Home page
ESERCIZI SVOLTI
LOGARITMI Classe terza
Teoria Determinare direttamente il valore dei seguenti logaritmi:
1)
log111= x11
x= 1 11
x= 11
0x = 0 .
2)
log66= x 6x = 6 6x = 61x = 1 .
3)
log749= x 7x = 497
x= 7
2x = 2 .
4)
log327= x 3x = 27 3x = 33x = 3 .
5)
log216= x 2x = 162
x= 2
4x = 4 .
6)
log232= x 2x = 322
x= 2
5x = 5 .
7)
log82= x 8x = 22
3x= 2 3 x = 1
x= 31.
8)
log636= x 6x = 36 6x = 62x = 2 .
9)
log366= x 36x = 6 62x = 62 x = 1
x= 21.
10)
log981= x 9x = 81 32x = 342 x = 4
x= 24x = 2 .
11)
log927= x 9x = 27 32x = 332 x = 3
2 x= 3
.
12)
log133= x 33 1x =
x 1
3 1 3
1 −
=
x = − 1 .
13)
log51 25= x 25 51 x
=
2
x
5 5 1 =
x 2
5 1 5
1 −
=
x = − 2 .
14)
log51125= x 125 51x =
3
x
5 5 1 =
x 3
5 1 5
1 −
=
x = − 3 .
15)
log1327= x 27 31 x
=
3
x
3 3 1 =
x 3
3 1 3
1 −
=
x = − 3 .
16)
log1264= x 64 21x =
6
x
2 2 1 =
x 6
2 1 2
1 −
=
x = − 6 .
17)
log 21 x2
1 =
2 1 2
1x =
1 x
2 1 2
1 =
x 1
2 1 2
1
=
x = 1 .
18)
log 41 x2
1 =
4 1 2
1x =
2 x
2 1 2
1 =
x 2
2 1 2
1
=
x = 2 .
19)
log 491 x7
1 =
49 1 7
1x =
2 x
7 1 7
1 =
x 2
7 1 7
1
=
x = 2 .
20)
log2 641 = x 2x = 6416 x
2 2 1
=
2
x= 2
−6x = − 6
.
21)
log21281 = x128 2x = 1
7 x
2 2 1
=
2
x= 2
−7x = − 7
.
22)
log 1281 x2
1 =
128 1 2
1x =
x 7
2 1 2
1
=
x = 7 .
23)
log 94 x3
2 =
9 4 3
2x =
x 2
3 2 3
2
=
x = 2 .
24)
log 1681 x3
2 =
81 16 3
2x =
x 4
3 2 3
2
=
x = 4 .
25)
log 254 x5
2 =
4 25 5
2x =
x 2
2 5 5
2
=
x 2
5 2 5
2 −
=
x = − 2
.
26)
log 12527 x5
3 =
27 125 5
3x =
x 3
3 5 5
3
=
x 3
5 3 5
3 −
=
x = − 3
.
27)
log 23 x4
9 =
2 3 4
9 x
=
2 3 2
3 2x
=
2 x = 1
x= 12.
28)
log 76 x36
49 =
7 6 36
49x =
2x 1
6 7 6
7 −
=
2 x = − 1
x= − 21.
29)
log2 2= x 2x = 2 21
x
2
2 =
2x= 1
.
30) log
232 = x 2
x=
32
31
x
2
2 =
3x= 1
.
31) log
234 = x 2
x=
34
2x = 3 222
x= 2
32 3 x= 2.
32) log
333 = x
3x = 3 3 31
x
3
3 =
3x= 1
.
33) log
339 = x
3x = 3 9 3x = 3 32 32
x
3
3 =
3x= 2
.
34)
log 3 9 x3
1 = x 3 9
3 1 =
3
x 2
3 3 1 =
x 32
3 1 3
1 −
=
3
x= − 2
.
35)
log 3 5 x5
1 = x 3 5
5 1 =
x 531
5 1 =
x 13
5 1 5
1 −
=
3 x = − 1
.
Dato il logaritmo e la base determinare il numero:
1)
log3x= 0 30 = x x= 30x = 1 .
2)
log3x= 1 31 = x x= 31x = 3 .
3)
log3x= 2 32 = x x= 32x = 9 .
4)
log3x= 0 30 = x x= 30x = 1 .
5)
log2x= 42
4= x x = 2
4x = 16 .
6)
log8x= 2 82 = x x= 82x = 64 .
7)
log10x= 2 102 = x x= 102x = 100 .
8)
log10x= 4 104 = x x= 104x = 10000 .
9)
2x 1
log2 =
2
2x
1
=
21
2
x =
x= 2.
10)
2x 1
log4 =
4
2x
1
= x = 4
21 x= 4x = 2 .
11)
3x 1 log27 =
x 27
31
=
31
27
x = x =
327 x = 3 .
12)
log41x= −1 x 41 1 =
− 1
4 x 1
−
=
x = 4 .
13)
log4x= −24
−2= x x = 4
−22
4 x 1
=
16 x= 1
.
14)
log11x= −211
−2= x x = 11
−22
11 x 1
=
121 x= 1
.
15)
log51 x= 3 x 513 =
3
5 x 1
=
125 x= 1
.
16)
log41 x= −3 x 41 3 =
− 3
4 x 1
−
=
x = 4
3x = 64 .
17)
log21 x= −6 x 21 6 =
− 6
2 x 1
−
=
x = 2
6x = 64 .
18)
log0,1x= 2 log101 x= 2 x 101 2 =
2
10 x 1
=
100 x= 1
.
19)
log0,2x= 2 log x 25
1 = x
5 12 =
2
5 x 1
=
25 x= 1
.
20)
log0,5x= 3 log12x= 3 x 213 =
3
2 x 1
=
8 x= 1
.
Determinare la base dei seguenti logaritmi:
1)
logx4= 2x
2= 4 x
2= 2
2x = 2 .
2)
logx9= 2 x2 = 9 x2 = 32x = 3 .
3)
logx144= 2x
2= 144 x
2= 12
2x = 12 .
4)
logx27= 3x
3= 27
x3 = 33x = 3 .
5)
logx8= 3 x3 = 8x
3= 2
3x = 2 .
6)
logx1000= 3 x3 = 1000 x3 = 103x = 10 .
7)
logx10000= 4 x4 = 10000 x4 = 104x = 10 .
8)
logx32= 5 x5 = 32x
5= 2
5x = 2 .
9)
logx243= 5 x5 = 243 x5 = 35x = 3 .
10)
logx64= 3 x3 = 64x
3= 4
3x = 4 .
11)
logx125= 3 x3 = 125 x3 = 53x = 5 .
12)
logx64= 6 x6 = 64x
6= 2
6x = 2 .
13)
logx169= 2 x2 = 169 x2 = 132x = 13 .
14)
logx2= −1x
−1= 2 x
−1= 2
11 1
2 x 1
−
−
=
2 x= 1
.
15)
logx16= −4 x−4 = 16x
−4= 2
44 4
2 x 1
−
−
=
2 x= 1
.
16)
logx8= −3 x−3 = 8x
−3= 2
33 3
2 x 1
−
−
=
2 x= 1
.
17)
logx25= −2 x−2 = 25 x−2 = 522 2
5 x 1
−
−
=
5 x= 1
.
18)
22 1
logx =
x
22
1
= x
21= 2
12x = 2 .
19)
23 1
logx =
x
23
1
= x
21= 3
21x = 3 .
20)
32 1
logx3 = 3 3 1
2
x =
31 3 1
2
x = x = 2 .
21)
52 2
logx5 2 = 5 5 2 2
2
x = x
52= 2
52x = 2 .
22)
32 9
logx3 1 = 3 3
2
9
x = 1 3
1 3
2
9
x 1
= 3
2 3
2
3
x 1
= 3
x= 1
.
23)
32 25
logx3 1 = 3 3
2
25
x = 1 3
1 3
2
25
x 1
= 3
2 3
2
5
x 1
= 5
x= 1
.
Applicando le proprietà sui logaritmi trasformare i seguenti logaritmi neperiani in somme algebriche di logaritmi:
1)
log2a2b3 =b log 3 a log 2 2 log b log a log 2
log + 2 + 3 = + +
=
.
2)
log3a4 b =log b
2 a 1 log 4 3 log b log a log 4 3 log b log a log 3
log
21
4
+ = + + = + +
+
= .
3)
=+ 3 x
x log 5
2
(
x 3)
log5 2logx log(
x 3)
log x 5
log 2 − + = + − +
=
.
4)
3 =2 3
y y x log27
=
−
=
−
= 3
1 2
3 3 3
2
3y log y log3 x y logy
x 27 log
(
log3 logx)
35logy3 y 3log y 1 log 2 x log 3 3 log
3 + + − = + +
=
.
5)
4 =4
z y x log81
=
−
=
−
= log81x4y log4 z log34x4y logz41
( )
logz4 x 1 log 3 log 4 z 4log y 1 log x log 4 3 log
4 + + − = + −
=
.
6)
243 = d cb a log5
=
−
− +
+
=
−
= log5a4b logc2d3 log5 loga4 logb logc2 logd3 d
log 3 c log 2 b log a log 4 5
log + + − −
=
.
7)
54 3 =cd b a log49
=
−
− +
+
=
−
= log49a5b3 logcd4 log72 loga5 logb3 logc logd4 d
log 4 c log b log 3 a log 5 7 log
2 + + − −
=
.
Tenendo presente le proprietà sui logaritmi ridurre ad un unico logaritmo neperiano ciascuna delle seguenti espressioni:
1)
+ − log25+ log27=2 9 1 log 5 log
= +
− +
= +
− +
= log5 3log3
2 3 2 log 2 5 log 3 log 5 2log 3 1 log 5
log 2 2 3
3 log 5 3 log 3 5 log 3 log 2 5
log + − + =
=
.
2)
log12− log6+ log125− 15log32− log25=(
⋅)
−(
⋅)
+ − − == 2 3 log25 log52
5 5 1 log 3 2 log 2
3 log
(
+)
+ − − =− +
= 2 3 log25 log52
5 5 1 log 3 log 2 log 2
log 3 log
=
−
− +
−
− +
= log2 2log5
5 5 5 log 3 3 log 2 log 2 log 2 3 log
5 log 5 log 2 2 log 5 log 3 3 log 2 log 2 log 2 3
log + − − + − − =
=
.
3)
2log2− 13log8+ 2log3− log53− 3log2− 12log25=(
−)
− − =− +
−
= 3 log52
2 2 1 log 3 5 log 3 log 3 log 2 2 3log 2 1 log 2
=
−
− +
− +
−
= 2log2 log2 2log3 log3 log5 3log2 log5
=
−
= log3 2log2
=
−
= log3 log22
4 log3 4 log 3
log − =
.
4)
log9− 16log64− log12+ log38− 14log81+ log18=(
⋅)
+ − +(
⋅)
=−
−
= 2 6 2 3 log34 log2 32
4 1 3 log2 3 2 log 2 6log 3 1 log
(
+)
+ − − + + =−
−
= 2log3 log2 log22 log3 log23 log3 log3 log2 log32
(
+)
+ − − + + =−
−
= 2log3 log2 2log2 log3 3log2 log3 log3 log2 2log3
= +
+
−
− +
−
−
−
= 2log3 log2 2log2 log3 3log2 log3 log3 log2 2log3
= +
= log2 log3
=
log(
2⋅3)
= log6.
Applicando le proprietà calcolare i seguenti logaritmi :
1)
3 3 =3 3 log 27
=
− +
= log
327 log
33 log
333
=
− +
=
31 2 3
1 3 3
3
3 log 3 log 3
log
=
− +
= log 3
3 3 1 2log 3 1 log
3 3 3 3
osservando che
log33= 1si ha:
=
− +
= 3
1 2 3 1
− =
= +
6 2 3 18
6
= 19
.
2)
2 4 =2 2 log 16
=
− +
= log
216 log
22 log
242
=
− +
= log
22
4log
22
21log
22
41=
− +
= log 2
4 2 1 2log 2 1 log
4 2 2 2
osservando che
log22= 1si ha:
=
− +
= 4
1 2
4 1 + − =
4 1 2 16
4 17