Risk Management. DOI: 10.1051/ e3sconf/2016 0716002. 2.4.3 Hydrological analysis N

(731)   E)H!D!      

(732) 

(733) 

(734)       

(735) 

(736)     

(737)            

(738)   / ')%( .  

(739)  . .  

(740)  . .    

(741)   FB 3

(742) 5  . 4    

(743)   

(744)   

(745)          '  ! 9 5  (  

(746)      . B

(747)

(748)  

(749) .  '! B (  

(750)       

(751)  

(752)     

(753)   /@     

(754)    FB 3

(755)  5    9        -+ 

(756)        

(757)    ** /@      ! 95     5    "### 7+++          0  

(758)    6++++* 

(759)    4    /   

(760)      

(761) /  

(762)   *+6*? '  (       "-*?   

(763)  

(764) 

(765) 

(766) . .     

(767)   

(768)   

(769)   FB 3

(770) 5  . .  /   E)H!D!6**? 

(771)    

(772)  /

(773) 0%*?Q           

(774)         

(775)      

(776)       

(777)    *+          

(778) / 6>-+ !  6>++ 

(779)   

(780)     

(781)          

(782)   

(783) /  %>"$   

(784)   

(785)       6>*+

(786)          /   

(787)   

(788) 

(789)  

(790) 

(791)     4   

(792)

(793)    

(794)   

(795)   

(796)  " 

(797)  

(798)        /    

(799)    

(800) 7++$  %6*?'    

(801)  .  

(802)    

(803)  (   

(804)  7++$   

(805) 

(806)     8 

(807)   

(808)    , 

(809) "+7+"-   

(810)    

(811)     .  

(812)   ! B  5  B

(813)

(814)  '"%*(   

(815)     4     

(816)  

(817)        

(818)    

(819)    

(820)   - /@   

(821)  

(822)  , 

(823) "+7+"-    ! B 5      /

(824)  $$++++*     FB 3

(825) 5             

(826)   

(827)

(828)   /  

(829)     /         -$+++*   

(830)     /     

(831)  

(832) 

(833)       

(834)        

(835)      ' #(

(836)   

(837) 

(838)      FB 3

(839)           

(840)         /   

(841)             $+]

(842)        

(843)  

(844)   

(845)   

(846)    

(847) #   

(848) 4    

(849)  

(850)     

(851)    , 

(852)  "+              D       

(853)     

(854)  6>-+     

(855)   

(856)        

(857)       . 2.4.2 Behavior during the 10/10/2014 flood During the event, the safety spillway of Roquemaillère dam was used as can be seen from Figure 7. The water level reached 90 cm above the safety spillway crest, corresponding to a 68 m3/s peak flow.. .  FB 3

(858)      , 

(859) "+ 7+"- #>*+

(860) 

(861)   /'  [\ 0%*?(. 5.

(862) E3S Web of Conferences 7, 16002 (2016) FLOODrisk 2016 - 3rd European Conference on Flood Risk Management. 

(863) 

(864)    /0%*?     "+>++  .           &

(865)  

(866) 

(867)          

(868)            

(869)       

(870)        

(871)        ,             )   & 3   

(872) 3    

(873)

(874)   

(875)                 "##+            

(876)   F   /

(877)    .  

(878)   

(879)   !$

(880)  %          . & #

(881)  

(882)   '&

(883)   )!&E> &

(884)   F

(885)  W  G   

(886)  H    5     (    

(887)    

(888)     

(889) 

(890) 

(891)   &

(892)  

(893) 

(894)  H!H4   

(895)      !      /

(896)    &

(897)   )!&E     )   & 3   

(898) 3 .       '  "+(      

(899)  

(900)   '7+](   '-+](     '-+](         

(901)         

(902)      

(903) 

(904)  

(905)  

(906)  '7+ 

(907) (  "++ 

(908) 

(909)     

(910)  

(911) / 

(912) 

(913)       

(914)             

(915) /

(916)     

(917)     

(918)          L E

(919)  !  H  'E!H(     F/ H

(920)    H  'HHF(

(921)     

(922)               

(923) 

(924) .  

(925)  .      

(926)  

(927)    FB 3

(928) 5  

(929) 

(930)  

(931)    

(932)    

(933)  

(934) / 

(935)        

(936) 

(937)  

(938)    

(939)      

(940)

(941)  

(942) 

(943)       'FB 3

(944)  ! 9(. DOI: 10.1051/ e3sconf/2016 0716002. . 3 Esquielle River Dam 3.1 Infrastructure Presentation 3.1.1 Project Background and Design       )   & 3   

(945) 3  .        12  

(946)      "#%%  D     9 

(947)   

(948)                         

(949) /  

(950)  

(951)

(952)  

(953)      "##+     

(954)     

(955)     

(956)     EBF

(957) 4  

(958)            D  /    

(959)  

(960)   

(961)     ,  ) 

(962)  %   #  7++7   

(963)          

(964) 

(965)   

(966) 

(967)   

(968) 

(969)     EB F

(970)    

(971)    EB F

(972)  

(973) 

(974)    5

(975)   F

(976)      

(977) 

(978) '"0/    

(979)  "+# /7(   &

(980)   F

(981)   %0 /7   

(982)     EB F

(983)      7-

(984)     0++?7-4  /

(985)      "$$*? 

(986) 

(987)   -++   

(988)        

(989) 

(990)       

(991)               

(992) 

(993) /.      

(994)  

(995)    

(996)   

(997)  

(998) #  

(999)  

(1000)   '&

(1001)   F

(1002)     !

(1003)    H

(1004)    !   H  H!H4(   

(1005)    7+"*)    

(1006) /

Riferimenti

Documenti correlati

Background: The present work aimed at evaluating the effect of the dietary replacement of soybean oil (S) by two types of insect fats extracted from black soldier fly larvae

In Sections 2-4 we have reduced the problem of proving the existence and stability of pulse solution for the FitzHugh-Nagumo equation (1.1) and (1.3) to a proof of four lemmas:

The data-driven GPP data correspond to the MPI-BGC model (27), the process-based GPP corresponds to the median of an ensemble of 10 global dynamic vegetation models from the Trendy

risultati a fine periodo sulla base di idonei modelli di tipo probabilistico-predittivo. L’essenza di questo meccanismo di controllo è quindi la previsione della direzione

Ciò si è verificato anche durante il periodo di crisi pandemica, momento in cui il rapporto degli individui con il cibo si è fatto più intimo e variegato: le strategie di

In this light, the paper’s analysis has provided a contemporary interpretation of resource coordination, and has suggested that, in SE systems, movements of resources

Most probable parameters of the intrinsic event Having shown that intrinsic variability seems much more likely to be driving the observed EVPA behaviour, we wish to es- timate the