• Non ci sono risultati.

CRC Press

N/A
N/A
Protected

Academic year: 2021

Condividi "CRC Press"

Copied!
5
0
0

Testo completo

(1)

[1] E. J. Barbero. 2011. “Introduction to composite material design”. CRC Press.

[2] Bell-Boeing. 2013. “V-22 Osprey Guidebook, 2013/2014”.

[3] “787 Dreamliner Program Fact Sheet” Boeing web page www.boeing.com. Re- trieved July 10, 2007.

[4] A. D. McNaught and A. Wilkinson. (1997). “IUPAC. Compendium of Chemi- cal Terminology, 2nd ed. (the “Gold Book”)” Blackwell Scientific Publications, Oxford. XML on-line corrected version: http://goldbook.iupac.org (2006) created by M. Nic, J. Jirat, B. Kosata; updates compiled by A. Jenkins.

[5] J. R. Tarpani, M. T. Milan, D. Spinelli and W. W. Bose. 2006. “Mechanical performance of carbon-epoxy laminates Part II: quasi-static and fatigue tensile properties” Materials Research vol.9 no.2.

[6] R. Byron Pipes and N. J. Pagano. 1970. “Interlaminar stresses in composite laminates under uniform axial extension” Journal of Composite Materials 4:538- 548.

[7] E. J. Barbero. 2013. “Finite Element Analysis of Composite Materials using Abaqus” CRC Press.

[8] K. I. Tserpes, P. Papanikos and T. Kermanidis. 2001. “A three-dimensional progressive damage model for bolted joints in composite laminates subjected to tensile loading” Fatigue and Fracture of Engineering Materials and Structures 24:663-675.

(2)

Bibliography

[9] T. Ireman, T. Ranvik and I. Erikkson. 2000. “On damage development in me- chanically fastened composite laminates” Composite Structures 49:151-71.

[10] Standard Test Method for Bearing Response of Polymer Matrix Composite Laminates, Active Standard ASTM D5961.

[11] R. A. Bendigo, J. W. Fisher and J. L. Rumpf. 1962. “Static tension test of bolted lap joints, August 1962” Fritz Laboratory Reports, Paper 1741.

[12] H. S. Wang, C. L. Hung and F. K. Chang. 1996. “Bearing failure of bolted composite joints. Part I: Experimental characterization” Journal of Composite Materials 30:1284-313.

[13] P. P. Camanho, S. Bowron and F. L. Matthews. 1998. “Failure mechanisms in bolted CFRP” Journal of Reinforced Plastics and Composites 17:205-33.

[14] R. Starikov and J. Schon. 2001. “Quasi-static behavior of composite joints with countersunk composite and metal fasteners” Composites part B 32:401-411.

[15] M. Chisti, C. H. Wang, R. S. Thomson and A. C. Orifici. 2012. “Experimen- tal investigation of damage progression and strength of countersunk composite joints” Composite Structures 94:865-873.

[16] A. A. Griffith. 1921. “The phenomena of rupture and flow in solids” Philosoph- ical Transactions of the Royal Society of London, A 221:16319.

[17] G. R. Irwin. 1957. “Analysis of stresses and strains near the end of a crack traversing a plate” Journal of Applied Mechanics 24:361364.

[18] O. Aluko and H. A. Whitworth. 2008. “Analysis of stress distribution around pin loaded holes in orthotropic plates” Composite Structures 86:308-313.

[19] H. A. Whitworth, O. Aluko and N. A. Tomlinson. 2008. “Application of the point stress criterion to the failure of composite pinned joints” Engineering Frac- ture Mechanics 75:1829-1839.

[20] C. Derdas and V. Kostopoulos. 2011. “On the bearing failure of laminated composite pin-loaded joints: exploitation of semi-analytical solutions for the determination of the stress state” Strain 47:320-332.

(3)

[21] S. W. Tsai and E. M. Wu. 1971. “A General Theory of Strength for Anisotropic Materials” Journal of Composite Materials 5(1):5880.

[22] Z. Hashin. 1980. “Failure criteria for unidirectional fiber composites” Journal of Applied Mechanics 47(2):329-334.

[23] A. Puck and H. Shurmann. 1998. “Failure analysis of FRP laminates by means of physically based phenomenological models” Composites Science and Technol- ogy 58:1045-1067.

[24] O. O. Ochoa and J. N. Reddy. 1992. “Finite Element Analysis of Composite Laminates” Springer Netherlands.

[25] B. Egan, C. T. McCarthy , M. A. McCarthy, P. J. Gray and R.M. Frizzell.

2012. “Modelling a single-bolt countersunk composite joint using implicit and explicit finite element analysis” Computational Materials Science 64:203-208.

[26] Y. Xiao and T. Ishikawa. 2005. “Bearing strength and failure behavior of bolted composite joints (part II: modeling and simulation)” Composites Science and Technology 65:10321043.

[27] J. H. Choi and Y. J. Chun. 2003. “Failure Load Prediction of Mechanically Fastened Composite Joints” Journal of Composite Materials 37:2163.

[28] L. B. Lessard and M. M. Shokrieh. 1995. “2-Dimensional modeling of composite pinned-joint failure” Journal of Composite Materials 29:671697.

[29] P. P. Camanho and F. L. Matthews. 1999. “A progressive damage model for mechanically fastened joints in composite laminates” Journal of Composite Ma- terials 33:22482280.

[30] Cohesive elements. Abaqus Users Manual (6.14) - Section 35.2.

[31] T. Dihel. 2004. “Modeling surface-bonded structures with abaqus cohesive ele- ments: beam-type solutions” 2004 ABAQUS Users Conference.

[32] A. Atas, G. F. Mohamed and C. Soutis. 2012. “Modelling delamination onset and growth in pin loaded composite laminates” Composites Science and Tech- nology 72:10961101.

(4)

Bibliography

[33] W. W. Stinchcomb. 1986. “Nondestructive evaluation of damage accumulation processes in composite laminates” Composites Science and Technology 25:103- 118

[34] A. Kapadia. “Non destructive testing of composite materials” National Com- posite Network.

[35] B. S. Hayes and L. M. Gammon. 2010. “Optical microscopy of fiber-reinforced composites” ASM International.

[36] J. C. Abrya, S. Bocharda, A. Chateauminoisa, M. Salviaa and G. Giraudb.

1999. “In situ detection of damage in CFRP laminates by electrical resistance measurements” Composites Science and Technology 59:925-935.

[37] D. G. Aggelis, N. M. Barkoula, T. E. Matikas and A. S. Paipetis. 2013. “Acous- tic Emission as a Tool for Damage Identification and Characterization in Glass Reinforced Cross Ply Laminates” Applied Composite Materials 20:489-503.

[38] K. J. Wong, X. J. Gong, S. Aivazzadeh and M. N. Tamin. 2011. “Tensile be- havior of anti-symmetric CFRP composite” Procedia Engineering 10:1865-1870.

[39] “Testing system product page”. Instron web page (www.instron.com).

[40] R. M. Jones. 1998. “Mechanics of Composite Materials” CRC Press.

[41] G. Alfano and M. A. Crisfield. 2001. “Finite element interface models for the delamination analysis of laminated composites: mechanical and computational issues” International Journal of Numerical Methods in Engineering 50:1701-1736.

[42] Delamination analysis of laminated composites. Abaqus benchmarks guide (6.14) Section 2.7.1.

[43] P. Gaudenzi, A. Mannini and R. Carbonaro. 1998. “Multi-layer higher-order finite elements for the analysis of free-edge stresses in composite laminates”

International Journal for Numerical Methods in Engineering 41:851-873.

[44] R. L. Spilker and S. C. Chou. 1980. “Edge effects in symmetric composite laminates: importance of satisfying the traction free-edge condition” Journal of Composite Materials 14:2-20.

(5)

symmetric composite laminates” Journal of Composite Materials 11:92-106.

[46] P. W. Hsu and C. T. Herakovich. 1977. “Edge effects in angle-ply composite laminates” Journal of Composite Materials 11:422.

[47] L. F. Kawashita, M. I. Jones, R. S. Trask, S. R. Hallet and M. R. Winsom. 2009.

“Static and fatigue delamination from discontinuous plies - experimental and numerical investigations” 17th International conference on composite materials (ICCM17).

[48] Continuum shell element library. Abaqus users manual (6.14) Section 29.6.8.

[49] H.A. Whitworth, M. Othieno and O. Barton. 2003. “Failure analysis of com- posite pin loaded joints” Composite Structures 59:261-266.

[50] Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidi- rectional Fiber-Reinforced Polymer Matrix Composites, Active Standard ASTM D5528.

[51] T. Hasiotis, E. Badogiannis and N. G. Tsouvalis. 2011. “Application of ultra- sonic C-scan techniques for tracing defects in laminated composite materials”

Journal of Mechanical Engineering 57:192-203.

Riferimenti

Documenti correlati

Conclusion: No impairment or differences in renal parameters were found in pre-school children born ELBW compared with those born with VLBW, except for differences in kidney

Our fastest algorithm stores, during the discovery process, for each distinct substring the next delay value which is (y, d)-unique, using a priority queue to find these values and

Ultrafast lasers: from femtoseconds to attoseconds Manipulating matter with the light A Nobel cause: public engagement and outreach Extreme Light Infrastructure Nuclear

As a sort of capacity design, it is neces- sary to assure for the glued-in rod joint a resistance associated to failure modes 2, 3, 4, 5 (pull-out, tear out, splitting, tensile

Moreover, the crack propagation rate observed during the experimental tests is different between the off-axis layer and depends on the strain level applied; in fact the - 60° layers

vesca, più frequentemente, vengono utilizzate piante di cultivar rifiorenti provenienti da vivai che applicano tecniche tradizionali di preparazione delle piante, che partono

In this respect, the presence of a large number of stone wine presses in Sardinia, such as the one found in the nuraghe Genna Maria described in this article, confirms the

Strain energy release rate computations using a 2D finite element model evidenced a decrease of the mode I SERR and an increase of the mode II SERR near the disbond arrest feature..