• Non ci sono risultati.

For k, r ≥ 1 ak,r= k X ir=1 1 ir X 1≤i1≤i2≤···≤ir−1≤ir 1 i1i2

N/A
N/A
Protected

Academic year: 2021

Condividi "For k, r ≥ 1 ak,r= k X ir=1 1 ir X 1≤i1≤i2≤···≤ir−1≤ir 1 i1i2"

Copied!
1
0
0

Testo completo

(1)

Problem 11164

(American Mathematical Monthly, Vol.112, June-July 2005) Proposed by J. L. D´ıaz-Barrero (Spain).

Show that ifn is a positive integer then

n

X

k=1

(−1)k+1n k

 X

1≤i≤j≤k

1 ij = 1

n2.

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

We define for k, r ≥ 1

ak,0:= 1, a0,r:= 0, ak,r:= X

1≤i1≤i2≤···≤ir≤k

1 i1i2· · ·ir

(note that ak,1= Hk = 1 + 1/2 + · · · + 1/k is the kth harmonic number).

We will prove the more general identity

n

X

k=1

(−1)k+1n k



ak,r= 1 nr.

For k, r ≥ 1

ak,r=

k

X

ir=1

1 ir

X

1≤i1≤i2≤···≤ir−1≤ir

1 i1i2· · ·ir−1

=

k

X

i=1

ai,r−1

i = ak−1,r+ak,r−1

k .

Therefore for r ≥ 1 we have that

n

X

k=1

(−1)k+1n k

 ak,r=

n

X

k=1

(−1)k+1n − 1 k − 1



+n − 1 k



ak,r

=

n

X

k=1

(−1)k+1n − 1 k − 1

h

ak−1,r+ak,r−1

k i+

n−1

X

k=1

(−1)k+1n − 1 k

 ak,r

=

n

X

k=1

(−1)k+1n − 1 k − 1



ak−1,r+1 n

n

X

k=1

(−1)k+1n k



ak,r−1+

n−1

X

k=1

(−1)k+1n − 1 k

 ak,r

= −

n−1

X

k=0

(−1)k+1n − 1 k



ak,r+1 n

n

X

k=1

(−1)k+1n k



ak,r−1+

n−1

X

k=1

(−1)k+1n − 1 k

 ak,r

= a0,r+ 1 n

n

X

k=1

(−1)k+1n k



ak,r−1= 1 n

n

X

k=1

(−1)k+1n k

 ak,r−1.

Using the above identity r times we find that

n

X

k=1

(−1)k+1n k



ak,r= 1 nr

n

X

k=1

(−1)k+1n k



ak,0= 1 nr

n

X

k=1

(−1)k+1n k



= 1 nr.



Riferimenti