• Non ci sono risultati.

Y n≥0 Y kodd 0 &lt

N/A
N/A
Protected

Academic year: 2021

Condividi "Y n≥0 Y kodd 0 &lt"

Copied!
1
0
0

Testo completo

(1)

Problem 11222

(American Mathematical Monthly, Vol.113, May 2006) Proposed by J. Sondow (USA).

Fix an integerB ≥ 2, and let s(n) denote the sum of the base-B digits of n. Prove that

Y

n=0

Y

k odd 0 < k < B

 nB + k nB + k + 1

(−1)s(n)

= 1

√B.

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

Let

P := Y

n≥0

Y

kodd 0 < k < B

 nB + k nB + k + 1

ǫ(n)

and Q := Y

n≥1

Y

keven 0 ≤ k < B

 nB + k nB + k + 1

ǫ(n)

where ǫ(n) := (−1)s(n). It suffices to prove that P2= 1/B.

Then

P · Q = Y

kodd 0 < k < B

 k k + 1

ǫ(0)

·Y

n≥1

 nB nB + B

ǫ(n)

= Y

kodd 0 < k < B

 k k + 1

+1

·Y

n≥1

 n n + 1

ǫ(n)

.

If n = mB + k with 0 ≤ k < B then s(n) = s(B) + k and ǫ(n) = (−1)k· ǫ(m)

Y

n≥1

 n n + 1

ǫ(n)

= Y

0<k<B

 k k + 1

ǫ(k)

· Y

m≥1

Y

0≤k<B

 mB + k mB + k + 1

ǫ(mB+k)

= Y

kodd 0 < k < B

 k k + 1

−1

· Y

keven 0 < k < B

 k k + 1

+1

·

Y

m≥1

Y

kodd 0 < k < B

 mB + k mB + k + 1

−ǫ(m)

· Y

m≥1

Y

keven 0 ≤ k < B

 mB + k mB + k + 1

ǫ(m)

= Y

kodd 0 < k < B

 k k + 1

−1

· Y

keven 0 < k < B

 k k + 1

+1

· Y

kodd 0 < k < B

 k k + 1

+1

· P−1· Q

= Y

keven 0 < k < B

 k k + 1

+1

· P−1· Q

Therefore

P ·Q = Y

kodd 0 < k < B

 k k + 1

+1

· Y

keven 0 < k < B

 k k + 1

+1

·P−1·Q = Y

0<k<B

k k + 1

!

·P−1·Q = 1

B·P−1·Q

that is P2= 1/B. Note that all the infinite products are convergent by Abel’s theorem. 

Riferimenti