• Non ci sono risultati.

Prove n X k=1 ank−1 f′(ak

N/A
N/A
Protected

Academic year: 2021

Condividi "Prove n X k=1 ank−1 f′(ak"

Copied!
1
0
0

Testo completo

(1)

Problem 12077

(American Mathematical Monthly, Vol.125, December 2018) Proposed by M. A. Alekseyev (USA).

Let f(x) be a monic polynomial of degree n with distinct zeros a1, . . . , an. Prove

n

X

k=1

ank−1 f(ak) = 1.

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Universit`a di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

Solution. We will show the following more general result:

n

X

k=1

amk f(ak) =





0 if 0 ≤ m < n − 1 1 if m = n − 1, Pn

j=1aj if m = n.

We first consider the polynomial

F(x) := xn−1

n

X

k=1

ank−1

f(ak)· f(x) x− ak

.

Note that the degree of F is n − 1 and that for 1 ≤ j ≤ n, f(x)

x− ak

x=aj

=

(0 if j 6= k, f(ak) if j = k,

which implies that F (ak) = 0 for k = 1, 2, . . . , n. Since F has n different roots, we may conclude that F is identically zero. Therefore

xn−1 =

n

X

k=1

ank−1

f(ak)· f(x) x− ak

.

For m = n − 1,

1 = [xn−1]xn−1 =

n

X

k=1

ank−1

f(ak)· [xn−1] f(x) x− ak

=

n

X

k=1

ank−1 f(ak). In similar way, we show the case m = n,

0 = [xn−2]xn−1=

n

X

k=1

ank−1

f(ak)· [xn−2] f(x) x− ak

=

n

X

k=1

ank−1 f(ak

ak

n

X

j=1

aj

=

n

X

k=1

ank f(ak)−

n

X

j=1

aj.

Finally for 0 ≤ m < n, let R > max1≤j≤n|aj|. Then, by Cauchy’s theorem, 1

2πi I

|z|=R

zm f(z)dz=

n

X

k=1

Res zm f(z); ak



=

n

X

k=1

amk f(ak)

where we used the fact that a1, . . . , an are simple poles. Since m < n − 1, the limit of the left-hand

side as R → +∞ is zero and we are done. 

Riferimenti