• Non ci sono risultati.

PTR-TOF-MS monitoring of an in-vitro and in-vivo flavour release in cereal bars with varying sugar composition

N/A
N/A
Protected

Academic year: 2021

Condividi "PTR-TOF-MS monitoring of an in-vitro and in-vivo flavour release in cereal bars with varying sugar composition"

Copied!
2
0
0

Testo completo

(1)

XIII

Weurman Flavour Research

Symposium

Zaragoza (Spain)

PTR-TOF-MS MONITORING OF IN-VITRO AND IN-VIVO FLAVOUR RELEASE IN CEREAL BARS WITH VARYING SUGAR COMPOSITION

Samuel Heenan 2, Christos Soukoulis 1, Patrick Silcock 2, FRANCO BIASOLI, Eugenio Aprea1, Luca Cappellin 1, and Flavia Gasperi 1

1

IASMA Reseach and Innovation Centre, Fondazione Edmund Mach, Food Quality and Nutrition Area, Via E. Mach, 1, 38010, S. Michele a/A, Italy

2

Sensory Science Research Centre, Department of Food Science, University of Otago, Dunedin, New Zealand

franco.biasioli@iasma.it

Keywords: PTR-TOF-MS; in-vivo, in-vitro, cereal bars, sweeteners; polydextrose

Proton transfer reaction mass spectrometry (PTR-MS) is a well-established technique used to assess volatile compounds release from real or model food matrices and, in particular, it has been applied to the in-vivo monitoring of flavour release during food consumption (nose space analysis) to demonstrate the influence of parameters related with the food matrix (composition, microstructure, textural and rheological properties) or the assessor’s oral physiology e.g. saliva flow, swallowing, mouth volume and breathing pattern (1,2). The recently developed PTR-ToF-MS combines the advantages of the quadrupole based PTR-MS (sensitivity, dynamic on-line capability) with improved mass and time resolution providing unambiguous determination of chemical formulas and the possibility to monitor complex matrixes without the necessity to select few compounds at a time (3).

Type and amount of sugars can modify the physical properties of food products influencing texture, appearance and possibly flavour release. Therefore changing sugar content, in view e.g. of sugar reduction, can influence the partitioning of aroma compounds, posing a critical issue for food manufacturers (4).

The present study has a twofold goal: firstly, to describe the application of the novel PTRToF- MS in nose-space analysis and, secondly, to investigate by this technique the impact of changes in the level of glucose syrup substitution by polydextrose (from 0% to 70% on glucose syrup weight) both on the “in-vitro” and “in-vivo” flavour release from a complex system as flavoured cereal bars.

After describing the performances of PTR-ToF-MS we show how in the case of in-vitro analysis, the concentration of the flavor compounds was significantly affected by the sugar composition. The substitution of glucose syrup solids by polydextrose facilitated the release of acetaldehyde, esters, menthol and menthone whereas no significant effects were observed for other flavor compounds such as methyl cinnamate or vanillin. Flavor release is possibly driven by a “salting-out” effect due to the ability of polydextrose to enhance the rubbery – glass transition state of the systems and consequently to reduce the water free volume.

In the case of in-vivo measurements, three parameters were calculated from the curves describing the nose-space concentration of each assessor: the total area (Atotal), the maximum

concentration (Imax) and the time needed to reach it (tmax). Moreover the time of the

swallowing events has also been recorded. Similarly to the in-vitro analysis, esters, carboxylic

318

(2)

XIII

Weurman Flavour Research

Symposium

Zaragoza (Spain)

acids, acetaldehyde, menthone and menthol exhibited significantly (p<0.05) higher values for Atotal, Imax, and tmax at a 50 or 75% glucose syrup substitution level. A similar mechanism

related with salting out effects can be also used for explaining the observed behavior. For methyl cinnamate and vanillin Atotal, and Imax were maximized at 75% glucose syrup

substitution level but tmax seems to be related only to the swallowing time. This, together with

the observed dependence of the swallowing behavior on sugar concentration, suggests that factors related with individual chewing behavior (free chewing protocol) and oral physiology may have led to the increased variability of the calculated parameters, particularly in the case of the time between the first swallowing event and tmax.

References:

1. Buettner A.,& Beauchamp J. (2010). Chemical input – sensory output: Diverse modes of physiology-flavour interaction. Food Quality and Preference, 21, 915-924

2. de Roos K.B. (2003). Effect of texture and microstructure on flavour retention and release. International Dairy Journal, 13, 593-605

3. Cappellin L., Biasioli F., Granitto P.M., Schuhfried E., Soukoulis C., Costa F., Märk T.D., and Gasperi F. (in press). On data analysis in PTR-TOF-MS: From raw spectra to data mining. Sensors and Actuators B: Chemical,doi:10.1016/j.snb.2010.11.044

4. Heenan S.P., Dufour J.P., Hamid N., Harvey W. & Delahunty C.M., (2010). The influence of ingredients and time from baking on sensory quality and consumer freshness perceptions in a baked model cake system. LWT-Food Science and Technology, 43, 1032-1041



Riferimenti

Documenti correlati

spheric noise for young stars with similar spectral type as our tar- gets, we found that the measured excess emission for 13 targets is compatible with being largely due

(7) Il questionario è riprodotto nel Cd – Rom ed è disponibile anche in rete nel sito docente http://hal9000.cisi.unito.it/carlamarello. È stato elaborato da Chelia Schifano

Questa strategia consente di eliminare le fonti di disturbo causate dalla storia e dalla regressione verso la media, in quanto i due gruppi vengono osservati nello stesso interval-

Se il tipo di Amministrazione Pubblica è rilevato dall’insieme delle sue de- cisioni, dai suoi comportamenti nel tempo, in altre parole dal suo “andamen- to” (art. 97, comma 2,

Such techniques, known as CE- OFDM and CE-SC-FDMA, demonstrated their superior performance with respect to conventional OFDMA and SC- FDMA, when applied to

Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable

Our data show that ACB is active in HSB1, it is also stimulated by cAR1, as shown by treating cells with cAMP pulses, but produces a low amount of cAMP. If HectPH1 is inactivated,

All these sources have a common signature, which is an impulsive neutrino emission with a total emitted energy of the order of 10 53 ergs, average neutrino energy of ∼ 10 MeV and