• Non ci sono risultati.

Show that n−1 X k=0 (2n + 1 − 2k) X A⊂Sk(n) Y j∈A 1 j = (n + 1)((n + 2

N/A
N/A
Protected

Academic year: 2021

Condividi "Show that n−1 X k=0 (2n + 1 − 2k) X A⊂Sk(n) Y j∈A 1 j = (n + 1)((n + 2"

Copied!
1
0
0

Testo completo

(1)

Problem 11609

(American Mathematical Monthly, Vol.118, December 2011)

Proposed by M. N. Deshpande (India).

Let n be an integer greater than 1, and let Sk(n) be the family of all subsets of {2, 3, . . . , n} with k elements. Let H(k) =Pk

j=1 1

j. Show that

n−1

X

k=0

(2n + 1 − 2k) X

A⊂Sk(n)

Y

j∈A

1

j = (n + 1)((n + 2) − H(n + 1)).

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

For n ≥ 1 and k ≥ 0, let

T (n, k) = X

A⊂Sk(n)

Y

j∈A

1 j.

Note that T (n, 0) = 1 and T (n, n) = 0. Moreover for k ≥ 1

T (n + 1, k) =T (n, k − 1)

n + 1 + T (n, k).

We show that the identity holds by induction. For n = 1

0

X

k=0

(3 − 2k)T (1, k) = 3 = (1 + 1)((1 + 2) − H(1 + 1)).

Now we assume that

n−1

X

k=0

(2n + 1 − 2k)T (n, k) = (n + 1)((n + 2) − H(n + 1)).

Hence

n

X

k=0

(2(n + 1) + 1 − 2k)T (n + 1, k) = 2n + 3 +

n

X

k=1

(2n + 3 − 2k) T (n, k − 1)

n + 1 + T (n, k)



= 1

n + 1

n

X

k=1

(2n + 1 − 2(k − 1))T (n, k − 1)

+

n−1

X

k=0

(2n + 1 − 2k)T (n, k) + 2

n−1

X

k=0

T (n, k)

=n + 2

n + 1· (n + 1)((n + 2) − H(n + 1)) + 2

n−1

X

k=0

T (n, k)

= (n + 2)((n + 2) − H(n + 1)) + n + 1 = (n + 2)((n + 3) − H(n + 2))

where we used the fact that 2Pn−1

k=0T (n, k) = n + 1 for n ≥ 1, which can be easily verified by

induction. 

Riferimenti