• Non ci sono risultati.

Teoria Determinare direttamente il valore dei seguenti logaritmi:

N/A
N/A
Protected

Academic year: 2021

Condividi "Teoria Determinare direttamente il valore dei seguenti logaritmi:"

Copied!
6
0
0

Testo completo

(1)

Home page

ESERCIZI SVOLTI

LOGARITMI Classe terza

Teoria Determinare direttamente il valore dei seguenti logaritmi:

1)

log111= x

11

x

= 1 11

x

= 11

0

x = 0 .

2)

log66= x 6x = 6 6x = 61

x = 1 .

3)

log749= x 7x = 49

7

x

= 7

2

x = 2 .

4)

log327= x 3x = 27 3x = 33

x = 3 .

5)

log216= x 2x = 16

2

x

= 2

4

x = 4 .

6)

log232= x 2x = 32

2

x

= 2

5

x = 5 .

7)

log82= x 8x = 2

2

3x

= 2 3 x = 1

x= 31

.

8)

log636= x 6x = 36 6x = 62

x = 2 .

9)

log366= x 36x = 6 62x = 6

2 x = 1

x= 21

.

10)

log981= x 9x = 81 32x = 34

2 x = 4

x= 24

x = 2 .

11)

log927= x 9x = 27 32x = 33

2 x = 3

2 x= 3

.

12)

log133= x 3

3 1x =

 

x 1

3 1 3

1



 

= 



 

x = − 1 .

13)

log51 25= x 25 5

1 x

 =

 

2

x

5 5 1 =

 

x 2

5 1 5

1



 

= 



 

x = − 2 .

14)

log51125= x 125 5

1x =

 

3

x

5 5 1 =

 

x 3

5 1 5

1



 

= 



 

x = − 3 .

15)

log1327= x 27 3

1 x

 =

 

3

x

3 3 1 =

 

x 3

3 1 3

1



 

= 



 

x = − 3 .

16)

log1264= x 64 2

1x =

 

6

x

2 2 1 =

 

x 6

2 1 2

1



 

= 



 

x = − 6 .

17)

log 21 x

2

1 =

2 1 2

1x =

 

1 x

2 1 2

1 =

 

x 1

2 1 2

1

 

= 



 

x = 1 .

18)

log 41 x

2

1 =

4 1 2

1x =

 

2 x

2 1 2

1 =

 

x 2

2 1 2

1

 

= 



 

x = 2 .

19)

log 491 x

7

1 =

49 1 7

1x =

 

2 x

7 1 7

1 =

 

x 2

7 1 7

1

 

= 



 

x = 2 .

20)

log2 641 = x 2x = 641

6 x

2 2 1

 

= 

2

x

= 2

6

x = − 6

.

(2)

21)

log21281 = x

128 2x = 1

7 x

2 2 1

 

= 

2

x

= 2

7

x = − 7

.

22)

log 1281 x

2

1 =

128 1 2

1x =

 

x 7

2 1 2

1

 

= 



 

x = 7 .

23)

log 94 x

3

2 =

9 4 3

2x =

 

x 2

3 2 3

2

 

= 



 

x = 2 .

24)

log 1681 x

3

2 =

81 16 3

2x =

 

x 4

3 2 3

2

 

= 



 

x = 4 .

25)

log 254 x

5

2 =

4 25 5

2x =

 

x 2

2 5 5

2

 

= 



 

x 2

5 2 5

2



 

= 



 

x = − 2

.

26)

log 12527 x

5

3 =

27 125 5

3x =

 

x 3

3 5 5

3

 

= 



 

x 3

5 3 5

3



 

= 



 

x = − 3

.

27)

log 23 x

4

9 =

2 3 4

9 x

 =

 

2 3 2

3 2x

 =

 

2 x = 1

x= 12

.

28)

log 76 x

36

49 =

7 6 36

49x =

 

2x 1

6 7 6

7



 

= 



 

2 x = − 1

x= 21

.

29)

log2 2= x 2x = 2 2

1

x

2

2 =

2

x= 1

.

30) log

23

2 = x 2

x

=

3

2

3

1

x

2

2 =

3

x= 1

.

31) log

23

4 = x 2

x

=

3

4

2x = 3 22

2

x

= 2

32 3 x= 2

.

32) log

33

3 = x

3x = 3 3 3

1

x

3

3 =

3

x= 1

.

33) log

33

9 = x

3x = 3 9 3x = 3 32 3

2

x

3

3 =

3

x= 2

.

34)

log 3 9 x

3

1 = x 3 9

3 1 =

 

3

x 2

3 3 1 =

 

x 32

3 1 3

1

=

3

x= − 2

.

35)

log 3 5 x

5

1 = x 3 5

5 1 =

 

x 531

5 1 =

 

x 13

5 1 5

1

=

3 x = − 1

.

Dato il logaritmo e la base determinare il numero:

1)

log3x= 0 30 = x x= 30

x = 1 .

2)

log3x= 1 31 = x x= 31

x = 3 .

3)

log3x= 2 32 = x x= 32

x = 9 .

4)

log3x= 0 30 = x x= 30

x = 1 .

5)

log2x= 4

2

4

= x x = 2

4

x = 16 .

6)

log8x= 2 82 = x x= 82

x = 64 .

(3)

7)

log10x= 2 102 = x x= 102

x = 100 .

8)

log10x= 4 104 = x x= 104

x = 10000 .

9)

2

x 1

log2 =

2

2

x

1

=

2

1

2

x =

x= 2

.

10)

2

x 1

log4 =

4

2

x

1

= x = 4

21 x= 4

x = 2 .

11)

3

x 1 log27 =

x 27

3

1

=

3

1

27

x = x =

3

27 x = 3 .

12)

log41x= 1 x 4

11 =

 

1

4 x 1



 

= 

x = 4 .

13)

log4x= −2

4

2

= x x = 4

2

2

4 x 1

 

= 

16 x= 1

.

14)

log11x= −2

11

2

= x x = 11

2

2

11 x 1

 

= 

121 x= 1

.

15)

log51 x= 3 x 5

13 =

 

3

5 x 1

 

= 

125 x= 1

.

16)

log41 x= 3 x 4

13 =

 

3

4 x 1



 

= 

x = 4

3

x = 64 .

17)

log21 x= 6 x 2

16 =

 

6

2 x 1



 

= 

x = 2

6

x = 64 .

18)

log0,1x= 2 log101 x= 2 x 10

12 =

 

2

10 x 1

 

= 

100 x= 1

.

19)

log0,2x= 2 log x 2

5

1 = x

5 12 =

 

2

5 x 1

 

= 

25 x= 1

.

20)

log0,5x= 3 log12x= 3 x 2

13 =

 

3

2 x 1

 

= 

8 x= 1

.

Determinare la base dei seguenti logaritmi:

1)

logx4= 2

x

2

= 4 x

2

= 2

2

x = 2 .

2)

logx9= 2 x2 = 9 x2 = 32

x = 3 .

3)

logx144= 2

x

2

= 144 x

2

= 12

2

x = 12 .

4)

logx27= 3

x

3

= 27

x3 = 33

x = 3 .

5)

logx8= 3 x3 = 8

x

3

= 2

3

x = 2 .

6)

logx1000= 3 x3 = 1000 x3 = 103

x = 10 .

7)

logx10000= 4 x4 = 10000 x4 = 104

x = 10 .

8)

logx32= 5 x5 = 32

x

5

= 2

5

x = 2 .

9)

logx243= 5 x5 = 243 x5 = 35

x = 3 .

10)

logx64= 3 x3 = 64

x

3

= 4

3

x = 4 .

11)

logx125= 3 x3 = 125 x3 = 53

x = 5 .

12)

logx64= 6 x6 = 64

x

6

= 2

6

x = 2 .

13)

logx169= 2 x2 = 169 x2 = 132

x = 13 .

14)

logx2= −1

x

1

= 2 x

1

= 2

1

1 1

2 x 1

 

= 

2 x= 1

.

(4)

15)

logx16= −4 x4 = 16

x

4

= 2

4

4 4

2 x 1

 

= 

2 x= 1

.

16)

logx8= −3 x3 = 8

x

3

= 2

3

3 3

2 x 1

 

= 

2 x= 1

.

17)

logx25= −2 x2 = 25 x2 = 52

2 2

5 x 1

 

= 

5 x= 1

.

18)

2

2 1

logx =

x

2

2

1

= x

21

= 2

12

x = 2 .

19)

2

3 1

logx =

x

2

3

1

= x

21

= 3

21

x = 3 .

20)

3

2 1

logx3 = 3 3 1

2

x =

3

1 3 1

2

x = x = 2 .

21)

5

2 2

logx5 2 = 5 5 2 2

2

x = x

52

= 2

52

x = 2 .

22)

3

2 9

logx3 1 = 3 3

2

9

x = 1 3

1 3

2

9

x 1

 

=  3

2 3

2

3

x 1

 

=  3

x= 1

.

23)

3

2 25

logx3 1 = 3 3

2

25

x = 1 3

1 3

2

25

x 1

 

=  3

2 3

2

5

x 1

 

=  5

x= 1

.

Applicando le proprietà sui logaritmi trasformare i seguenti logaritmi neperiani in somme algebriche di logaritmi:

1)

log2a2b3 =

b log 3 a log 2 2 log b log a log 2

log + 2 + 3 = + +

=

.

2)

log3a4 b =

log b

2 a 1 log 4 3 log b log a log 4 3 log b log a log 3

log

2

1

4

+ = + + = + +

+

= .

3)

=

+ 3 x

x log 5

2

(

x 3

)

log5 2logx log

(

x 3

)

log x 5

log 2 − + = + − +

=

.

4)

3 =

2 3

y y x log27

=

=

= 3

1 2

3 3 3

2

3y log y log3 x y logy

x 27 log

(

log3 logx

)

35logy

3 y 3log y 1 log 2 x log 3 3 log

3 + + − = + +

=

.

5)

4 =

4

z y x log81

=

=

= log81x4y log4 z log34x4y logz41

( )

logz

4 x 1 log 3 log 4 z 4log y 1 log x log 4 3 log

4 + + − = + −

=

.

(5)

6)

243 = d c

b a log5

=

− +

+

=

= log5a4b logc2d3 log5 loga4 logb logc2 logd3 d

log 3 c log 2 b log a log 4 5

log + + − −

=

.

7)

54 3 =

cd b a log49

=

− +

+

=

= log49a5b3 logcd4 log72 loga5 logb3 logc logd4 d

log 4 c log b log 3 a log 5 7 log

2 + + − −

=

.

Tenendo presente le proprietà sui logaritmi ridurre ad un unico logaritmo neperiano ciascuna delle seguenti espressioni:

1)

+ log25+ log27=

2 9 1 log 5 log

= +

− +

= +

− +

= log5 3log3

2 3 2 log 2 5 log 3 log 5 2log 3 1 log 5

log 2 2 3

3 log 5 3 log 3 5 log 3 log 2 5

log + − + =

=

.

2)

log12 log6+ log125 15log32 log25=

(

)

(

)

+ =

= 2 3 log25 log52

5 5 1 log 3 2 log 2

3 log

(

+

)

+ =

− +

= 2 3 log25 log52

5 5 1 log 3 log 2 log 2

log 3 log

=

− +

− +

= log2 2log5

5 5 5 log 3 3 log 2 log 2 log 2 3 log

5 log 5 log 2 2 log 5 log 3 3 log 2 log 2 log 2 3

log + − − + − − =

=

.

3)

2log2 13log8+ 2log3 log53 3log2 12log25=

(

)

=

− +

= 3 log52

2 2 1 log 3 5 log 3 log 3 log 2 2 3log 2 1 log 2

=

− +

− +

= 2log2 log2 2log3 log3 log5 3log2 log5

=

= log3 2log2

=

= log3 log22

4 log3 4 log 3

log − =

.

4)

log9 16log64 log12+ log38 14log81+ log18=

(

)

+ +

(

)

=

= 2 6 2 3 log34 log2 32

4 1 3 log2 3 2 log 2 6log 3 1 log

(

+

)

+ + + =

= 2log3 log2 log22 log3 log23 log3 log3 log2 log32

(

+

)

+ − − + + =

= 2log3 log2 2log2 log3 3log2 log3 log3 log2 2log3

= +

+

− +

= 2log3 log2 2log2 log3 3log2 log3 log3 log2 2log3

= +

= log2 log3

=

log

(

23

)

= log6

.

Applicando le proprietà calcolare i seguenti logaritmi :

(6)

1)

3 3 =

3 3 log 27

=

− +

= log

3

27 log

3

3 log

33

3

=

− +

=

3

1 2 3

1 3 3

3

3 log 3 log 3

log

=

− +

= log 3

3 3 1 2log 3 1 log

3 3 3 3

osservando che

log33= 1

si ha:

=

− +

= 3

1 2 3 1

− =

= +

6 2 3 18

6

= 19

.

2)

2 4 =

2 2 log 16

=

− +

= log

2

16 log

2

2 log

24

2

=

− +

= log

2

2

4

log

2

2

21

log

2

2

41

=

− +

= log 2

4 2 1 2log 2 1 log

4 2 2 2

osservando che

log22= 1

si ha:

=

− +

= 4

1 2

4 1 + − =

4 1 2 16

4 17

.

Torna su

Riferimenti

Documenti correlati