• Non ci sono risultati.

Initial Conditions for Critical Higgs Inflation

N/A
N/A
Protected

Academic year: 2021

Condividi "Initial Conditions for Critical Higgs Inflation"

Copied!
7
0
0

Testo completo

(1)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Initial

conditions

for

critical

Higgs

inflation

Alberto Salvio

CERN,TheoreticalPhysicsDepartment,Geneva,Switzerland

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory:

Received12December2017 Receivedinrevisedform2March2018 Accepted2March2018

Availableonline6March2018 Editor:M.Trodden

Keywords:

Inflation Higgsboson StandardModel

It hasbeen pointed outthatalarge non-minimal couplingξ betweenthe Higgsand theRicci scalar cansource higherderivativeoperators,whichmaychangethepredictionsofHiggsinflation.A variant, calledcriticalHiggsinflation,employsthenear-criticalityofthetopmasstointroduceaninflectionpoint in the potential and lower drastically the value of ξ. We here studywhether criticalHiggs inflation canoccur evenifthepre-inflationaryinitialconditionsdonotsatisfythe slow-rollbehavior (retaining translationandrotationsymmetries).A positiveanswerisfound:inflationturnsouttobeanattractor and therefore no fine-tuning of the initial conditions is necessary. A very large initial Higgs time-derivative(ascomparedtothepotentialenergydensity)iscompensatedbyamoderateincreaseinthe initialfieldvalue.TheseconclusionsarereachedbysolvingtheexactHiggsequationwithoutusingthe slow-rollapproximation.Thisalsoallowsustoconsistentlytreattheinflectionpoint,wherethestandard slow-rollapproximationbreaksdown.HerewemakeuseofanapproachthatisindependentoftheUV completionofgravity,bytakinginitialconditionsthatalwaysinvolvesub-planckianenergies.

©2018PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

SofarnoclearevidenceforphysicsbeyondtheStandardModel atthescalesexploredbytheLHChasbeenfound.Inthissituation, itis usefultolook forcomplementarytests. The extrapolationof theSM atenergies muchabovethosereachableatcollidersoffers a newway to look forfurther evidence of newphysics (besides thealreadyestablishedones,suchasneutrinooscillationsanddark matter).

Inflationisanaturalarenatoperformthesetests.Itwasfound thattheHiggs oftheSM mightplaythe roleofthe inflaton pro-videdthat asizablenon-minimalcoupling

ξ

withtheRicciscalar

R is introduced. Ref. [1] considered originally the caseof a very large

ξ,

which corresponds to the SM living well inside the so calledstability region.1 In thissetup two different scales appear, thereducedPlanckmass M

¯

Pl



2.435

×

1018 GeVandM

¯

Pl

and

a violationof perturbative unitarity at M

¯

Pl

has been found by

consideringscatterings ofparticles viewedasfluctuationsaround theEWvacuum [2,3].Thisleadstothenecessityofnewphysicsor strongcouplingmethods toanalyze thatphysicalsituation.While thisdoesnot undoubtedlyexcludeHiggsinflation (HI)asthe

rel-✩ Reportnumber:CERN-TH-2017-261.

E-mailaddress:[email protected].

1 Thisistheregionofparameterspacewheretheelectroweak(EW)vacuumis

theglobalminimumoftheSMeffectivepotential.

evantexpansion inthat caseisaround alargeHiggsfield [4],the issuemaybeavoidedbylivingveryclosetotheboundarybetween stabilityandmetastability,2 thesocalledcriticality.Indeed,a dras-ticdecreaseof

ξ

occursatcriticality [5–7],leadingtoasinglenew physicsscale, M

¯

Pl,wherequantumgravityeffectsare expectedto

emerge.

Moreover, in [8] another issue of the large-ξ HIwas pointed out.Atthequantumlevel,itisnecessarytotunethehighenergy values of some parameters in order to preserve the inflationary predictions:ifthisisnotdonelargehigherderivativetermsinthe effectiveaction,suchas R2,aregenerated,changingtheoutputof

the model (see also [9]). However, Ref. [8] did not consider the criticalHIcase,which,asstatedabove,doesnotrequirealarge

ξ.

TheaimofthisarticleistoinvestigatewhethercriticalHI suf-fersfromanytuninginthechoiceofthehighenergyparameters. This will includein particular the analysisof the dependence of criticalHI onthe initial (pre-inflationary) conditions.Indeed,any

slow-roll model of inflation, such as HI, should provide a mech-anism that drives generic initial conditions to slow-rolling con-figurations, i.e.an inflationary attractor. Ifsuch an attractordoes not existafine-tuning oftheinitialconditionsis required,which makes the whole idea of inflation less attractive, given that its

2 Themetastabilityregionistheregionofparameterspacewherethelifetimeof

theEWvacuumexceedstheageoftheuniverse. https://doi.org/10.1016/j.physletb.2018.03.009

(2)

main purpose is to solve fine-tuning problems (the horizon and flatnessproblems).

The paper is organized as follows. In Sec. 2 details ofHI are given,includingtheclassicalanalysisofinflationandadescription ofthequantumcorrections;there,wewilladdressthequestionof whetherafine-tuningofthehighenergyconditionsoftherunning parametersisrequiredincriticalHI.InSec.3wewillconsider ini-tialconditionsviolatingtheslow-rollbehavior inordertoestablish theexistenceofaninflationaryattractorinHI;bothanalyticaland numericalargumentswillbeused.Finally,Sec.4providesthe con-clusions.

2. Themodel

LetusdefinetheHiggsinflationmodel[1].Theactionis

S

=



d4x

−g



L

SM



¯

M2Pl 2

+ ξ|H|

2



R



,

(1)

whereH istheHiggsdoublet,

ξ

isarealparameterand

g

L

SM

istheSMLagrangianminimallycoupledtogravity.Thepartofthe action that depends on the metric and the Higgs field only (the

scalar-tensorpart)is Sst

=



d4x

g



|∂

H

|

2

V



¯

M2Pl 2

+ ξ|

H

|

2



R



,

(2)

where V

= λ(|

H

|

2

v2

/2)

2 istheclassical Higgspotential,andv

isthe EW Higgsvacuumexpectationvalue. We assume asizable non-minimalcoupling,

ξ >

1,becausethisisrequiredbyinflation aswewillsee.

2.1. Classicalanalysis

The

ξ

|

H

|

2R termcanbeeliminated throughaconformal

trans-formation(a.k.a.Weyltransformation): gμν

→ 

−2gμν

,



2

=

1

+

2

ξ

|

H

|

2

¯

MPl2

.

(3)

Theoriginalframe,wheretheLagrangianhastheforminEq. (1),is calledtheJordanframe,whiletheonewheregravityiscanonically normalized(obtainedwiththetransformationabove)iscalledthe Einsteinframe.Intheunitarygauge,wheretheonlyscalarfieldis theradialmode

φ



2

|

H

|

2,wehave(afterhavingperformedthe

conformaltransformation) Sst

=



d4x

g



K

(∂φ)

2 2

V



4

¯

M2Pl 2 R



,

(4) and K

= 

−4





2

+

3 2



d



2 d

φ

2



.

(5)

The non-canonical Higgs kinetic term can be made canonical throughthefieldredefinition

φ

= φ(

χ

)

definedby

d

φ

= 

−2



2

+

3 2



d



2 d

φ

2

,

(6)

withtheconventional condition

φ (

χ

=

0)

=

0.Notethat

φ (

χ

)

is invertiblebecauseEq. (6) tellsusd

χ

/

d

φ >

0.Thus,onecanextract thefunction

φ (

χ

)

byinvertingthefunction

χ

(φ)

definedabove.

Notethat

χ

feelsapotential U

V



4

=

λ(φ (

χ

)

2

v2

)

2

4

(

1

+ ξφ(χ

)

2

/ ¯

M2Pl

)

2

.

(7)

Letusnowrecall howslow-roll inflationemerges inthis con-text. From (6) and (7) it follows [1] that U is exponentially flat when

χ

 ¯

MPl,whichisakeypropertytohaveinflation.Indeed,

forsuchhighfieldvaluesthequantities

U

¯

M2 Pl 2



1 U dU

2

,

η

U

¯

M2 Pl U d2U 2 (8)

areguaranteedtobesmall.Therefore,theregioninfield configura-tionswhere

χ

 ¯

MPl(orequivalently[1]

φ

 ¯

MPl

/

ξ)

corresponds

toinflation.InSec.3we willinvestigatewhethersuccessful slow-roll inflation emergesalso forlarge initialfield kinetic energy. In this subsection we simply assume that the time derivatives are small.Inthiscase,duringthewholeinflationtheslow-roll param-eters

U and

η

U aresmallandtheslow-rollapproximationcanbe used.

Alltheparameters ofthemodelcan bedeterminedwithgood accuracythroughexperimentsandobservations,including

ξ

[1,10].

ξ

can be fixed by requiring that the measured curvature power spectrum(athorizonexit3 q

=

aH )[11],4

PR

(

q

)

 (

2

.

14

±

0

.

06

)

×

10−9

,

(9)

isreproducedforafieldvalue

φ

= φ

b corresponding toan

appro-priatenumberofe-folds[10]:

N

=

φb



φe U

¯

M2Pl



dU d

φ

1



d

φ

2 d

φ



59

,

(10)

where

φe

is the field value atthe endof inflation, computedby requiring

e

)



1

.

(11)

Intheslow-rollapproximation(usedinthissubsection)such con-straintcanbeimposedbyusingthestandardformula

PR

(

k

)

=

U

/

U 24

π

2M

¯

4

Pl

.

(12)

ForN

=

59,thisprocedureleadsto

ξ

 (

5

.

02

0

.

06

)

×

104

λ,

(

N

=

59

)

(13) where the uncertainty corresponds to the experimental uncer-taintyquotedinEq. (9).Notethat

ξ

dependsonN:

ξ

 (

4

.

61

0

.

06

)

×

104

λ

(

N

=

54

),

(14)

ξ

 (

5

.

43

0

.

06

)

×

104

λ

(

N

=

64

).

(15) Giventhat

λ

0.1,

ξ

hastobemuchlargerthanoneatthe classi-callevel.Theneedofaverylarge

ξ

canbeavoidedwhenquantum correctionsareincluded[5–7], aswe willseeinthenext subsec-tion.

3 Weuseastandardnotation:a isthecosmologicalscalefactor,H≡ ˙a/a anda

dotdenotesthederivativewithrespectto(cosmic)time,t.

4 SeeforinstanceTable3ofthesecondpaperinRef. [11] ( P

R isdenotedwith Asinthattable).Thevaluequotedherecorrespondstotheonewiththesmallest uncertaintyinthattable.

(3)

Wecanalsoextractthescalarspectralindexnsandthe tensor-to-scalarratio r: in the slow-roll approximation we are usingin thissubsectiontheformulæarer

=

16

U andns

=

1

6

U

+

2

η

U. Theseparametersareofinterestastheyareconstrainedby obser-vations.

2.2.Quantumcorrections

Here we take into account quantum corrections to the Higgs potential. We would like to include both the large-ξ inflation-ary scenario of [1] and the critical Higgs inflation proposed in [5–7], whichemploys a value ofthe top massclose to the fron-tier between stability and metastability of the electroweak vac-uum.Thelattercaseallows fora drasticdecreaseoftherequired valueof

ξ

withrespecttotheresultoftheclassical analysis(see Eqs. (13)–(15).). Thisindicatesthat wecannot relyonlarge-ξ ap-proximations to analyze this case. We thereforedo not use such approximationshere.However,wedoassumeinthefollowingthat

ξ >

1 asthisconditionispresentbothintheoriginalformulation ofHIandincriticalHI.

Notethat Eqs. (3)–(6) holdalsoif

ξ

isfield-dependent,as dic-tated by quantum corrections [12]. A second step we should do nowisthecomputation ofthe effectivepotential.Indefining the quantumtheorytherearewell-knownambiguities[13,14,6,15,16]. WefollowhereRef. [6] andchoose todeterminetheloop correc-tionstotheeffectivepotential–a.k.a.Coleman–Weinbergpotential – in the Einstein frame (after having performed the conformal transformation (3)); the effective potential is also RG-improved byusing theRGEs5 of theSM properlymodified to take into ac-count

ξ.

Theway

ξ

affectstherunningisthroughtheappearance ofafactors thatsuppressesthecontributionofthephysicalHiggs fieldtotheRGEs[17].Ref. [17] found

s

=

1

+ ξφ

2

/ ¯

M2 Pl 1

+ (

1

+

6

ξ )ξ φ

2

/ ¯

M2 Pl

.

(16)

Forsmallenough

φ

onehass

1,while inthelarge-φ limit s

1/(1

+

6ξ ).Thisresultdoesnotreallydependonthesizeof

ξ,

but, ofcourse,thelarger

ξ

isthemoreeffectivethesuppressionis.

Suchproceduretocomputetheeffectivepotentialisknownas PrescriptionIanditleads tothefollowingvalue ofthe renormal-izationgroupscale

¯

μ

(φ)

=

φ/

κ

1

+ ξφ

2

/ ¯

M2 Pl

,

(17)

where

κ

isanorderonefactor.Thisformulafollowsfromthefact thattheloopcorrectionstotheeffectivepotentialaredetermined intheEinsteinframe.6 Thefunction

μ

¯

(φ)

can alsobeinvertedto obtain

φ (

μ

¯

)

andusedin(16) toexpresss asafunctionof

μ

¯

only, asappropriatefortheRGEs.

TheSMRGEsmodified bythes-factorcanbefoundinthe ap-pendixofRef. [19], wherethe RGEof

ξ

isalsoprovided.Wewill employtheseformulæinthenumericalcalculationofSec.3.2.

Furthermore,wewillusetheRG-improvedpotentialneglecting theloopcorrections:thismeansthatwewilltakeaseffective po-tentialtheonein(7) withtheconstants

λ

and

ξ

substitutedwith thecorrespondingrunningparameters. Thereare goodreasonsto

5 Weusedimensionalregularization(DR)toregularizetheloopintegralsandthe

modifiedminimalsubtraction(MS)schemetorenormalizeawaythedivergences. This,asusual,leadstoarenormalizationscale,μ¯.

6 The explicit detailed expression of the 1-loop correction can be found in

Ref. [18].

use thisapproximation. First, our main objective is to see if the initialconditionswithlargetime-derivativesoftheHiggsfieldare attractedtowardsa slow-rollregime. Inorderto knowifthere is thisqualitative behavior wedonotneedaveryprecise determina-tion ofthe effective potential (which is beyondthe scope of the presentwork). Note, moreover, that takinginto account theloop correctionstothepotentialwouldonlybemorepreciseif supple-mentedbytheloopcorrectionstothekinetictermoftheinflaton; suchcorrectionshavenotbeenincludedintheanalysisofHIand are expectedtobecomparableto theloopcorrectionsto the po-tentialformoderatevaluesof

ξ,

unlike whathappensforlarge

ξ

[14]:thelargevalueof

ξ

allowed [14] toshowthatthecorrections to the kinetic termin theeffective action are negligible,butthe smallervalue of

ξ

ofcriticalHIdoesnot permitto trustthis ap-proximationanymore.AnotherreasontoemploytheRG-improved potential is its gauge independence, which is not shared by the loopcorrectionstotheeffectivepotential.Therefore,theuseofthe RG-improved potential allowsfora moretransparent physical in-terpretation.

AsboundaryconditionstosolvetheRGEsoftheSMcouplings we usethe currentlymostprecise determinationsof their values atthetoppolemass Mt,whichwerecomputedinRef. [20].These values are functions of some observables: Mt, the Higgsand W polemassesMh and MW,respectively,and

α

3

(

MZ

).

ForMW and

α

3

(

MZ

)

we take the same values quoted in Ref. [20], while for

MhwetakethemoreprecisedeterminationpresentedinRef. [21], that is Mh

=

125.09

±

0.21

±

0.11 GeV. The boundary condition for

ξ

isinsteadfixedto reproducetheexperimentalvaluesofthe inflationary observables. The top pole mass is a variable in this work.

Now, Eqs. (8), (10) and (12) of Sec. 2.1 are still validas long asoneisintheslow-rollregime,butoneshouldnowinterpretU

astheeffectivepotential,not justastheclassical potential. How-ever, aswe will see inSec. 3, incritical Higgs inflation, because ofthepresenceofan inflectionpointinthepotential(see Fig.2), the standard slow-roll condition may not be always satisfied; in particular it can break down around the inflection point, where the inertial term in the inflaton equation may not be negligible withrespecttothefrictionterm[24,12,22,23].Wewilldiscuss fur-therthispointinSec.3.Nevertheless,alreadyatthislevelwecan observethat theslow-rollcondition isviolated alsoatthe begin-ningof the inflatonpath if we start frominitial conditions with large timederivative ofthe Higgsfield. Therefore,theframework to analyze the pre-inflationary dynamics withsuch initial condi-tion (whichwill be discussedin Sec.3) willbe applicable to the periodwhentheHiggscrossedtheinflectionpointtoo.

Havingdeterminedtheeffectivepotentialwecannowestimate the relevant inflationary scales. In HI the energy density during inflation UI is roughly given by7 UI

∼ λ ¯

M4Pl

2, as clear from Eq. (7) andthe discussion below that formula. This is relatedto the inflationary Hubblescale HI through the Einstein equations,

HI

UI/ ¯MPl.Thescale HI ismuchlowerthanthenewphysics scaleM

¯

Pl

incriticalHIthankstothesmallnessof

λ

atthe

infla-tionaryscale.Furthermore,thesmallnessof

λ

alsoleadstoasmall

UI inPlanckunits,whichallows ustotreat gravityclassically, as we will discussin Sec. 3. For example,in Fig. 2, UI

10−9M

¯

4Pl, whichgives HI

10−5M

¯

Pl,aHubblescalemuchsmallerthanthe

newphysics scale M

¯

Pl

forthecorresponding value ofthe

non-minimalcoupling: M

¯

Pl

10−1M

¯

Pl.Therefore,althoughnew

de-7 Onethingwelearnthenisthat,oncetheobservedP

Risreproduced,arelation

betweenλandξemerges;itisthisrelationthatreducesthevalueofξincritical Higgsinflation:whatmattersinreproducingPRisonlytheoverallconstant,λ/ξ2,

(4)

Fig. 1. Running of the SM couplings and ξ for Mt≈171.04 GeV with the s-insertions.(Forinterpretationofthecolorsinthefigures,thereaderisreferred tothewebversionofthisarticle.)

grees offreedom orstrong coupling should eventually appear at

¯

MPl

,therelevantinflationaryscaleHI islowerthan M

¯

Pl

/ξ.

Wenow recallan importantresultofRef. [8]:alarge

ξ

natu-rally induces large higherdimensionaloperators that can inturn changethephysical predictions.Thecoefficient

α

ofaradiatively induced

g R2 termintheLagrangianwas showninRef. [8] to besubjecttothefollowingstrongnaturalness8 bound

|α| 

ξ

2

8

π

2

.

(18)

Alarge valueof

ξ

is necessaryattheclassical level(see Eq. (13) andthe corresponding discussion there). However,incriticalHiggs inflation

ξ

doesnothavetobeverylargeandavalueof

ξ

oforder10 ispossible [5–7]. Suchvaluewouldleadtothetrivial9bound

α



1. Therefore,thecriticalHiggsinflationdoesnotsufferfromafine-tuning ofthehighenergyconditionfortherunningcouplings.

3. Pre-inflationarydynamics

Letusnow analyzethedynamicsofthissysteminthe homo-geneouscasewithoutmakinganyassumption ontheinitial value ofthetime derivative

χ

˙

.Thisanalysishasbeenperformedin[8] forHiggsinflationattheclassicallevel.Herewetakeintoaccount quantumcorrectionstothepotential.Wewillfocusonthecritical Higgsinflationforthereasonswediscussedabove.

IntheEinsteinframe Sst is

Sst

=



d4x

g



(∂

χ

)

2 2

U

¯

M2 Pl 2 R



(19) (U istheRG-improvedEinsteinframeeffectivepotential).

Let usassume a universe with 3-dimensional translation and rotation symmetries, that is a homogeneous and isotropic FRW

8 Naturalnessimpliesthatconditionbecauseifonestartsfroman|α|much

be-lowthatthresholdtherenormalizationgroupflowgeneratesan|α|comparableto it,unlessveryfine-tunedinitialconditionsarechosen.

9 Thisboundistrivialinviewofthefactthatanαoforder1leadstonegligible

correctionstoEinsteingravityforenergiesmuchbelowthePlanckscale(instead, forenergiesapproachingthisvaluewecannothaveamodelindependentargument becauseEinsteingravitybreaksdown).

geometry.Wedonotregardthisasafine-tuningoftheinitial con-ditionasit isimplied bytherequirementofhaving anenhanced symmetry (translation and rotation symmetries in this case). In otherwords,itisnaturaltoassumethatinitiallytherewasneither any special point in space nor any preferred direction. Further-more,we willneglect thespatial curvatureintheFRWmetricas the energy density is expected to be dominated by the inflaton duringinflation.

Then the equations for the spatially homogeneous field

χ

(

t

)

anda

(

t

)

are

¨

χ

+



3

χ

˙

2

+

6U

2M

¯

Pl

˙

χ

+

U

=

0 (20) and

˙

a2 a2

=

˙

χ

2

+

2U 6M

¯

2Pl

.

(21)

From(20) and(21) onecanalsoderivetheuseful

˙

H

= −

χ

˙

2

2M

¯

2Pl

.

(22)

Notethat,oncewehaveasolutiontoEq. (20) wecanimmediately determinea

(

t

)

throughEq. (21).Therefore,ourjobnowistosolve Eq. (20) withappropriateinitialconditions

(¯

t

)

= 

χ

t

)

=

χ

,

(23) where

¯

t issomeinitialtimebeforeinflationand

χ

and



arethe initialconditionsforthedynamicalvariables10att

= ¯

t.

Sincewe donotwanttocommitourselvestoanyUV comple-tion of Einstein gravity, we confine our attention to the regime wherequantumgravitycorrectionsareexpectedtobesmall,

U

¯

M4Pl

,

χ

˙

2

¯

M4Pl

,

(24)

such that we canignore the details ofthe UV completion. How-ever, wedonot requireheretobe initially inaslow-roll regime. Theconditionsin(24) comefromtherequirementthatthe energy-momentumtensorbesmall(comparedtothePlanckscale)sothat a large curvature is not generated. The first condition in (24) is automaticallyfulfilledbytheHiggsinflationpotential:thequartic coupling

λ

issmall[25,20,26,27];notethat

λ

isparticularlysmall inthecriticalHI[5–7],whichisourmaininteresthere.Thesecond condition in (24) is implied by the requirementof starting from an(approximately)deSitterspace,whichismaximallysymmetric; thereforewedonotconsiderthatasfine-tuningoftheinitial con-ditions.Indeed,indeSitterwe havetoset H

˙

=

0,whichleads to

˙

χ

=

0 givenEq. (22).

However, note that we cannot start from an exact de Sitter space given Eq. (20): the potential U is indeed not exactly flat. Given that the extra symmetries of de Sitter space (besides ro-tation and translation symmetries) are anyhow broken, there is no remainingsymmetry that forcesthefield kineticenergyto be smallcomparedtothe potentialenergyorthatforcestheinertial termintheinflatonequation tobe negligiblewithrespect tothe friction term. This motivates our studyof initial conditions with generickineticenergy.

10 Theinitialconditionfora isnotneededasthe normalizationofa doesnot

haveaphysicalmeaningforvanishingspatialcurvature:indeed,givenasolutiona

(5)

3.1.Analyticdiscussion

Sincewedonotknowifandwhenexactlyaninflationary slow-rollphaseoccursitisessentialforourpurposestohavea descrip-tion of the inflationary path that does not rely on the slow-roll approximation.Inflationingeneraltakesplacewhen

≡ −

H

˙

H2

<

1

,

(25)

whichgeneralizes the usual definitionof theslow-roll parameter

U (given in Eq. (8)) to situations where the slow-roll does not occur.Inadditionto

,onecanintroduceanotherparameter

δ

≡ −

χ

¨

H

χ

˙

.

(26)

If

δ

1 one can neglect the inertial term in the inflaton equa-tion(20) andreducetheproblemtoasinglefirstorderdifferential equation. The necessary and sufficient condition for inflation is only

<

1. The condition

δ

1 is by no means necessary, al-though it leads to great simplifications. As we mentioned before andwewilldiscussinmoredetailinSec.3.2,inthecriticalHiggs inflationthecondition

δ

1 isnotalwayssatisfiedbecauseofthe presenceofan inflection point inthe potential.Both because we willconsiderinitialconditionswithlargekineticenergiesand be-causeoftheinflectionpoint,itisthereforeimportanttosolvethe exactequationin(20) withoutusingtheslow-rollapproximation. Notethat this alsomeans that we cannot usenow the slow-roll formula N

=

φb



φe U

¯

M2Pl



dU d

φ

1



d

φ

2 d

φ

(27)

that we used before in Eq. (10) to compute the number of e-folds N.Wewilluseinsteadtheexactformula

N

=

te



tb

dt H

(

t

),

(28)

whereteisthetimeattheendofinflationandtbisthetimewhen theinflationaryobservablesPR,nsandr aremeasured.

Oneof the main purposes ofthe presentwork is to consider largeinitialkineticenergies,

χ

˙

2



U ,andstudywhetherinflation

isanattractor.Thisproblemcanbetreatedanalyticallyduringthe first phase of the inflaton motion when

χ

˙

2



U , such that the

potentialenergycanbeneglected.Inthiscase,combiningEqs. (21) and(22) gives

˙

H

+

3H2

=

0

,

(

χ

˙

2



U

),

(29) whichleadsto H

(

t

)

=

H

¯

1

+

3H

¯

(

t

− ¯

t

)

,

(

χ

˙

2



U

),

(30)

whereH

¯

H

t

)

and

¯

t isagainsomeinitialtime.Byinsertingthis resultintoEq. (22) wefind

˙

χ

2

=

6M

¯

2 PlH

¯

2

1

+

3H

¯

(

t

− ¯

t

)

2

,

(

χ

˙

2



U

).

(31) Thismeans that the kinetic energy densityscales as1/t2 if one

takesintoaccountthetimedependenceofH .Thisresult[28] tells usthat an initial condition withlarge kinetic energy is attracted

Fig. 2. SMeffectivepotential(asdefinedinthetext)withtheξ-couplingchosenas inFig.1.

towards one with smaller kinetic energy, but it also shows that neglecting the potential energy cannot be a good approximation forverylarge times.Moreover, noticethatEqs. (30) and(31) im-ply

χ

¨

= −

3H

χ

˙

, so the dynamics is not approaching the usually assumedslow-rollcondition

δ

1 thatallowstodroptheinertial terminthe inflatonequation ofmotion.Therefore,the argument aboveisnotconclusive andoneneedstosolvetheequations tak-ingintoaccountU inordertoseeifinflationisreallyanattractor. Wewilldosonumericallyinthenextsubsection.

3.2. Numericalstudies

Inthis section wepresentthe numericalstudies. Weset here thereferencevalue

κ

2 fortheparameterappearinginthe opti-malvalueof

μ

¯

fortheRG-improving,Eq. (17).Aswewillsee,this leadstoarealisticinflation.

InFig.1wegivetherunningofthelargestSMcouplingsand

ξ

withthes-insertions(see thediscussionaroundEq. (16)).Inthat plot we use a value of Mt close to criticality Mt

171.04 GeV: thequarticcoupling

λ

nearlyvanishesathighenergies.There the minimum of

λ

occurs at around 0.15M

¯

Pl. In Fig. 2 we provide

the corresponding SM effective potential including the effect of

ξ.

We see that by varying Mt by only 10 keV around the criti-cal valuethepotential changessignificantly.Thisgivesusanidea of the level of adjustment of Mt required to have an inflection point inthepotential, whichis an importantissueofthe critical Higgs inflation. We could regard thiseither asa drawback or as an attractivefeature ofthe model,dependingon whetherwe re-gardthisadjustmentasafine-tuningorapredictionofthemodel. A possible problem here is the tension between the critical Mt and the measured value: Mt

=

172.51

±

0.50 GeV (ATLAS) and

Mt

=

172.44

±

0.49 GeV (CMS) [29], which is, separately, at the 2–3

σ

level.11 If future measurements and calculationswill con-firmthisdifference,newphysicscouldbeinvokedtoreconcilethe twovaluesofMt,suchasthewell-motivatedscenarioofRef. [30]. We studied numerically the exact Higgs equation in (20). In Fig. 3 we provide the canonically normalized field

χ

asa func-tion of time. We observe that even if start from a large kinetic

11 If wehad quantizedthe systeminthe Jordanframebeforeperformingthe

conformaltransformation(adefinitionofthetheoryknownasprescriptionII)we wouldhavefoundanevenstrongertension [13,14].Thisis ourmainreason to chooseprescription I.TheextensionofthesecalculationstoprescriptionIIis, there-fore,beyondthescopeofthisarticle,butweexpectthatsimilarqualitative proper-tiescanbefoundwiththealternativeprescription.

(6)

Fig. 3. Canonicallynormalizedfieldχasafunctionoftime.Thevaluesofthe pa-rametersthatarenotquotedintheplot arechosenasinFigs.1and2andas explainedinthetext.

Fig. 4. Theparameters andδduringaperiodofinflation.Thevaluesofthe param-etersthatarenotquotedintheplotarechosenasinFigs.1and2andasexplained inthetext.

energy12thefieldquicklyreachestheslow-roll regime;the ultra-slow-roll regime [31,23] quoted in that plot corresponds to the period when the Higgs passed through the inflection point (see alsoFig.2)wherethepotentialisflatter.InFig.4theparameters

and

δ

areshownduringaperiodofinflation.Themainpointof thatplotistoshow that,becauseoftheinflection point [12] and thelargeinitialkineticenergy,theparameter

δ

isnotalwaysvery small,whichindicatesthatonecouldnotalwaysneglectthe iner-tialterminthe inflatonequation duringthe wholeinflation. The inflection point is reached atthe time when

δ

=

0 asit can be checkedbylookingatFigs.2and3.

Fig.3alreadyindicatesthatinflation isanattractorinthe crit-ical SM. We performed a more general analysis by varying the initialmomentum



inFig.5.There,aswellasinFigs.3and4,the

12 Inthatplot

= −10−3M¯2

Pl,thereforethekineticenergy 2

/2 ismuchlarger thanthepotentialenergy,asitcanbecheckedbylookingatFig.2.

Fig. 5. InitialconditionsχandforthecanonicallynormalizedHiggsfieldχand itsmomentum≡ ˙χrespectively.Thevaluesoftheparametersthatarenotquoted intheplotarechosenasinFigs.1and2andasexplainedinthetext.Thevaluesof inflationaryparametersN e-foldsbeforetheendofinflationarealsoprovided(the valuesofN insidethebracketsindicateinsteadthetotalnumberofe-foldssince theearliesttime,whentheinitialconditionsχandaregiven).

initial conditionsfor



havebeenchosen tobe negative because positive valuesfavor inflationevenrespectto thecasewherethe initial kinetic energy is much smaller than the potential energy: thisisbecausethepotential,Eq. (7),isanincreasingfunctionof

χ

(for

χ



v). Weobservethat averylarge initialkinetic energy13 can be compensatedby avery modestincrease (not evenofone orderofmagnitude)intheinitialfieldvalueoftheHiggs.This con-firmsthatinflationisastrongattractorinthismodel.Thesituation issimilar(andevenslightlybetter)thentheoneofclassicalHiggs inflation[8] inthisrespect.Inthesameplotwealsoshowthatthe inflationary observablesns,r and PR arewithin theobservational bounds [11].

Therefore, the critical Higgs inflation does not suffer from a fine-tuningproblemfortheinitialconditions.

4. Conclusions

InthispaperwehavestudiedwhetherHiggsinflation (HI) suf-fers froma fine-tuningof thehighenergyvalues ofthe parame-ters. Inparticular, it hasbeen investigatedthe dependence ofHI on theinitial (pre-inflationary) conditions.Inouranalysis we as-sumed a spatially homogeneous and isotropic geometrypointing out the naturalnessofthischoice. As shownin [8],although the large-ξ HI [1] doesnot sufferfromanytuning oftheinitial con-ditionsattheclassicallevel,atthequantumlevelafine-tuningof thehighenergyvaluesofsomerunningparametershastobe per-formed, asdiscussed at the end of Sec. 2.2. For this reason the mainfocusofthisarticlehasbeencriticalHI [5–7], whichallows a drastic decrease of

ξ.

Moreover, critical HI, unlike the large-ξ original version, has a single cut-off scale, M

¯

Pl, where quantum

gravity effectsare expectedto emerge, and is free from a much lowerscale,whereperturbativeunitaritytheorybreaksdown.

We pointedout thatcriticalHIdoesnot sufferfromany fine-tuning ofthehighenergyparameters, suchasthe oneoflarge-ξ HInotedin [8].ThemainresultofthispaperwasthatcriticalHIenjoys

13 Inthatplotweconsideredvaluesofupto0.05M¯2

Plwhichcorrespondstoan

initialkineticenergydensityoforder10−3M¯4

Pl.Weregardthisvalueasthemaximal

kineticenergydensityallowedtohavenegligiblequantumgravitycorrections(see also(24)).

(7)

arobustinflationaryattractor:evenstartingfromalargekineticenergy densityoftheHiggsfield(ascomparedtothepotentialenergydensity), theinflatonrapidlyreachestheslow-rollbehavior.

Acknowledgements

IthankJ.Garcia-BellidoandM.Shaposhnikovforuseful discus-sions.Thisworkwassupportedbythegrant669668–NEO-NAT– ERC-AdG-2014.

References

[1]F.L.Bezrukov,M.Shaposhnikov,TheStandardModelHiggsbosonasthe infla-tion,Phys.Lett.B659(2008)703,arXiv:0710.3755.

[2]C.P.Burgess,H.M.Lee,M.Trott,Power-countingandthevalidityoftheclassical approximationduringinflation,J.HighEnergyPhys.0909(2009)103,arXiv: 0902.4465;

J.L.F.Barbon,J.R.Espinosa,OnthenaturalnessofHiggsinflation,Phys.Rev.D 79(2009)081302,arXiv:0903.0355;

M.P.Hertzberg,Oninflationwithnon-minimalcoupling,J.HighEnergyPhys. 1011(2010)023,arXiv:1002.2995;

C.P.Burgess,S.P.Patil,M.Trott,Onthepredictivenessofsingle-fieldinflationary models,J.HighEnergyPhys.1406(2014)010,arXiv:1402.1476.

[3]C.P.Burgess,H.M.Lee,M.Trott,CommentonHiggsinflationandnaturalness, J. HighEnergyPhys.1007(2010)007,arXiv:1002.2730.

[4]F.Bezrukov,A.Magnin,M.Shaposhnikov,S.Sibiryakov,Higgsinflation: con-sistency and generalisations, J. High Energy Phys. 1101 (2011) 016, arXiv: 1008.5157.

[5]Y.Hamada,H.Kawai,K.y.Oda,S.C.Park,Higgsinflationisstillaliveafterthe resultsfromBICEP2,Phys.Rev.Lett.112 (24)(2014)241301,arXiv:1403.5043. [6]F.Bezrukov,M.Shaposhnikov,Higgsinflationatthecriticalpoint,Phys.Lett.B

734(2014)249,arXiv:1403.6078.

[7]Y.Hamada,H.Kawai,K.y.Oda,S.C.Park,HiggsinflationfromStandardModel criticality,Phys.Rev.D91(2015)053008,arXiv:1408.4864.

[8]A.Salvio,A.Mazumdar,ClassicalandquantuminitialconditionsforHiggs in-flation,Phys.Lett.B750(2015)194,arXiv:1506.07520.

[9]K.Kannike,G.Hütsi,L.Pizza,A.Racioppi,M.Raidal,A.Salvio,A.Strumia, Dy-namicallyinducedPlanckscaleandinflation,J.HighEnergyPhys.1505(2015) 065,arXiv:1502.01334;

K.Kannike,G.Hutsi,L.Pizza,A.Racioppi,M.Raidal,A.Salvio,A.Strumia,PoS EPSHEP2015(2015)379;

A.Salvio,A.Mazumdar,Higgsstabilityandthe750GeVdiphotonexcess,Phys. Lett.B755(2016)469,arXiv:1512.08184;

A.Salvio,SolvingtheStandardModelproblemsinsoftenedgravity,Phys.Rev. D94 (9)(2016)096007,arXiv:1608.01194;

A.Salvio,Inflationaryperturbationsinno-scaletheories,Eur.Phys.J.C77 (4) (2017)267,arXiv:1703.08012;

A.Salvio,A.Strumia,Agravity,J.HighEnergyPhys. 1406(2014)080,arXiv: 1403.4226.

[10]F.Bezrukov,D.Gorbunov,M.Shaposhnikov,OninitialconditionsfortheHot BigBang,J.Cosmol.Astropart.Phys.0906(2009)029,arXiv:0812.3622; J.Garcia-Bellido,D.G.Figueroa,J.Rubio,PreheatingintheStandardModelwith theHiggs-inflatoncoupledtogravity,Phys. Rev.D79(2009)063531,arXiv: 0812.4624.

[11]P.A.R.Ade,etal.,PlanckCollaboration,Planck2015results.XIII.Cosmological parameters,arXiv:1502.01589;

P.A.R.Ade,etal.,PlanckCollaboration,Planck2015results.XX.Constraintson inflation,arXiv:1502.02114.

[12]J.M.Ezquiaga,J.Garcia-Bellido,E.RuizMorales,PrimordialBlackHole produc-tioninCriticalHiggsInflation,Phys.Lett.B776(2018)345,arXiv:1705.04861. [13]F.L.Bezrukov,A.Magnin,M.Shaposhnikov,StandardModelHiggsbosonmass

frominflation,Phys.Lett.B675(2009)88,arXiv:0812.4950.

[14]F.Bezrukov,M.Shaposhnikov,StandardModelHiggsbosonmassfrom infla-tion:twoloopanalysis,J.HighEnergyPhys.0907(2009)089,arXiv:0904.1537. [15]F.Bezrukov,J.Rubio,M.Shaposhnikov,Livingbeyondtheedge:Higgsinflation andvacuummetastability,Phys.Rev.D92 (8)(2015)083512,arXiv:1412.3811. [16]F.Bezrukov,M.Pauly,J.Rubio,Ontherobustnessoftheprimordialpower

spec-truminrenormalizedHiggsinflation,arXiv:1706.05007.

[17]A.DeSimone,M.P.Hertzberg,F.Wilczek,Runninginflationinthe Standard Model,Phys.Lett.B678(2009)1,arXiv:0812.4946.

[18]A.Salvio,HiggsinflationatNNLOafterthebosondiscovery,Phys.Lett.B727 (2013)234,arXiv:1308.2244.

[19]K.Allison,Higgsxi-inflationforthe125–126GeVHiggs:atwo-loopanalysis, J. HighEnergyPhys.1402(2014)040,arXiv:1306.6931.

[20]D.Buttazzo,G.Degrassi,P.P.Giardino,G.F.Giudice,F.Sala,A.Salvio,A.Strumia, Investigatingthenear-criticalityoftheHiggsboson,J.HighEnergyPhys.1312 (2013)089,arXiv:1307.3536.

[21]G.Aad,etal.,ATLAS,CMSCollaborations,CombinedmeasurementoftheHiggs boson massin pp collisionsat√s=7 and8TeVwiththeATLASandCMS experiments,Phys.Rev.Lett.114(2015)191803,arXiv:1503.07589.

[22]K. Kannike, L. Marzola, M. Raidal, H. Veermäe, J. Cosmol. Astropart.Phys. 1709 (09)(2017)020,arXiv:1705.06225.

[23]C.Germani,T.Prokopec,Onprimordialblackholesfromaninflectionpoint, Phys.DarkUniverse18(2017)6,arXiv:1706.04226.

[24]J.Garcia-Bellido,E.RuizMorales,Primordialblackholesfromsinglefield mod-elsofinflation,Phys.DarkUniverse18(2017)47,arXiv:1702.03901. [25]F.Bezrukov,M.Y.Kalmykov,B.A.Kniehl,M.Shaposhnikov,Higgsbosonmass

andnewphysics,J.HighEnergyPhys.1210(2012)140,arXiv:1205.2893. [26]A.Andreassen,W.Frost,M.D.Schwartz,Scaleinvariantinstantonsandthe

com-pletelifetimeoftheStandardModel,arXiv:1707.08124.

[27]A.Salvio,Theelectroweak vacuumdecay andthegravitational contribution, arXiv:1711.06594.

[28]A.D.Linde,Initialconditionsforinflation,Phys.Lett.B162(1985)281. [29] B.Pearson,talkattop2017;

A.Castro,talkattop2017.

[30]A.Salvio, Asimple motivatedcompletionoftheStandard Modelbelowthe Planckscale:axionsandright-handedneutrinos,Phys.Lett.B743(2015)428, arXiv:1501.03781.

[31]W.H.Kinney, Horizoncrossingand inflationwithlargeeta,Phys.Rev.D72 (2005)023515,arXiv:gr-qc/0503017;

J. Martin, H. Motohashi, T. Suyama,Ultra slow-roll inflation and the non-Gaussianity consistencyrelation, Phys. Rev.D 87 (2)(2013) 023514,arXiv: 1211.0083;

A.E.Romano,S.Mooij,M.Sasaki,Globaladiabaticityandnon-Gaussianity con-sistencycondition,Phys.Lett.B761(2016)119,arXiv:1606.04906;

K.Dimopoulos,Ultraslow-rollinflationdemystified,Phys.Lett.B775(2017) 262,arXiv:1707.05644.

Figura

Fig. 1. Running of the SM couplings and ξ for M t ≈ 171 . 04 GeV with the s-insertions
Fig. 2. SM effective potential (as defined in the text) with the ξ -coupling chosen as in Fig
Fig. 3 already indicates that inflation is an attractor in the crit- crit-ical SM. We performed a more general analysis by varying the initial momentum  in Fig

Riferimenti

Documenti correlati

La struttura si trova ad Est di quella della cisterna (CA2), ma non è possibile stabilire un rapporto stra- tigrafi co con essa poiché, allo stato attuale, non è visibile il

L’assimilazione e l’accomodamento, secondo lo psicopedagogista svizzero, sono i due principali processi che caratterizzano l’apprendimento ed è soprattut- to l’accomodamento

“MT1-MMP-deficient mice develop dwarfism, osteopenia, arthritis, and connective tissue disease due to inadequate collagen turnover.,” Cell, vol.. Noda, “Osteopontin Expression

Most of the simulation and analysis work developed in this thesis have been proved useful to the LAT Collaboration for studying and developing detection and analysis strategy in

We will relate the transmission matrix introduced earlier for conductance and shot noise to a new concept: the Green’s function of the system.. The Green’s functions represent the

Come sperimentazione vengono illustrati gli esiti della ricerca GAIA (Giovani per una Archeologia InterAttiva in Calabria) per lo sviluppo di una nuova interfaccia educativa che,

Moreover, the Monge–Amp`ere equations, written under the form of first order systems of PDE’s, can be reduced to linear form by means of invertible point transformations suggested

Since the Kamchatka territory is washed by the Pacific Ocean, by the Okhotsk and the Bering Seas, which are the zones of increased cyclone activity, Kamchatka may be considered as a