Contents lists available atScienceDirect
Physics
Letters
B
www.elsevier.com/locate/physletb
Initial
conditions
for
critical
Higgs
inflation
✩
Alberto Salvio
CERN,TheoreticalPhysicsDepartment,Geneva,Switzerland
a
r
t
i
c
l
e
i
n
f
o
a
b
s
t
r
a
c
t
Articlehistory:
Received12December2017 Receivedinrevisedform2March2018 Accepted2March2018
Availableonline6March2018 Editor:M.Trodden
Keywords:
Inflation Higgsboson StandardModel
It hasbeen pointed outthatalarge non-minimal couplingξ betweenthe Higgsand theRicci scalar cansource higherderivativeoperators,whichmaychangethepredictionsofHiggsinflation.A variant, calledcriticalHiggsinflation,employsthenear-criticalityofthetopmasstointroduceaninflectionpoint in the potential and lower drastically the value of ξ. We here studywhether criticalHiggs inflation canoccur evenifthepre-inflationaryinitialconditionsdonotsatisfythe slow-rollbehavior (retaining translationandrotationsymmetries).A positiveanswerisfound:inflationturnsouttobeanattractor and therefore no fine-tuning of the initial conditions is necessary. A very large initial Higgs time-derivative(ascomparedtothepotentialenergydensity)iscompensatedbyamoderateincreaseinthe initialfieldvalue.TheseconclusionsarereachedbysolvingtheexactHiggsequationwithoutusingthe slow-rollapproximation.Thisalsoallowsustoconsistentlytreattheinflectionpoint,wherethestandard slow-rollapproximationbreaksdown.HerewemakeuseofanapproachthatisindependentoftheUV completionofgravity,bytakinginitialconditionsthatalwaysinvolvesub-planckianenergies.
©2018PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.
1. Introduction
SofarnoclearevidenceforphysicsbeyondtheStandardModel atthescalesexploredbytheLHChasbeenfound.Inthissituation, itis usefultolook forcomplementarytests. The extrapolationof theSM atenergies muchabovethosereachableatcollidersoffers a newway to look forfurther evidence of newphysics (besides thealreadyestablishedones,suchasneutrinooscillationsanddark matter).
Inflationisanaturalarenatoperformthesetests.Itwasfound thattheHiggs oftheSM mightplaythe roleofthe inflaton pro-videdthat asizablenon-minimalcoupling
ξ
withtheRicciscalarR is introduced. Ref. [1] considered originally the caseof a very large
ξ,
which corresponds to the SM living well inside the so calledstability region.1 In thissetup two different scales appear, thereducedPlanckmass M¯
Pl2.435×
1018 GeVandM¯
Pl/ξ
anda violationof perturbative unitarity at M
¯
Pl/ξ
has been found byconsideringscatterings ofparticles viewedasfluctuationsaround theEWvacuum [2,3].Thisleadstothenecessityofnewphysicsor strongcouplingmethods toanalyze thatphysicalsituation.While thisdoesnot undoubtedlyexcludeHiggsinflation (HI)asthe
rel-✩ Reportnumber:CERN-TH-2017-261.
E-mailaddress:[email protected].
1 Thisistheregionofparameterspacewheretheelectroweak(EW)vacuumis
theglobalminimumoftheSMeffectivepotential.
evantexpansion inthat caseisaround alargeHiggsfield [4],the issuemaybeavoidedbylivingveryclosetotheboundarybetween stabilityandmetastability,2 thesocalledcriticality.Indeed,a dras-ticdecreaseof
ξ
occursatcriticality [5–7],leadingtoasinglenew physicsscale, M¯
Pl,wherequantumgravityeffectsare expectedtoemerge.
Moreover, in [8] another issue of the large-ξ HIwas pointed out.Atthequantumlevel,itisnecessarytotunethehighenergy values of some parameters in order to preserve the inflationary predictions:ifthisisnotdonelargehigherderivativetermsinthe effectiveaction,suchas R2,aregenerated,changingtheoutputof
the model (see also [9]). However, Ref. [8] did not consider the criticalHIcase,which,asstatedabove,doesnotrequirealarge
ξ.
TheaimofthisarticleistoinvestigatewhethercriticalHI suf-fersfromanytuninginthechoiceofthehighenergyparameters. This will includein particular the analysisof the dependence of criticalHI onthe initial (pre-inflationary) conditions.Indeed,anyslow-roll model of inflation, such as HI, should provide a mech-anism that drives generic initial conditions to slow-rolling con-figurations, i.e.an inflationary attractor. Ifsuch an attractordoes not existafine-tuning oftheinitialconditionsis required,which makes the whole idea of inflation less attractive, given that its
2 Themetastabilityregionistheregionofparameterspacewherethelifetimeof
theEWvacuumexceedstheageoftheuniverse. https://doi.org/10.1016/j.physletb.2018.03.009
main purpose is to solve fine-tuning problems (the horizon and flatnessproblems).
The paper is organized as follows. In Sec. 2 details ofHI are given,includingtheclassicalanalysisofinflationandadescription ofthequantumcorrections;there,wewilladdressthequestionof whetherafine-tuningofthehighenergyconditionsoftherunning parametersisrequiredincriticalHI.InSec.3wewillconsider ini-tialconditionsviolatingtheslow-rollbehavior inordertoestablish theexistenceofaninflationaryattractorinHI;bothanalyticaland numericalargumentswillbeused.Finally,Sec.4providesthe con-clusions.
2. Themodel
LetusdefinetheHiggsinflationmodel[1].Theactionis
S
=
d4x√
−g
L
SM−
¯
M2Pl 2+ ξ|H|
2 R,
(1)whereH istheHiggsdoublet,
ξ
isarealparameterand√
−
gL
SMistheSMLagrangianminimallycoupledtogravity.Thepartofthe action that depends on the metric and the Higgs field only (the
scalar-tensorpart)is Sst
=
d4x√
−
g|∂
H|
2−
V−
¯
M2Pl 2+ ξ|
H|
2 R,
(2)where V
= λ(|
H|
2−
v2/2)
2 istheclassical Higgspotential,andvisthe EW Higgsvacuumexpectationvalue. We assume asizable non-minimalcoupling,
ξ >
1,becausethisisrequiredbyinflation aswewillsee.2.1. Classicalanalysis
The
ξ
|
H|
2R termcanbeeliminated throughaconformaltrans-formation(a.k.a.Weyltransformation): gμν
→
−2gμν,
2
=
1+
2
ξ
|
H|
2¯
MPl2
.
(3)Theoriginalframe,wheretheLagrangianhastheforminEq. (1),is calledtheJordanframe,whiletheonewheregravityiscanonically normalized(obtainedwiththetransformationabove)iscalledthe Einsteinframe.Intheunitarygauge,wheretheonlyscalarfieldis theradialmode
φ
≡
2|
H|
2,wehave(afterhavingperformedtheconformaltransformation) Sst
=
d4x√
−
g K(∂φ)
2 2−
V4
−
¯
M2Pl 2 R,
(4) and K=
−42
+
3 2 d2 d
φ
2
.
(5)The non-canonical Higgs kinetic term can be made canonical throughthefieldredefinition
φ
= φ(
χ
)
definedbydχ d
φ
=
−22
+
3 2 d2 d
φ
2
,
(6)withtheconventional condition
φ (
χ
=
0)=
0.Notethatφ (
χ
)
is invertiblebecauseEq. (6) tellsusdχ
/
dφ >
0.Thus,onecanextract thefunctionφ (
χ
)
byinvertingthefunctionχ
(φ)
definedabove.Notethat
χ
feelsapotential U≡
V4
=
λ(φ (
χ
)
2−
v2)
24
(
1+ ξφ(χ
)
2/ ¯
M2Pl)
2.
(7)Letusnowrecall howslow-roll inflationemerges inthis con-text. From (6) and (7) it follows [1] that U is exponentially flat when
χ
¯
MPl,whichisakeypropertytohaveinflation.Indeed,forsuchhighfieldvaluesthequantities
U
≡
¯
M2 Pl 2 1 U dU dχ2
,
η
U≡
¯
M2 Pl U d2U dχ2 (8)areguaranteedtobesmall.Therefore,theregioninfield configura-tionswhere
χ
¯
MPl(orequivalently[1]φ
¯
MPl/
√
ξ)
correspondstoinflation.InSec.3we willinvestigatewhethersuccessful slow-roll inflation emergesalso forlarge initialfield kinetic energy. In this subsection we simply assume that the time derivatives are small.Inthiscase,duringthewholeinflationtheslow-roll param-eters
U and
η
U aresmallandtheslow-rollapproximationcanbe used.Alltheparameters ofthemodelcan bedeterminedwithgood accuracythroughexperimentsandobservations,including
ξ
[1,10].ξ
can be fixed by requiring that the measured curvature power spectrum(athorizonexit3 q=
aH )[11],4PR
(
q)
(
2.
14±
0.
06)
×
10−9,
(9)isreproducedforafieldvalue
φ
= φ
b corresponding toanappro-priatenumberofe-folds[10]:
N
=
φb φe U¯
M2Pl dU dφ
−1 dχ d
φ
2 d
φ
59,
(10)where
φe
is the field value atthe endof inflation, computedby requiring(φ
e)
1.
(11)Intheslow-rollapproximation(usedinthissubsection)such con-straintcanbeimposedbyusingthestandardformula
PR
(
k)
=
U/
U 24
π
2M¯
4Pl
.
(12)ForN
=
59,thisprocedureleadstoξ
(
5.
02∓
0.
06)
×
104√
λ,
(
N=
59)
(13) where the uncertainty corresponds to the experimental uncer-taintyquotedinEq. (9).Notethatξ
dependsonN:ξ
(
4.
61∓
0.
06)
×
104√
λ
(
N=
54),
(14)ξ
(
5.
43∓
0.
06)
×
104√
λ
(
N=
64).
(15) Giventhatλ
∼
0.1,ξ
hastobemuchlargerthanoneatthe classi-callevel.Theneedofaverylargeξ
canbeavoidedwhenquantum correctionsareincluded[5–7], aswe willseeinthenext subsec-tion.3 Weuseastandardnotation:a isthecosmologicalscalefactor,H≡ ˙a/a anda
dotdenotesthederivativewithrespectto(cosmic)time,t.
4 SeeforinstanceTable3ofthesecondpaperinRef. [11] ( P
R isdenotedwith Asinthattable).Thevaluequotedherecorrespondstotheonewiththesmallest uncertaintyinthattable.
Wecanalsoextractthescalarspectralindexnsandthe tensor-to-scalarratio r: in the slow-roll approximation we are usingin thissubsectiontheformulæarer
=
16U andns
=
1−
6U
+
2η
U. Theseparametersareofinterestastheyareconstrainedby obser-vations.2.2.Quantumcorrections
Here we take into account quantum corrections to the Higgs potential. We would like to include both the large-ξ inflation-ary scenario of [1] and the critical Higgs inflation proposed in [5–7], whichemploys a value ofthe top massclose to the fron-tier between stability and metastability of the electroweak vac-uum.Thelattercaseallows fora drasticdecreaseoftherequired valueof
ξ
withrespecttotheresultoftheclassical analysis(see Eqs. (13)–(15).). Thisindicatesthat wecannot relyonlarge-ξ ap-proximations to analyze this case. We thereforedo not use such approximationshere.However,wedoassumeinthefollowingthatξ >
1 asthisconditionispresentbothintheoriginalformulation ofHIandincriticalHI.Notethat Eqs. (3)–(6) holdalsoif
ξ
isfield-dependent,as dic-tated by quantum corrections [12]. A second step we should do nowisthecomputation ofthe effectivepotential.Indefining the quantumtheorytherearewell-knownambiguities[13,14,6,15,16]. WefollowhereRef. [6] andchoose todeterminetheloop correc-tionstotheeffectivepotential–a.k.a.Coleman–Weinbergpotential – in the Einstein frame (after having performed the conformal transformation (3)); the effective potential is also RG-improved byusing theRGEs5 of theSM properlymodified to take into ac-countξ.
Thewayξ
affectstherunningisthroughtheappearance ofafactors thatsuppressesthecontributionofthephysicalHiggs fieldtotheRGEs[17].Ref. [17] founds
=
1+ ξφ
2/ ¯
M2 Pl 1+ (
1+
6ξ )ξ φ
2/ ¯
M2 Pl.
(16)Forsmallenough
φ
onehass≈
1,while inthelarge-φ limit s≈
1/(1
+
6ξ ).Thisresultdoesnotreallydependonthesizeofξ,
but, ofcourse,thelargerξ
isthemoreeffectivethesuppressionis.Suchproceduretocomputetheeffectivepotentialisknownas PrescriptionIanditleads tothefollowingvalue ofthe renormal-izationgroupscale
¯
μ
(φ)
=
φ/
κ
1
+ ξφ
2/ ¯
M2 Pl,
(17)where
κ
isanorderonefactor.Thisformulafollowsfromthefact thattheloopcorrectionstotheeffectivepotentialaredetermined intheEinsteinframe.6 Thefunctionμ
¯
(φ)
can alsobeinvertedto obtainφ (
μ
¯
)
andusedin(16) toexpresss asafunctionofμ
¯
only, asappropriatefortheRGEs.TheSMRGEsmodified bythes-factorcanbefoundinthe ap-pendixofRef. [19], wherethe RGEof
ξ
isalsoprovided.Wewill employtheseformulæinthenumericalcalculationofSec.3.2.Furthermore,wewillusetheRG-improvedpotentialneglecting theloopcorrections:thismeansthatwewilltakeaseffective po-tentialtheonein(7) withtheconstants
λ
andξ
substitutedwith thecorrespondingrunningparameters. Thereare goodreasonsto5 Weusedimensionalregularization(DR)toregularizetheloopintegralsandthe
modifiedminimalsubtraction(MS)schemetorenormalizeawaythedivergences. This,asusual,leadstoarenormalizationscale,μ¯.
6 The explicit detailed expression of the 1-loop correction can be found in
Ref. [18].
use thisapproximation. First, our main objective is to see if the initialconditionswithlargetime-derivativesoftheHiggsfieldare attractedtowardsa slow-rollregime. Inorderto knowifthere is thisqualitative behavior wedonotneedaveryprecise determina-tion ofthe effective potential (which is beyondthe scope of the presentwork). Note, moreover, that takinginto account theloop correctionstothepotentialwouldonlybemorepreciseif supple-mentedbytheloopcorrectionstothekinetictermoftheinflaton; suchcorrectionshavenotbeenincludedintheanalysisofHIand are expectedtobecomparableto theloopcorrectionsto the po-tentialformoderatevaluesof
ξ,
unlike whathappensforlargeξ
[14]:thelargevalueofξ
allowed [14] toshowthatthecorrections to the kinetic termin theeffective action are negligible,butthe smallervalue ofξ
ofcriticalHIdoesnot permitto trustthis ap-proximationanymore.AnotherreasontoemploytheRG-improved potential is its gauge independence, which is not shared by the loopcorrectionstotheeffectivepotential.Therefore,theuseofthe RG-improved potential allowsfora moretransparent physical in-terpretation.AsboundaryconditionstosolvetheRGEsoftheSMcouplings we usethe currentlymostprecise determinationsof their values atthetoppolemass Mt,whichwerecomputedinRef. [20].These values are functions of some observables: Mt, the Higgsand W polemassesMh and MW,respectively,and
α
3(
MZ).
ForMW andα
3(
MZ)
we take the same values quoted in Ref. [20], while forMhwetakethemoreprecisedeterminationpresentedinRef. [21], that is Mh
=
125.09±
0.21±
0.11 GeV. The boundary condition forξ
isinsteadfixedto reproducetheexperimentalvaluesofthe inflationary observables. The top pole mass is a variable in this work.Now, Eqs. (8), (10) and (12) of Sec. 2.1 are still validas long asoneisintheslow-rollregime,butoneshouldnowinterpretU
astheeffectivepotential,not justastheclassical potential. How-ever, aswe will see inSec. 3, incritical Higgs inflation, because ofthepresenceofan inflectionpointinthepotential(see Fig.2), the standard slow-roll condition may not be always satisfied; in particular it can break down around the inflection point, where the inertial term in the inflaton equation may not be negligible withrespecttothefrictionterm[24,12,22,23].Wewilldiscuss fur-therthispointinSec.3.Nevertheless,alreadyatthislevelwecan observethat theslow-rollcondition isviolated alsoatthe begin-ningof the inflatonpath if we start frominitial conditions with large timederivative ofthe Higgsfield. Therefore,theframework to analyze the pre-inflationary dynamics withsuch initial condi-tion (whichwill be discussedin Sec.3) willbe applicable to the periodwhentheHiggscrossedtheinflectionpointtoo.
Havingdeterminedtheeffectivepotentialwecannowestimate the relevant inflationary scales. In HI the energy density during inflation UI is roughly given by7 UI
∼ λ ¯
M4Pl/ξ
2, as clear from Eq. (7) andthe discussion below that formula. This is relatedto the inflationary Hubblescale HI through the Einstein equations,HI
∼
√
UI/ ¯MPl.Thescale HI ismuchlowerthanthenewphysics scaleM
¯
Pl/ξ
incriticalHIthankstothesmallnessofλ
attheinfla-tionaryscale.Furthermore,thesmallnessof
λ
alsoleadstoasmallUI inPlanckunits,whichallows ustotreat gravityclassically, as we will discussin Sec. 3. For example,in Fig. 2, UI
∼
10−9M¯
4Pl, whichgives HI∼
10−5M¯
Pl,aHubblescalemuchsmallerthanthenewphysics scale M
¯
Pl/ξ
forthecorresponding value ofthenon-minimalcoupling: M
¯
Pl/ξ
∼
10−1M¯
Pl.Therefore,althoughnewde-7 Onethingwelearnthenisthat,oncetheobservedP
Risreproduced,arelation
betweenλandξemerges;itisthisrelationthatreducesthevalueofξincritical Higgsinflation:whatmattersinreproducingPRisonlytheoverallconstant,λ/ξ2,
Fig. 1. Running of the SM couplings and ξ for Mt≈171.04 GeV with the s-insertions.(Forinterpretationofthecolorsinthefigures,thereaderisreferred tothewebversionofthisarticle.)
grees offreedom orstrong coupling should eventually appear at
¯
MPl
/ξ
,therelevantinflationaryscaleHI islowerthan M¯
Pl/ξ.
Wenow recallan importantresultofRef. [8]:alarge
ξ
natu-rally induces large higherdimensionaloperators that can inturn changethephysical predictions.Thecoefficientα
ofaradiatively induced√
−
g R2 termintheLagrangianwas showninRef. [8] to besubjecttothefollowingstrongnaturalness8 bound|α|
ξ
28
π
2.
(18)Alarge valueof
ξ
is necessaryattheclassical level(see Eq. (13) andthe corresponding discussion there). However,incriticalHiggs inflationξ
doesnothavetobeverylargeandavalueofξ
oforder10 ispossible [5–7]. Suchvaluewouldleadtothetrivial9boundα
1. Therefore,thecriticalHiggsinflationdoesnotsufferfromafine-tuning ofthehighenergyconditionfortherunningcouplings.
3. Pre-inflationarydynamics
Letusnow analyzethedynamicsofthissysteminthe homo-geneouscasewithoutmakinganyassumption ontheinitial value ofthetime derivative
χ
˙
.Thisanalysishasbeenperformedin[8] forHiggsinflationattheclassicallevel.Herewetakeintoaccount quantumcorrectionstothepotential.Wewillfocusonthecritical Higgsinflationforthereasonswediscussedabove.IntheEinsteinframe Sst is
Sst
=
d4x√
−
g(∂
χ
)
2 2−
U−
¯
M2 Pl 2 R (19) (U istheRG-improvedEinsteinframeeffectivepotential).Let usassume a universe with 3-dimensional translation and rotation symmetries, that is a homogeneous and isotropic FRW
8 Naturalnessimpliesthatconditionbecauseifonestartsfroman|α|much
be-lowthatthresholdtherenormalizationgroupflowgeneratesan|α|comparableto it,unlessveryfine-tunedinitialconditionsarechosen.
9 Thisboundistrivialinviewofthefactthatanαoforder1leadstonegligible
correctionstoEinsteingravityforenergiesmuchbelowthePlanckscale(instead, forenergiesapproachingthisvaluewecannothaveamodelindependentargument becauseEinsteingravitybreaksdown).
geometry.Wedonotregardthisasafine-tuningoftheinitial con-ditionasit isimplied bytherequirementofhaving anenhanced symmetry (translation and rotation symmetries in this case). In otherwords,itisnaturaltoassumethatinitiallytherewasneither any special point in space nor any preferred direction. Further-more,we willneglect thespatial curvatureintheFRWmetricas the energy density is expected to be dominated by the inflaton duringinflation.
Then the equations for the spatially homogeneous field
χ
(
t)
anda(
t)
are¨
χ
+
3χ
˙
2+
6U√
2M¯
Pl˙
χ
+
U=
0 (20) and˙
a2 a2=
˙
χ
2+
2U 6M¯
2Pl.
(21)From(20) and(21) onecanalsoderivetheuseful
˙
H= −
χ
˙
2
2M
¯
2Pl.
(22)Notethat,oncewehaveasolutiontoEq. (20) wecanimmediately determinea
(
t)
throughEq. (21).Therefore,ourjobnowistosolve Eq. (20) withappropriateinitialconditions(¯
t)
=
χ
(¯
t)
=
χ
,
(23) where¯
t issomeinitialtimebeforeinflationandχ
andarethe initialconditionsforthedynamicalvariables10att
= ¯
t.Sincewe donotwanttocommitourselvestoanyUV comple-tion of Einstein gravity, we confine our attention to the regime wherequantumgravitycorrectionsareexpectedtobesmall,
U
¯
M4Pl,
χ
˙
2¯
M4Pl,
(24)such that we canignore the details ofthe UV completion. How-ever, wedonot requireheretobe initially inaslow-roll regime. Theconditionsin(24) comefromtherequirementthatthe energy-momentumtensorbesmall(comparedtothePlanckscale)sothat a large curvature is not generated. The first condition in (24) is automaticallyfulfilledbytheHiggsinflationpotential:thequartic coupling
λ
issmall[25,20,26,27];notethatλ
isparticularlysmall inthecriticalHI[5–7],whichisourmaininteresthere.Thesecond condition in (24) is implied by the requirementof starting from an(approximately)deSitterspace,whichismaximallysymmetric; thereforewedonotconsiderthatasfine-tuningoftheinitial con-ditions.Indeed,indeSitterwe havetoset H˙
=
0,whichleads to˙
χ
=
0 givenEq. (22).However, note that we cannot start from an exact de Sitter space given Eq. (20): the potential U is indeed not exactly flat. Given that the extra symmetries of de Sitter space (besides ro-tation and translation symmetries) are anyhow broken, there is no remainingsymmetry that forcesthefield kineticenergyto be smallcomparedtothe potentialenergyorthatforcestheinertial termintheinflatonequation tobe negligiblewithrespect tothe friction term. This motivates our studyof initial conditions with generickineticenergy.
10 Theinitialconditionfora isnotneededasthe normalizationofa doesnot
haveaphysicalmeaningforvanishingspatialcurvature:indeed,givenasolutiona
3.1.Analyticdiscussion
Sincewedonotknowifandwhenexactlyaninflationary slow-rollphaseoccursitisessentialforourpurposestohavea descrip-tion of the inflationary path that does not rely on the slow-roll approximation.Inflationingeneraltakesplacewhen
≡ −
H˙
H2
<
1,
(25)whichgeneralizes the usual definitionof theslow-roll parameter
U (given in Eq. (8)) to situations where the slow-roll does not occur.Inadditionto
,onecanintroduceanotherparameter
δ
≡ −
χ
¨
H
χ
˙
.
(26)If
δ
1 one can neglect the inertial term in the inflaton equa-tion(20) andreducetheproblemtoasinglefirstorderdifferential equation. The necessary and sufficient condition for inflation is only<
1. The conditionδ
1 is by no means necessary, al-though it leads to great simplifications. As we mentioned before andwewilldiscussinmoredetailinSec.3.2,inthecriticalHiggs inflationtheconditionδ
1 isnotalwayssatisfiedbecauseofthe presenceofan inflection point inthe potential.Both because we willconsiderinitialconditionswithlargekineticenergiesand be-causeoftheinflectionpoint,itisthereforeimportanttosolvethe exactequationin(20) withoutusingtheslow-rollapproximation. Notethat this alsomeans that we cannot usenow the slow-roll formula N=
φb φe U¯
M2Pl dU dφ
−1 dχ d
φ
2 d
φ
(27)that we used before in Eq. (10) to compute the number of e-folds N.Wewilluseinsteadtheexactformula
N
=
te tbdt H
(
t),
(28)whereteisthetimeattheendofinflationandtbisthetimewhen theinflationaryobservablesPR,nsandr aremeasured.
Oneof the main purposes ofthe presentwork is to consider largeinitialkineticenergies,
χ
˙
2U ,andstudywhetherinflation
isanattractor.Thisproblemcanbetreatedanalyticallyduringthe first phase of the inflaton motion when
χ
˙
2U , such that the
potentialenergycanbeneglected.Inthiscase,combiningEqs. (21) and(22) gives
˙
H+
3H2=
0,
(
χ
˙
2U),
(29) whichleadsto H(
t)
=
H¯
1+
3H¯
(
t− ¯
t)
,
(
χ
˙
2U
),
(30)whereH
¯
≡
H(¯
t)
and¯
t isagainsomeinitialtime.Byinsertingthis resultintoEq. (22) wefind˙
χ
2=
6M¯
2 PlH¯
2 1+
3H¯
(
t− ¯
t)
2
,
(
χ
˙
2U).
(31) Thismeans that the kinetic energy densityscales as1/t2 if onetakesintoaccountthetimedependenceofH .Thisresult[28] tells usthat an initial condition withlarge kinetic energy is attracted
Fig. 2. SMeffectivepotential(asdefinedinthetext)withtheξ-couplingchosenas inFig.1.
towards one with smaller kinetic energy, but it also shows that neglecting the potential energy cannot be a good approximation forverylarge times.Moreover, noticethatEqs. (30) and(31) im-ply
χ
¨
= −
3Hχ
˙
, so the dynamics is not approaching the usually assumedslow-rollconditionδ
1 thatallowstodroptheinertial terminthe inflatonequation ofmotion.Therefore,the argument aboveisnotconclusive andoneneedstosolvetheequations tak-ingintoaccountU inordertoseeifinflationisreallyanattractor. Wewilldosonumericallyinthenextsubsection.3.2. Numericalstudies
Inthis section wepresentthe numericalstudies. Weset here thereferencevalue
κ
≈
2 fortheparameterappearinginthe opti-malvalueofμ
¯
fortheRG-improving,Eq. (17).Aswewillsee,this leadstoarealisticinflation.InFig.1wegivetherunningofthelargestSMcouplingsand
ξ
withthes-insertions(see thediscussionaroundEq. (16)).Inthat plot we use a value of Mt close to criticality Mt≈
171.04 GeV: thequarticcouplingλ
nearlyvanishesathighenergies.There the minimum ofλ
occurs at around 0.15M¯
Pl. In Fig. 2 we providethe corresponding SM effective potential including the effect of
ξ.
We see that by varying Mt by only 10 keV around the criti-cal valuethepotential changessignificantly.Thisgivesusanidea of the level of adjustment of Mt required to have an inflection point inthepotential, whichis an importantissueofthe critical Higgs inflation. We could regard thiseither asa drawback or as an attractivefeature ofthe model,dependingon whetherwe re-gardthisadjustmentasafine-tuningorapredictionofthemodel. A possible problem here is the tension between the critical Mt and the measured value: Mt=
172.51±
0.50 GeV (ATLAS) andMt
=
172.44±
0.49 GeV (CMS) [29], which is, separately, at the 2–3σ
level.11 If future measurements and calculationswill con-firmthisdifference,newphysicscouldbeinvokedtoreconcilethe twovaluesofMt,suchasthewell-motivatedscenarioofRef. [30]. We studied numerically the exact Higgs equation in (20). In Fig. 3 we provide the canonically normalized fieldχ
asa func-tion of time. We observe that even if start from a large kinetic11 If wehad quantizedthe systeminthe Jordanframebeforeperformingthe
conformaltransformation(adefinitionofthetheoryknownasprescriptionII)we wouldhavefoundanevenstrongertension [13,14].Thisis ourmainreason to chooseprescription I.TheextensionofthesecalculationstoprescriptionIIis, there-fore,beyondthescopeofthisarticle,butweexpectthatsimilarqualitative proper-tiescanbefoundwiththealternativeprescription.
Fig. 3. Canonicallynormalizedfieldχasafunctionoftime.Thevaluesofthe pa-rametersthatarenotquotedintheplot arechosenasinFigs.1and2andas explainedinthetext.
Fig. 4. Theparameters andδduringaperiodofinflation.Thevaluesofthe param-etersthatarenotquotedintheplotarechosenasinFigs.1and2andasexplained inthetext.
energy12thefieldquicklyreachestheslow-roll regime;the ultra-slow-roll regime [31,23] quoted in that plot corresponds to the period when the Higgs passed through the inflection point (see alsoFig.2)wherethepotentialisflatter.InFig.4theparameters
and
δ
areshownduringaperiodofinflation.Themainpointof thatplotistoshow that,becauseoftheinflection point [12] and thelargeinitialkineticenergy,theparameterδ
isnotalwaysvery small,whichindicatesthatonecouldnotalwaysneglectthe iner-tialterminthe inflatonequation duringthe wholeinflation. The inflection point is reached atthe time whenδ
=
0 asit can be checkedbylookingatFigs.2and3.Fig.3alreadyindicatesthatinflation isanattractorinthe crit-ical SM. We performed a more general analysis by varying the initialmomentum
inFig.5.There,aswellasinFigs.3and4,the
12 Inthatplot
= −10−3M¯2
Pl,thereforethekineticenergy 2
/2 ismuchlarger thanthepotentialenergy,asitcanbecheckedbylookingatFig.2.
Fig. 5. InitialconditionsχandforthecanonicallynormalizedHiggsfieldχand itsmomentum≡ ˙χrespectively.Thevaluesoftheparametersthatarenotquoted intheplotarechosenasinFigs.1and2andasexplainedinthetext.Thevaluesof inflationaryparametersN e-foldsbeforetheendofinflationarealsoprovided(the valuesofN insidethebracketsindicateinsteadthetotalnumberofe-foldssince theearliesttime,whentheinitialconditionsχandaregiven).
initial conditionsfor
havebeenchosen tobe negative because positive valuesfavor inflationevenrespectto thecasewherethe initial kinetic energy is much smaller than the potential energy: thisisbecausethepotential,Eq. (7),isanincreasingfunctionof
χ
(forχ
v). Weobservethat averylarge initialkinetic energy13 can be compensatedby avery modestincrease (not evenofone orderofmagnitude)intheinitialfieldvalueoftheHiggs.This con-firmsthatinflationisastrongattractorinthismodel.Thesituation issimilar(andevenslightlybetter)thentheoneofclassicalHiggs inflation[8] inthisrespect.Inthesameplotwealsoshowthatthe inflationary observablesns,r and PR arewithin theobservational bounds [11].Therefore, the critical Higgs inflation does not suffer from a fine-tuningproblemfortheinitialconditions.
4. Conclusions
InthispaperwehavestudiedwhetherHiggsinflation (HI) suf-fers froma fine-tuningof thehighenergyvalues ofthe parame-ters. Inparticular, it hasbeen investigatedthe dependence ofHI on theinitial (pre-inflationary) conditions.Inouranalysis we as-sumed a spatially homogeneous and isotropic geometrypointing out the naturalnessofthischoice. As shownin [8],although the large-ξ HI [1] doesnot sufferfromanytuning oftheinitial con-ditionsattheclassicallevel,atthequantumlevelafine-tuningof thehighenergyvaluesofsomerunningparametershastobe per-formed, asdiscussed at the end of Sec. 2.2. For this reason the mainfocusofthisarticlehasbeencriticalHI [5–7], whichallows a drastic decrease of
ξ.
Moreover, critical HI, unlike the large-ξ original version, has a single cut-off scale, M¯
Pl, where quantumgravity effectsare expectedto emerge, and is free from a much lowerscale,whereperturbativeunitaritytheorybreaksdown.
We pointedout thatcriticalHIdoesnot sufferfromany fine-tuning ofthehighenergyparameters, suchasthe oneoflarge-ξ HInotedin [8].ThemainresultofthispaperwasthatcriticalHIenjoys
13 Inthatplotweconsideredvaluesofupto−0.05M¯2
Plwhichcorrespondstoan
initialkineticenergydensityoforder10−3M¯4
Pl.Weregardthisvalueasthemaximal
kineticenergydensityallowedtohavenegligiblequantumgravitycorrections(see also(24)).
arobustinflationaryattractor:evenstartingfromalargekineticenergy densityoftheHiggsfield(ascomparedtothepotentialenergydensity), theinflatonrapidlyreachestheslow-rollbehavior.
Acknowledgements
IthankJ.Garcia-BellidoandM.Shaposhnikovforuseful discus-sions.Thisworkwassupportedbythegrant669668–NEO-NAT– ERC-AdG-2014.
References
[1]F.L.Bezrukov,M.Shaposhnikov,TheStandardModelHiggsbosonasthe infla-tion,Phys.Lett.B659(2008)703,arXiv:0710.3755.
[2]C.P.Burgess,H.M.Lee,M.Trott,Power-countingandthevalidityoftheclassical approximationduringinflation,J.HighEnergyPhys.0909(2009)103,arXiv: 0902.4465;
J.L.F.Barbon,J.R.Espinosa,OnthenaturalnessofHiggsinflation,Phys.Rev.D 79(2009)081302,arXiv:0903.0355;
M.P.Hertzberg,Oninflationwithnon-minimalcoupling,J.HighEnergyPhys. 1011(2010)023,arXiv:1002.2995;
C.P.Burgess,S.P.Patil,M.Trott,Onthepredictivenessofsingle-fieldinflationary models,J.HighEnergyPhys.1406(2014)010,arXiv:1402.1476.
[3]C.P.Burgess,H.M.Lee,M.Trott,CommentonHiggsinflationandnaturalness, J. HighEnergyPhys.1007(2010)007,arXiv:1002.2730.
[4]F.Bezrukov,A.Magnin,M.Shaposhnikov,S.Sibiryakov,Higgsinflation: con-sistency and generalisations, J. High Energy Phys. 1101 (2011) 016, arXiv: 1008.5157.
[5]Y.Hamada,H.Kawai,K.y.Oda,S.C.Park,Higgsinflationisstillaliveafterthe resultsfromBICEP2,Phys.Rev.Lett.112 (24)(2014)241301,arXiv:1403.5043. [6]F.Bezrukov,M.Shaposhnikov,Higgsinflationatthecriticalpoint,Phys.Lett.B
734(2014)249,arXiv:1403.6078.
[7]Y.Hamada,H.Kawai,K.y.Oda,S.C.Park,HiggsinflationfromStandardModel criticality,Phys.Rev.D91(2015)053008,arXiv:1408.4864.
[8]A.Salvio,A.Mazumdar,ClassicalandquantuminitialconditionsforHiggs in-flation,Phys.Lett.B750(2015)194,arXiv:1506.07520.
[9]K.Kannike,G.Hütsi,L.Pizza,A.Racioppi,M.Raidal,A.Salvio,A.Strumia, Dy-namicallyinducedPlanckscaleandinflation,J.HighEnergyPhys.1505(2015) 065,arXiv:1502.01334;
K.Kannike,G.Hutsi,L.Pizza,A.Racioppi,M.Raidal,A.Salvio,A.Strumia,PoS EPSHEP2015(2015)379;
A.Salvio,A.Mazumdar,Higgsstabilityandthe750GeVdiphotonexcess,Phys. Lett.B755(2016)469,arXiv:1512.08184;
A.Salvio,SolvingtheStandardModelproblemsinsoftenedgravity,Phys.Rev. D94 (9)(2016)096007,arXiv:1608.01194;
A.Salvio,Inflationaryperturbationsinno-scaletheories,Eur.Phys.J.C77 (4) (2017)267,arXiv:1703.08012;
A.Salvio,A.Strumia,Agravity,J.HighEnergyPhys. 1406(2014)080,arXiv: 1403.4226.
[10]F.Bezrukov,D.Gorbunov,M.Shaposhnikov,OninitialconditionsfortheHot BigBang,J.Cosmol.Astropart.Phys.0906(2009)029,arXiv:0812.3622; J.Garcia-Bellido,D.G.Figueroa,J.Rubio,PreheatingintheStandardModelwith theHiggs-inflatoncoupledtogravity,Phys. Rev.D79(2009)063531,arXiv: 0812.4624.
[11]P.A.R.Ade,etal.,PlanckCollaboration,Planck2015results.XIII.Cosmological parameters,arXiv:1502.01589;
P.A.R.Ade,etal.,PlanckCollaboration,Planck2015results.XX.Constraintson inflation,arXiv:1502.02114.
[12]J.M.Ezquiaga,J.Garcia-Bellido,E.RuizMorales,PrimordialBlackHole produc-tioninCriticalHiggsInflation,Phys.Lett.B776(2018)345,arXiv:1705.04861. [13]F.L.Bezrukov,A.Magnin,M.Shaposhnikov,StandardModelHiggsbosonmass
frominflation,Phys.Lett.B675(2009)88,arXiv:0812.4950.
[14]F.Bezrukov,M.Shaposhnikov,StandardModelHiggsbosonmassfrom infla-tion:twoloopanalysis,J.HighEnergyPhys.0907(2009)089,arXiv:0904.1537. [15]F.Bezrukov,J.Rubio,M.Shaposhnikov,Livingbeyondtheedge:Higgsinflation andvacuummetastability,Phys.Rev.D92 (8)(2015)083512,arXiv:1412.3811. [16]F.Bezrukov,M.Pauly,J.Rubio,Ontherobustnessoftheprimordialpower
spec-truminrenormalizedHiggsinflation,arXiv:1706.05007.
[17]A.DeSimone,M.P.Hertzberg,F.Wilczek,Runninginflationinthe Standard Model,Phys.Lett.B678(2009)1,arXiv:0812.4946.
[18]A.Salvio,HiggsinflationatNNLOafterthebosondiscovery,Phys.Lett.B727 (2013)234,arXiv:1308.2244.
[19]K.Allison,Higgsxi-inflationforthe125–126GeVHiggs:atwo-loopanalysis, J. HighEnergyPhys.1402(2014)040,arXiv:1306.6931.
[20]D.Buttazzo,G.Degrassi,P.P.Giardino,G.F.Giudice,F.Sala,A.Salvio,A.Strumia, Investigatingthenear-criticalityoftheHiggsboson,J.HighEnergyPhys.1312 (2013)089,arXiv:1307.3536.
[21]G.Aad,etal.,ATLAS,CMSCollaborations,CombinedmeasurementoftheHiggs boson massin pp collisionsat√s=7 and8TeVwiththeATLASandCMS experiments,Phys.Rev.Lett.114(2015)191803,arXiv:1503.07589.
[22]K. Kannike, L. Marzola, M. Raidal, H. Veermäe, J. Cosmol. Astropart.Phys. 1709 (09)(2017)020,arXiv:1705.06225.
[23]C.Germani,T.Prokopec,Onprimordialblackholesfromaninflectionpoint, Phys.DarkUniverse18(2017)6,arXiv:1706.04226.
[24]J.Garcia-Bellido,E.RuizMorales,Primordialblackholesfromsinglefield mod-elsofinflation,Phys.DarkUniverse18(2017)47,arXiv:1702.03901. [25]F.Bezrukov,M.Y.Kalmykov,B.A.Kniehl,M.Shaposhnikov,Higgsbosonmass
andnewphysics,J.HighEnergyPhys.1210(2012)140,arXiv:1205.2893. [26]A.Andreassen,W.Frost,M.D.Schwartz,Scaleinvariantinstantonsandthe
com-pletelifetimeoftheStandardModel,arXiv:1707.08124.
[27]A.Salvio,Theelectroweak vacuumdecay andthegravitational contribution, arXiv:1711.06594.
[28]A.D.Linde,Initialconditionsforinflation,Phys.Lett.B162(1985)281. [29] B.Pearson,talkattop2017;
A.Castro,talkattop2017.
[30]A.Salvio, Asimple motivatedcompletionoftheStandard Modelbelowthe Planckscale:axionsandright-handedneutrinos,Phys.Lett.B743(2015)428, arXiv:1501.03781.
[31]W.H.Kinney, Horizoncrossingand inflationwithlargeeta,Phys.Rev.D72 (2005)023515,arXiv:gr-qc/0503017;
J. Martin, H. Motohashi, T. Suyama,Ultra slow-roll inflation and the non-Gaussianity consistencyrelation, Phys. Rev.D 87 (2)(2013) 023514,arXiv: 1211.0083;
A.E.Romano,S.Mooij,M.Sasaki,Globaladiabaticityandnon-Gaussianity con-sistencycondition,Phys.Lett.B761(2016)119,arXiv:1606.04906;
K.Dimopoulos,Ultraslow-rollinflationdemystified,Phys.Lett.B775(2017) 262,arXiv:1707.05644.