• Non ci sono risultati.

Graphs whose second largest signless Laplacian eigenvalue does not exceed 2+sqrt(2)

N/A
N/A
Protected

Academic year: 2021

Condividi "Graphs whose second largest signless Laplacian eigenvalue does not exceed 2+sqrt(2)"

Copied!
23
0
0

Testo completo

(1)

Contents lists available atScienceDirect

Linear

Algebra

and

its

Applications

www.elsevier.com/locate/laa

Graphs

whose

second

largest

signless

Laplacian

eigenvalue

does

not

exceed

2

+

2

Xingyu Leia,Jianfeng Wanga,∗, Maurizio Brunettib

a SchoolofMathematicsandStatistics,ShandongUniversityof Technology,Zibo

255049,China

b

DepartmentofMathematicsandApplications,UniversityofNaples‘FedericoII’, Italy

a r t i c l e i n f o a bs t r a c t

Article history:

Received17October2019 Accepted27May2020 Availableonline1June2020 SubmittedbyR.Brualdi

MSC:

05C50

Keywords:

SignlessLaplacianmatrix

Q-spectrum Q-eigenvalue

Secondlargesteigenvalue

ForagraphG,letthesignlessLaplacianmatrixQ(G) defined

as Q(G) = D(G) + A(G), where A(G) and D(G) are,

respectively,theadjacencymatrixandthedegreematrixofG.

TheQ-eigenvaluesofG aretheeigenvaluesof Q(G).Inthis paper, we characterize the connected graphs whose second largestQ-eigenvalueκ2doesnotexceed2+2,obtainallthe minimal forbidden subgraphswith respect to thisproperty, anddiscoveralargefamilyofsuchgraphsthataredetermined by their Q-spectrum. The connected graphs G such that

κ2(G)= 2+

2 arealsodetected.

©2020ElsevierInc.Allrightsreserved.

1. Introduction

Inthispaperwestudyundirectedandsimplegraphs(i.e.,loopsandmultipleedgesare notallowed).LetG= (V (G),E(G)) beagraphwithvertexset V (G)={v1,v2,. . . ,vn}

and edge set E(G),with |V (G)| = n(G)= n beingtheorder of G.Byu∼ v wemean

* Correspondingauthor.

E-mailaddresses:xyleiyuki@aliyun.com(X. Lei),jfwang@sdut.edu.cn(J. Wang), maurizio.brunetti@unina.it(M. Brunetti).

https://doi.org/10.1016/j.laa.2020.05.034

(2)

thattheverticesu andv areadjacent;avertexu issaidtobependantatsomevertexv

ifv istheuniqueneighbor ofu.LetNG(v) denotetheopenneighborhood ofv,i.e.,the

setofvertices adjacenttov in G;thedegreeofv,denotedbyd(v), isthecardinalityof

NG(v).LetG∪ G standforthedisjoint unionofthegraphsG andG;givent∈ N, we

shalldenotebytG thedisjoint unionoft copiesofG.BywritingH ⊆ G wemeanthat

H isasubgraphofG,i.e.,thatthegraphH isobtainedfromG bydeletingsomeofits edgesor vertices. Giventhesubset E⊆ E(G) (resp.,V⊂ V (G)),G\E (resp.,G\V) isthegraphobtainedfromG bydeletingtheedgesinE(resp.,theverticesinV andall edgesincidenttothem).IfE={e} andV={v},thenG\EandG\V arerespectively

denotedbyG−e andG−v.Themaximum(minimum)vertexdegreeofG,itsdiameter,

anditscircumferencewillbe,respectively,denotedbyΔ(G) (δ(G)),diam(G),andc(G)

respectively.Finally, thepath and thecycle of order n willbe respectively denotedby

Pn andCn.Fornotationanddefinitionsnotgivenhere,wereferthereaderto[13].

Graphscanbestudiedbymeansofseveralmatrices,astheadjacencyA,theLaplacian

L andthesignlessLaplacianQ.Here,we focus ourattentiononthesignlessLaplacian

Q(G)= D(G)+ A(G),where A(G) andD(G) are theadjacencymatrixandthedegree

matrixofagivengraphG,respectively.

ThematrixQ hasbeenintensivelystudiedinthepast15yearsasitoffersaspectral theorysimilar to theoneobtainedbythemorefamousLaplacianmatrix, butwith the benefitsofrepresentingthegraphwithanonnegativematrix(Perron-Frobeniustheory). Furthermore,thematrixQ showsnicecombinatorialandalgebraicfeatures,asitiswell describedinthepapers[6–9]. Wereferthereaderstothejustcitedreferencesforbasic resultsonthismatrixandfornotationnotgivenhere.Forthoseinterestedinsomerecent results,wereferto [1,14,16,18,21,26].

SinceQ(G) isreal,symmetricandpositivesemidefinite,itseigenvalues–i.e.,theroots oftheQ-polynomialϕ(G,κ)= ϕ(G) (weomitthevariableifclearfromthecontext)–are allnon-negativerealnumbers.Weshalldenotethembyκ1(G)≥ κ2(G)≥ · · · ≥ κn(G)≥

0.Thelargesteigenvalueκ1isthespectralradius,aswell,andifG isconnectedwehave κ1(G)> κ2(G).Whileκ1 isalargelystudiedeigenvalue,there aremuchlessresultson

thesecondlargest eigenvalueκ2.From theliterature(see[2,22],forexample),we know

thatforaconnectedgraphG,δ(G)≤ κ2(G)≤ n(G)−2.Therefore,wehavegraphswith

alargegapbetweenκ1andκ2.Graphswithasmallsecondlargesteigenvaluehavebeen

consideredintheliterature.Forexample,thegraphswithκ2≤ 3 havebeencharacterized

in[2,23],andsomefamiliesofgraphs,aspathsandcyclessharingasinglecommonvertex, arecharacterized byhaving κ2≤ 4 (for instance the2-rose graphsstudiedin[25]). On

the other hand, κ2 = 4 is an interesting bound as it is linked to λ2 = 2 (λ2 denotes

herethesecondlargest adjacencyeigenvalue).Infact,theQ-eigenvalues ofagraphare thesquaresoftheadjacencyeigenvaluesofitssubdivisiongraph(cf.Section2.6 in[7]), andλ2≤ 2 isanimportantboundintheadjacencytheoryasitcharacterizestheSalem

graphs(see,forexample,[15]).Wealsoobservethat4 isthelimitvalueofκ1ofpathsPn

whenthe ordern tends to infinity.Evidently,wehavemorethan onereason tobelieve thatκ2≤ 4 isindeedarelevantboundfortheQ-spectraltheoryof graphs.

(3)

In this paper we make a step forward in the project of characterizing the graphs whose second largest Q-eigenvaluedoes not exceed 4 by considering the smaller value 2+√2 = κ1(P4),(note,3= κ1(P3)).Infact,wecharacterizetheconnectedgraphswhose κ2≤ 2+

2 andexpandthefamilydetectedin[2,23,27].Asaresult,wefindtheinfinite familydenotedbyG(p,q,r,s,t),and exactly17 graphswithorder from5 to 9 together with theirsubgraphs (see Fig.2). Thus,such17 graphsaresporadic, inthesense that they donotbelongto any infinitefamilyof graphsconstructed inanuniform wayand sharingthisparticular κ2-spectralproperty.

The maintheorems, together withsomepreliminaryresults,are statedinSection2. InSection3,westepwisecharacterizetheconnectedgraphswithκ2≤ 2+

2,andobtain all theminimal forbidden subgraphs withrespect to this property. Finally, weshow in Section4thatthegraphsoftypeG(p,q,r,s,t),apartfromG(3,0,0,0,0),G(0,2,1,0,0) and G(0,0,0,1,1), are all QDS, i.e. they are determined by their signless Laplacian eigenvalues.

2. Preliminariesandmain results

Itiswell-knownthattheQ-eigenvaluesofagraphG interlacewiththeQ-eigenvalues

of anysubgraphH ⊆ G.Asaconsequence,wegetthefollowingLemma.

Lemma 2.1.[24] LetH beasubgraphof asimplegraph G. Then,fori= 1,2,. . . ,n(H), we have

κi(H)≤ κi(G).

WesaythatagraphG verifiesPropertyAifκ2(G)≤ 2+

2.Lemma2.1showsthat Property Aishereditary:ifagraphG verifiesPropertyA,theneverysubgraphH ⊆ G

does. Therefore, it makes sense to seek the minimal graphsnotsatisfying Property A. Theywill be calledminimal forbiddengraphs.InFig.1, thegraphsFi for i= 1,. . . ,28

are displayed inanon-decreasing order with respect to circumference. Wedefine F to be theset{P9, Fi|i= 1,. . . ,28}.

Proposition 2.2. Allelements inF are minimalforbiddengraphs.

Proof. From Table 1, itfollows thattheκ2(F )> 2+

2 for allF ∈ F. Wehaveused

newGRAPH,thesoftwareenvironmentdevelopedbyD.StevanovićandV.Brankov,to

check that everyproper subgraph of a fixed F ∈ F verifies Property A. Hence, every

element inF is aminimal forbiddengraph. 

Let Qv(G) be the principal submatrix of Q(G) obtained by deleting the row and

column corresponding to thevertex v. Wedenote byμ1(Qv(G))≥ · · · ≥ μn−1(Qv(G))

the eigenvalues of Qv(G). The following Lemma follows from the Cauchy Interlacing

(4)

Fig. 1. Minimal forbidden graphs.

Lemma2.3. [22] LetG be aconnectedgraph oforder n.Then,

κ1(G)≥ μ1(Qv(G))≥ κ2(G)≥ · · · ≥ μn−1(Qv(G))≥ κn(G).

Lemma2.4. Letp,q,r,s andt benon-negativeintegers.ThegraphG(p,q,r,s,t) depicted inFig.2 verifiesPropertyA.

Proof. Let v1 be the vertex with maximum degree inG(p,q,r,s,t). Then, the

charac-teristicpolynomialof Qv1(G(p,q,r,s,t)) isequalto

(κ− 1)p+s(κ− 2)t(κ− 3)s(κ2− 3κ + 1)q(κ2− 4κ + 2)t(κ3− 5κ2+ 6κ− 1)r.

ByLemma2.3,wegetκ2(G(p,q,r,s,t))≤ μ1(Qv1(G(p,q,r,s,t))= 2+

2. 

LetK5 be thecomplete graphoforder 5,and let

(5)

Table 1

TheQ-polynomialsandthesecondlargestQ-eigenvaluesofminimalforbiddensubgraphs.

Q-polynomial κ2 P9 x9− 16x8+ 105x7− 364x6+ 715x5− 792x4+ 462x3− 120x2+ 9x 3.5321 F1 x2(x− 1)4(x− 4)2 4 F2 x8− 14x7+ 71x6− 172x5+ 223x4− 158x3+ 57x2− 8x 3.4849 F3 x7− 12x6+ 53x5− 108x4+ 107x3− 48x2+ 7x 2 + 3 F4 x8− 14x7+ 74x6− 190x5+ 256x4− 182x3+ 63x2− 8x 3.5857 F5 x9− 16x8+ 101x7− 326x6+ 582x5− 582x4+ 317x3− 86x2+ 9x 3.4609 F6 x8− 14x7+ 75x6− 198x5+ 277x4− 204x3+ 71x2− 8x 3.4527 F7 x9− 16x8+ 103x7− 344x6+ 641x5− 668x4+ 370x3− 96x2+ 9x 3.4413 F8 x9− 16x8+ 103x7− 344x6+ 640x5− 662x4+ 361x3− 94x2+ 9x 3.5132 F9 x9− 16x8+ 101x7− 326x6+ 584x5− 592x4+ 329x3− 90x2+ 9x 3.4838 F10 x8− 14x7+ 77x6− 212x5+ 309x4− 232x3+ 79x2− 8x 3.5643 F11 x9− 16x8+ 104x7− 354x6+ 677x5− 724x4+ 406x3− 104x2+ 9x 3.4421 F12 x9− 16x8+ 103x7− 344x6+ 641x5− 668x4+ 371x3− 98x2+ 9x 3.5372 F13 x9− 16x8+ 104x7− 354x6+ 678x5− 730x4+ 416x3− 108x2+ 9x 3.4567 F14 x6− 12x5+ 52x4− 102x3+ 95x2− 38x + 4 12(5 +  13−√5) F15 x8− 16x7+ 100x6− 316x5+ 543x4− 506x3+ 241x2− 52x + 4 3.4845 F16 x8− 16x7+ 102x6− 334x5+ 602x4− 592x3+ 293x2− 60x + 4 3.4429 F17 x7− 14x6+ 76x5− 204x4+ 286x3− 202x2+ 61x− 4 3.4877 F18 x6− 14x5+ 72x4− 170x3+ 184x2− 72x 3.5720 F19 x8− 16x7+ 100x6− 314x5+ 528x4− 468x3+ 201x2− 32x 3.5096 F20 x7− 14x6+ 75x5− 194x4+ 250x3− 146x2+ 28x 3.5892 F21 x7− 14x6+ 75x5− 194x4+ 250x3− 146x2+ 28x 3.5892 F22 x8− 16x7+ 103x6− 342x5+ 621x4− 596x3+ 260x2− 32x 3.5143 F23 x8− 16x7+ 102x6− 332x5+ 585x4− 542x3+ 233x2− 32x 3.4537 F24 x7− 18x6+ 126x5− 444x4+ 839x3− 824x2+ 364x− 48 3.4693 F25 x7− 20x6+ 157x5− 628x4+ 1367x3− 1576x2+ 843x− 144 3.4311 F26 x7− 16x6+ 96x5− 280x4+ 426x3− 336x2+ 125x− 16 3.4557 F27 x7− 16x6+ 99x5− 302x4+ 475x3− 362x2+ 105x 3.4394 F28 x8− 16x7+ 103x6− 342x5+ 623x4− 610x3+ 289x2− 48x 3.4959 Table 2

TheQ-spectrumofgraphsG1,. . . ,G16,K5∈ G.

κ1 κ2 κ3 κ4 κ5 κ6 κ7 κ8 κ9 G1 5.41421 2 + 2 2 +2 2 +2 2.58579 2−√2 2−√2 2−√2 G2 6.56155 2 + 2 2 +2 3 2.43845 2−√2 2−√2 G3 6 3 3 3 3 0 G4 6.73205 2 + 2 3.26795 2 2 2−√2 G5 6.66481 3.3011 3 3 1.571264 0.46284 G6 6.44949 2 + 2 2 +2 2 +2 1.55051 2−√2 2−√2 2−√2 G7 7.08387 3.2132 3 3 1 0, 70293 G8 6.77584 3.32404 3 2.27668 1.33024 1 0.2932 G9 6.49396 2 + 2 2 +2 3.10992 2 2−√2 2−√2 0.39612 G10 7.16228 2 + 2 2 +2 3.41421 0.83772 2−√2 2−√2 2−√2 G11 6.70156 2 + 2 2 +2 2 1 2−√2 2−√2 0.29844 G12 6.70156 2 + 2 2 +2 3 2 2−√2 2−√2 0.29844 G13 6.55884 3.33535 2.61803 2 2 0.90342 0.38197 0.2024 G14 7.35454 2 + 2 2.42078 2 1 1 2−√2 0.22467 G15 6.53847 2 + 2 2.87157 2 1.45312 1 2−√2 0.14683 G16 5.3234 3.24698 3.24698 2.35793 1.55496 1.55496 0.31867 0.19806 0.19806 K5 8 3 3 3 3

Its elements aredepicted inFig. 2. The following proposition follows from Lemma2.4

and Table2.

(6)

Fig. 2. Graphs with property κ2≤ 2 +

2.

Theentire Section3will be devotedto proof of thefollowing theorem,whichis the firstofourmainresults.

Theorem2.6.LetG beaconnectedgraphnotcontaininganyF ∈ F,thenG isasubgraph ofsome graphsinG.

The proof of the following theorem immediately follows from Lemma2.1, Proposi-tion2.5andTheorem2.6.

Theorem2.7.AconnectedgraphG satisfiesPropertyAifandonlyifG isasubgraphof somegraphsin G.

(7)

Corollary 2.8. There exist exactly 29 minimal forbidden subgraphs with κ2 > 2+

2.

Hence, thereare nominimalforbidden subgraphsoutof thesetF.

We takeadvantageof Theorem2.7 to study thespectral determinationofgraphsof typeG(p,q,r,s,t).WerecallthatagraphG issaidtobedeterminedbyits (Q-)eigenval-uesifanyothercospectralgraphH isisomorphictoG.Spectraldeterminationproblems areintensivelystudiedandtheliteraturecontainsdozensofresults.Wereferthereaders to thesurveys[10,11] foracollectionof basicandadvanced resultsinthisrespect.

Theorem 2.9willbe proveninSection4.

Theorem2.9. ApartfromG(0,0,0,1,1),G(3,0,0,0,0) andG(0,2,1,0,0),allthe remain-ing graphsoftype G(p,q,r,s,t) withp,q,r,s,t≥ 0 aredeterminedby their Q-spectrum.

In the sequel,it will be useful to get anexplicit expression for theQ-polynomial of someG(p,q,r,s,t)’s.Weworkthemoutbyusing Lemmas 6.2in[25].It turnsoutthat (a) If p,q,r,s,t≥ 1, then ϕ(G(p, q, r, s, t), κ) = (κ− 1)p+s−1(κ− 2)t(κ− 3)s−1· · (κ2− 3κ + 1)q−12− 4κ + 2)t−13− 5κ2+ 6κ− 1)r−1f (p, q, r, s, t; κ), (1) where f (p,q,r,s,t;κ) = κ10− (p+ q + r + 2s+ 2t+ 16)κ9+ (15p+ 15q + 15r + 30s+ 30t+ 107)κ8− (92p+ 93q + 93r + 188s+ 186t+ 388)κ7+ (296p+ 308q + 308r + 640s+ 614t+ 829)κ6− (533p+ 588q + 589r + 1290s+ 1158t+ 1065)κ5+ (532p+ 651q + 659r + 1576s+ 1244t+ 809)κ4− (277p+ 398q + 419r + 1150s+ 716t+ 345)κ3+ (68p+ 118q + 138r + 476s+ 192t+ 74)κ2− (6p+ 12q + 18r + 100s+ 18t+ 6)κ+ 8s. (b)If p= 0 andq,r,s,t≥ 1,then ϕ(G(0, q, r, s, t), κ) = (κ− 1)s(κ− 2)t(κ− 3)s−1· · (κ2− 3κ + 1)q−12− 4κ + 2)t−13− 5κ2+ 6κ− 1)r−1f (0, q, r, s, t; κ), (2) where f (0,q,r,s,t;κ)= κ9− (q + r + 2s+ 2t+ 15)κ8+ (14q + 14r + 28s+ 28t+ 92)κ7− (79q + 79r + 160s+ 158t+ 296)κ6+ (229q + 229r + 480s+ 456t+ 533)κ5− (359q + 360r + 810s+ 702t+ 532)κ4+ (292q + 299r + 766s+ 542t+ 277)κ3− (106q + 120r + 384s+ 174t+ 68)κ2+ (12q + 18r + 92s+ 18t+ 6)κ− 8s.

(8)

(c)If q = 0 andp,r,s,t≥ 1,then ϕ(G(p, 0, r, s, t), κ) = (κ− 1)p+s−1(κ− 2)t(κ− 3)s−1· · (κ2− 4κ + 2)t−13− 5κ2+ 6κ− 1)r−1f (p, 0, r, s, t; κ), (3) where f (p,0,r,s,t;κ)= κ8− (p+ r + 2s+ 2t+ 13)κ7+ (12p+ 12r + 24s+ 24t+ 67)κ6− (55p+ 56r + 114s+ 112t+ 174)κ5+ (119p+ 128r + 274s+ 254t+ 240)κ4− (121p+ 149r + 354s+ 284t+ 171)κ3+ (50p+ 84r + 240s+ 138t+ 56)κ2− (6p+ 18r + 76s+ 18t+ 6)κ+ 8s. (d)If r = 0 andp,q,s,t≥ 1, then ϕ(G(p, q, 0, s, t), κ) = (κ− 1)p+s−1(κ− 2)t(κ− 3)s−1· · (κ2− 3κ + 1)q−12− 4κ + 2)t−1f (p, q, 0, s, t; κ), (4) where f (p,q,0,s,t;κ)= κ7− (p+ q + 2s+ 2t+ 11)κ6+ (10p+ 10q + 20s+ 20t+ 46)κ5− (36p+ 37q + 76s+ 74t+ 91)κ4+ (55p+ 62q + 138s+ 122t+ 87)κ3− (32p+ 46q + 124s+ 84t+ 38)κ2+ 2(6p+ 12q + 52s+ 18t+ 6)κ− 8s.

(e)If p= r = 0 andq,s,t≥ 1,then

ϕ(G(0, q, 0, s, t), κ) = (κ− 1)s(κ− 2)t(κ− 3)s−1·

· (κ2− 3κ + 1)q−12− 4κ + 2)t−1f (0, q, 0, s, t; κ), (5)

where

f (0,q,0,s,t;κ)= κ6− (q + 2s+ 2t+ 10)κ5+ (9q + 18s+ 18t+ 36)κ4− (28q + 58s+ 56t+ 55)κ3+ (34q + 80s+ 66t+ 32)κ2− (12q + 44s+ 18t+ 6)κ+ 8s.

InthelightofLemma2.4andTheorem2.9,it isnaturaltoaskwhetherκ2(G(p,q,r,s,t))

= 2+2 ornot.Thefollowingtheoremanswersthisquestion.

Theorem2.10. The second Q-eigenvalue of G= G(p,q,r,s,t) isequal to2+√2 if and onlyif t≥ 2.

Proof. Adirectcalculationshowsthatκ2(G(0,0,0,0,2))= 2+

2.Clearly,G(0,0,0,0,2) is asubgraph of G(p,q,r,s,t) whenever t ≥ 2.If this is the case,Lemmas 2.1 and 2.4

(9)

2 +√2 = κ2(G(0, 0, 0, 0, 2))≤ κ2(G(p, q, r, s, t))≤ 2 +

2 (t≥ 2).

Supposenowt≤ 1.SinceG(p,q,r,s,t) isasubgraphofG(p+ 1,q + 1,r + 1,s+ 1,1) (whichsatisfiesProperty A),fromLemma2.1wededuce

κ2(G(p, q, r, s, t))≤ κ2(G(p + 1, q + 1, r + 1, s + 1, 1)).

Thelatterisstrictlylessthan2+2;infact,byusingthedecompositionoftype(1),it turnsoutthattheevaluation at2+2 oftheQ-polynomialϕ(G(p+1,q+1,r+1,s+1,1)) gives−4(√2− 1)s+1(2 + 1)p+q+s+3= 0. 

Theorem 2.11.The sporadic graphsin G are alldetermined by their signless Laplacian spectrum.

Proof. Itiswell-knownthatK5isDQS(seeforinstance[10]).TheGi’swithsixvertices

areDQSsince,by[4,Appendix],G(0,0,0,1,1) istheonlygraphinG havingsixvertices andaQ-cospectralmate.ThegraphG16isDQSsinceitistheonlysporadicgraphinG

with 9 vertices,andtheG(p,q,r,s,t)’s oforder9 are DQSbyTheorem 2.9.Inorderto seethattheGi’soforder7 and8 areDQS,weusedTable2,wheretheirQ-spectrumcan

be read.Wefirstexcluded alotofpairsby noticingthat,byLemma2.1,ifasubgraph ofGhisQ-cospectraltoGk,thenκi(Gh)≤ κi(Gk) foreachi= 1,. . . ,|V (Gk)|;secondly,

we comparedthe Q-spectrumof theremainingpairsthroughthesoftwareenvironment

newGRAPH. 

We explicitly point out that it is not possible to deduce from Theorems 2.9

and 2.11 that G(3,0,0,0,0), G(0,2,1,0,0), G(0,0,0,1,1) and its Q-cospectral mate

G5\{v1v6,v3v6} in Fig. 2 (i.e. the graph denoted by H53,2 in [25]) are the only

non-DQS connected graphs satisfying Property A. In fact, this is not true. Although the graphs H˜1 = G10\{v6,v7,v8} and H˜2 = G12\{v5,v7,v8} in Fig. 2 are notisomorphic,

theQ-spectrum ofbothis  7 +33 2 , 3, 2, 2, 7−√33 2  . 3. ProofofTheorem 2.6

The proof consists in asort of sieve-algorithm. Since P9 ∈ F is aforbidden graph,

the circumferencec(G) ofagraphG notcontaining anyelement ofF is at most8.We shall stateatheorem foreach possiblevalue ofc(G) inadecreasingorder from 8 to 3, and devoteafinaltheorem totrees.Inorderto makenotationlighter,wheni andj are

digits, weshalloftenuseeij as anequivalent notationfortheedge vivj.

Lemma3.1. LetG beaconnectedgraphwithc(G)∈ {7,8} notcontaininganyelementof F.Then|V (G)|= c(G).Inotherwords,G containsacycleCc(G) asspanningsubgraph.

(10)

Proof. Thestatementfollows from thefactthatF10 inFig.1cannot beasubgraph of G. 

Theorem3.2. LetG be aconnectedgraph with c(G)= 8 not containingany element of F.Then, G isasubgraphof G1∈ G.

Proof. ByLemma3.1, weknow thatG containsthe cycleC8= v1v2v3v4v5v6v7v8v1 as

spanningsubgraph.Inparticular, n(G)= 8.IfG= C8,thenclearlyG⊆ G1.IfG= C8,

withoutloss ofgenerality, wecanassumeΔ(G)= d(v1)> 2. Sinceneither F17 norF22

are subgraphs of G, Δ(G) = d(v1) = 3. In fact, if e1h is in E(G)\E(C8), necessarily h= 5.Apartfrom e26,anyotheradditionaledgeinG wouldleadtothepresenceofthe

forbiddenF3among itssubgraphs.HenceG⊆ G1 asclaimed. 

Theorem3.3. LetG be aconnectedgraph with c(G)= 7 not containingany element of F.Then, G isasubgraphof G2∈ G.

Proof. By Lemma 3.1, we know that G contains the cycle C7 as spanning subgraph.

HencewecanlabeltheverticesofG inZ/7Z insuchawaythatC7= v1v2v3v4v5v6v7v1

and v−7 = v0 = v7, v−6 = v1 = v8 and so on. Since F17  G,it follows thatvivi±2 ∈/

E(G). This, in particular, implies Δ(G) ≤ 4. If Δ(G) = 2, G is equalto C7 which is

actuallyasubgraph ofG2.If Δ(G)≥ 3,we canassumewithoutloss of generalitythat

Δ(G)= d(v1)≥ 3 ande14∈ E(G).Inthiscasev2 v6 v3,otherwiseF20⊆ G,which

is forbidden. Hence, d(v6) = 2. Forthe same reason, e15 and e37, e25 and e47 (or e37)

cannotbelongtoE(G) simultaneously.This meansthat8≤ |E(G)|≤ 10.

Ife15∈ E(G),thene37∈ E(G),/ andonlyonebetweene25 ande47 canstayinE(G).

Inbothcases,if|E(G)|= 10,thegraphG isisomorphictoG2.

If instead e15 ∈ E(G),/ then Δ(G) = 3 ≥ d(v4)≥ 3. Thatis why, surely e47 is not

inE(G).There is onlyonepossible additional edgechosen betweene25 and e37. Inall

caseswe findgraphsisomorphictosubgraphs ofG2. 

Lemma 3.4.Let C6 = v1v2v3v4v5v6v1 be a subgraph of a graph G not containing any elementof F.Then,

(i) e13 andany edgein{e15,e25,e35,e46} cannotboth belongtoE(G).

(ii) |E(G)∩ {e13,e15}|≤ 1.

Proof. Both claims depend on the fact that F14 in Fig. 2 is aforbidden subgraph of G. 

Theorem3.5. LetG be aconnectedgraph with c(G)= 6 not containingany element of F.Then, G isasubgraphof Gi∈ G foratleastone i∈ {3,4,5,6}.

(11)

Proof. In our hypothesis, G contains the cycle C6 = v1v2v3v4v5v6v1 as its subgraph.

SinceF28isaforbiddensubgraph,thenH = G[V (G)\V (C6)]= (n(G)−6)K1.Moreover

there are no vertices inH adjacent to the samevertex of C6, otherwise theforbidden F6 would occur.The presence of F3 among the forbidden subgraphs now implies that |V (H)|≤ 2.

Case1.|V (H)|= 0 or,equivalently,n(G)= 6.SinceF14isaforbiddensubgraph,then

Δ(G)≤ 4.IfΔ(G)= 2,thenG= C6.SupposethatΔ(G)= 3= d(v1).Ife13∈ E(G),by

Lemma3.4(i)weinparticulargete25,e46∈ E(G),/ andtheonlyonepossible additional

edge is in {e24,e26}. In all cases, G ⊆ G4. The case e15 ∈ E(G) leads to the same

conclusion.Ife14∈ E(G),inorder toavoidtheappearanceoftheforbiddenF14,surely e26 ande35arenotinE(G).Therefore,E(G)\(E(C6)∪ e14)⊆ {e25,e36}.Thus,G⊆ G3.

Wenowsuppose Δ(G)= d(v1)= 4.ByLemma3.4(ii),itisnotrestrictiveto assume {e13,e14}⊂ E(G).FromLemma3.4(i)wededucee25,e26,e35,e46∈ E(G),/ and |E(G)∩ {e24,e36}|≤ 1.Now, v2+εv4+2ε∈ E(G)⇒ G= G4+ε forε∈ {0,1}.

Case 2.|V (H)|= 1.WeassumethatV (H)={v7} andv7∼ v1.Wenowlistacertain

numberofeij’sthatsurelydonotbelongtoE(G),puttinginparenthesestheforbidden

subgraph occurring otherwise:e35 (F3);e24 ande46 (F14); e25 ande36 (F21);e14 (F27).

Itfollowsthatonlye26andjustonebetweene13ande15(seeLemma3.4(ii))canbelong

to E(G).InanycaseG isisomorphictoasubgraphofG6.

Case 3. |V (H)| = 2. We assume that V (H) = {v7,v8} and v7 ∼ v1. Since F1 and F3 are forbidden subgraphs, then v8∼ v2 or v8 ∼ v6. Arguingas inCase 2,we realize

that onlye26 and justone betweene13 and e15 canbelong to E(G). Once again, G is

isomorphicto asubgraphof G6. 

Theorem 3.6. LetG bea connectedgraph with c(G)= 5 notcontaining any element of F. IfG K5,thenitisasubgraphof Gi∈ G foratleastone i∈ {1,2}∪ {4,. . . ,9}.

Proof. Underourassumptions,G containsthecycleC5= v1v2v3v4v5v1 asitssubgraph.

If n(G) = 5, thenG⊆ K5 ∈ G.Suppose now n(G)≥ 6, and letH = G[V (G)\V (C5)].

Weshallsee that|V (H)|≤ 3 inallcases.

Since P9 is a forbidden subgraph, P4  H. Moreover H is triangle-free, otherwise F17 ⊆ G.Therefore, H = t1P1∪ t2P2∪ t3P3.Due to the forbidden subgraphsF17 and F22,everyvertexinC5isadjacenttoatmostonevertexofP2’sorP3’sinH.Inallcases

below,weassumethatv1∼ v6∈ V (H).Since F14 G,thene24,e35∈ E(G)./

Case 1. For each v ∈ V (H), there exists at most onej = 1,. . . ,5 such that vvj

V (C5).

Subcase 1.1. H ={v6}.Sincee24,e35 ∈ E(G),/ wehaveG⊆ G7.

Subcase1.2. H ={v6,v7}.F3 G (togetherwithF14 G)impliesthatifviv7∈ E(G)

then i ∈ {1,2,5,6}. If v7 ∼ v1, we get e25 ∈ E(G) by/ F21  G and e13,e14 ∈ E(G)/

by F26  G. It follows that G has 7 edges and it is isomorphic to the subgraph of G6 obtained by removing v8,e23 and e26 in Fig. 2. If v7 ∼ v2, by F14  G we get e14 ∈ E(G)./ Considerthe graphG2 obtained byremoving edge e67 from G2 inFig. 2.

(12)

Clearly, G⊆ G2 ⊆ G2. The casev7 ∼ v5 is analogous. Finally,if v7 ∼ v6, then F25  G ⇒ |E(G)∩ {e13,e14,e25}|≤ 2. Now, if e25 ∈ E(G) then G⊆ G2, otherwise either G⊆ G2 or G⊆ G8.

Subcase1.3. H⊇ {v6,v7,v8}.FromSubcase1.2weknowthatei7ispossiblyinE(G)

only ifi ∈ {1,2,5,6,8}. Similarly,ei8 is possiblyin E(G) only ifi ∈ {1,2,5,6,7}. We

alsoknowthate24,e35 ∈ E(G)./

Subcase1.3.1. v7∼ v1.ByF3,F4,F6 G,v8canbeadjacentonlytov6orv7.Without

loss ofgenerality weset v8 ∼ v7. FromSubcase 1.2 itfollows thate13,e14,e25,∈ E(G)./

Connectedness of G now implies that |V (H)| = 3. In fact, a vertex v9 would cause

the appearance of a forbidden subgraph Fi with i ∈ {3,4,5,11,13,15}. Hence, G is

isomorphictothegraphobtainedbyG6 inFig.2bydeletinge23and e26.

Subcase 1.3.2. v7 ∼ v2. By F3,F4  G, v8 can only be adjacent to v6 or v7. By

symmetry,wecanassumev8∼ v6.FromSubcase1.2, wegete14∈ E(G)./ SinceF23isa

forbidden subgraph,then e25 ∈ E(G)./ Inthis casetoo |V (H)|= 3. Anextra-vertex v9

would leadto thepresence of oneforbidden subgraph in{F3,F5,F7,P9}.It turns out

thatG⊆ G9− e12.

Subcase 1.3.3. v7∼ v5. ArguingasinSubcase 1.3.2,wegetG⊆ G9− e12.

Subcase 1.3.4. v7 ∼ v6. Surely e68 ∈ E(G),/ otherwise F10 ⊆ G. If v8 ∼ vi with

i∈ {1,2,5},wegetasituationalreadyinvestigatedinoneofthesubcasesabove.Then, suppose v8 ∼ v7. By F16,F22  G we get e13,e14,e25 ∈ E(G)./ Once again |V (H)| =

3, since a vertex v9 would lead to the presence of one of the forbidden subgraphs in {F3,F8,F13,P9}.Hence,G⊆ G1.

Case2. Thereexistsavertex(say,v6)inV (H) suchthat|{ej6|j = 1,. . . ,5}∩E(G)|≥

2.Without lossofgenerality, weassumev6∼ v1 andv6∼ v3.

Subcase 2.1. V (H) ={v6}. Note that F14  G ⇒ e14,e24,e25,e35,e36,e46 ∈ E(G)./

Hence,G issurelyasubgraphofG4.

Subcase2.2. V (H)={v6,v7}.SinceF3 isaforbiddensubgraph,v7isnotadjacentto

anyvertex in{vi|i= 1,3,4,5}.Sincec(G)= 5,then v7 cannotbe adjacentto both v2

andv6.Supposee67∈ E(G) (thecasee62∈ E(G) isanalogous).Restrictionsconsidered

inSubcase 2.1continuetohold.Hence,G⊆ G9.

Subcase2.3. V (H)⊇ {v6,v7,v8}.FromSubcase2.2,wecanassumethate67∈ E(G).

Since F4  G, surely e68 ∈ E(G)./ Hence v8 can only be adjacent to v2 or v7. Note

that e13 can be in E(G) only if v7  v8, otherwise the forbidden F15 occurs. Note

now that|V (H)|= 3, otherwiseF3, F10, F11 or P9 wouldbe a subgraph ofG. Hence, e28∈ E(G)⇒ G⊆ G6 orG⊆ G9 ande78∈ E(G)⇒ G⊆ G1.

Thiscompletestheproof. 

Let H and H be subgraphs of a graphG. If v ∈ V (H) is adjacent to at least one vertexofH wesaythatH anH areadjacentor,further,thatv andH areadjacent.

(13)

Theorem 3.7. LetG bea connectedgraph with c(G)= 4 notcontaining any element of F. Then, G is either asubgraph of Gi foratleast one i∈ {1,4,6}∪ {9,11,12,. . . ,15}

or itisasubgraphof G(p,q,r,s,t) witht≥ 1.

Proof. Thestatementtriviallyholdsif4≤ n(G)≤ 5.Wenowassumethatn(G)≥ 6 and

labeltheverticesofG insuchawayv1v2v3v4v1isacycleC4⊆ G.SinceF21andF22are

forbiddensubgraphs,thenH = G[V (G)\V (C4)] isadisjointunionofasuitablenumber

of P1’s, P2’s and P3’s. Note thatc(G)= 4 impliesthat, givenan edgeuv ∈ E(C4),we

haveNG(u)∩ NG(v)∩ H = ∅.Wesplittheproofinseveralcases.

Case 1. H = aK1∪ bP2∪ cP3 with c ≥ 1. We assume that v1 is the vertex in C4

adjacent to P˜3 = v5v6v7, which represents a copy of P3 in H. Since F21  G, v1 is

adjacent to an end-vertex of P˜3, say v5. Note that v1 is also the only vertex of C4

adjacenttoH,otherwisec(G)> 4 oroneoftheforbiddensubgraphsF20andF23 would

occur.Moreover,F17 G⇒ e24∈ E(G)./

Subcase 1.1. v7 ∼ v1. Since F21 is forbidden, then e13 ∈ E(G)./ Consequently, G = G(p,q,r,s,t) witht≥ 2.

Subcase 1.2. v7  v1. Surely e24 ∈ E(G),/ otherwise F17 ⊆ G. If e13 ∈ E(G), then a ≤ 1,b = 0 and c= 1, otherwiseF7 or F9 would be asubgraph of G.It follows that G⊆ G15.Ife13∈ E(G),/ thenG isoftypeG(p,q,r,s,t) withr,t≥ 1.

Case 2. H = aK1∪ bP2withb≥ 1.NotethatatmosttwoverticesofC4 areadjacent

to P2’sinH,otherwiseF20⊆ G.

Subcase 2.1. Two non-adjacent vertices (say, v1 and v3)of C4 are adjacent to some P2’s.ByF20 G,itfollowsthatv1andv3areadjacenttothesameP2,saye56,andsince c(G)= 4,thetwosetsNG(v1)∩H andNG(v3)∩H areequalandcontain asinglevertex,

say {v5}; moreover, b = 1. In order to avoid the forbidden F3 and to keep c(G) = 4,

the edge e24 ∈ E(G);/ furthermore, NG(v2)∩ H and NG(v4)∩ H aredisjoint,each set

containingat mostonevertex.ItfollowsthatG⊆ G12.

Subcase 2.2. Two adjacentvertices (say,v1 and v2)of C4 areadjacent to P2’s inH.

Sincec(G)= 4,thereexiste56ande78inE(H) respectivelyadjacenttov1andv2.Recall

that F19 and F20 areforbidden subgraphs; thus, b = 2,a= 0, and e13,e24 ∈ E(G) by/ F15∈ G./ Consequently,G isisomorphictothegraphG1 inFig.2deprivedofedgese45

and e67.

Subcase 2.3. Only one vertex (say, v1) of C4 is adjacent to a copy of P2 inH. Let P2= v5v6 andv5∼ v1.ByF20 G andc(G)= 4,weknowthatNG(v3)∩ H = ∅.

Subcase 2.3.1. v6∼ v1.ByF3,F14 G, wehaved(v2)= d(v3)= d(v4)= 2.Thus G

is oftypeG(p,q,0,s,1) with s≥ 1.

Subcase 2.3.2. v6  v1. ByF19,F20 G,theisolated vertices inH arenotadjacent

to v3,andcanonlybeadjacenttoat mosttwo verticesin{v1,v2,v4}.

Subcase 2.3.2.1. a = 0. If e24 ∈ E(G) then b = 1 by F14  G. Thus, G ⊆ G4.

Suppose nowe24 ∈ E(G)./ Ife13∈ E(G),/ thegraphG is oftypeG(0,q,1,0,0).Finally,

(14)

Subcase 2.3.2.2. The isolated vertices of H are pendant at two different vertices of

C4. Since F19  G, those two vertices are necessarily v2 and v4, and b = 1. From F3,F18  G, wededuce1≤ a≤ 2.Ifa= 2,there are twovertices v7 and v8 suchthat v7 ∼ v2 and v8∼ v4. Theinclusion{e13,e24}⊂ E(G) would implyF20 ⊆ G (thecycle

oftheisomorphiccopyofF20insideG beingv1v2v4v3v1).This meansthatatmostone

between e13 and e24 belongs to E(G). HenceG is asubgraph of G6 or G9, where the

quadrangles v6v2v3v1 and v1v6v3v2 respectively correspond to C4 ⊆ G. If a = 1, the

isolatedvertexv7canpossiblybeadjacenttobothv2andv4.Ifthisisthecase,recalling

thatc(G)= 4 andF24 G,wegetG= G2\{e15,e17} (seeFig.2).

Subcase 2.3.2.3. TheisolatedverticesofH arependantat onevertexofC4.Suppose

thattheisolatedvertices are pendantat v2 (or v4).Since F4,F19 G, thena= 1 and b= 1.Now,asintheprevioussubcase,F20 G⇒ |E(G)∩{e13,e24}|< 2.Ife13∈ E(G),

thenG⊆ G9, otherwiseG⊆ G6. Supposethattheisolated vertices arependant at v1.

ByF14 G,surely e24∈ E(G)./ Ife13∈ E(G),byF2 G wegeta≤ 2 andb= 1,and

henceG⊆ G14.Ife13∈ E(G),/ thenG isoftypeG(p,q,0,s,1) with q≥ 1. Case 3. H = aP1.

Subcase3.1. AllverticesofC4areadjacenttoatleastonevertexofH.Duetoc(G)= 4

andF3 G,weget7≤ n(G)≤ 8.Ifn(G)= 8,eachvertexofC4isadjacenttoapendant

vertex andG⊆ G10.If n(G)= 7,byc(G)= 4 we deducethatthereis onevertex (say, v5)ofH suchthatv5∼ v2 and v5∼ v4, moreoverv6∼ v1 and v7∼ v3 Apartfrom e24,

anyotheradditionaledgewouldmakethecircumferencebigger.Therefore,G⊆ G12. Subcase 3.2. Exactlythree vertices(sayv1, v2 and v3)ofC4 areadjacentto at least

onevertexofH.SinceF3 G,v1andv3arerespectivelyadjacenttoatmostonevertex

of H.Moreover, being F2 and F20 forbidden, thevertex v2 is adjacent to at mosttwo

verticesofH.

Subcase3.2.1. v2 isadjacentto twoverticesofH.Letv2∼ v5 andv2∼ v6.SinceF21

isa forbiddensubgraph, no vertex ofH is adjacent to both v1 and v3.Hence, v1 ∼ v7

andv3∼ v8.SinceF3,F20 G,theonlypossiblenotyetconsiderededgeinE(G) ise24.

Thus,G⊆ G11.

Subcase 3.2.2. v2is adjacenttoonevertexofH.Letv5∼ v2 andv6∼ v1.Ifv6∼ v3,

surely e24 ∈ E(G),/ otherwise c(G) = 4, whereas e13 could possibly belong to E(G).

ConsequentlyG⊆ G12.Ifinsteadv6 isnotadjacenttov3, thereexists av7 adjacentto v3,andG⊆ G10.

Subcase 3.3. Exactly two vertices of C4, say u and v, are adjacent to at least one

vertexofH.

Subcase3.3.1. uv∈ E(C4).Weassumeu= v1andv = v2.Beingv1andv2consecutive, NG(v1)∩NG(v2)∩H = ∅.Therefore,therearev5andv6inH suchthate15,e26∈ E(G).

Since F1,F2  G, then 6≤ n(G)≤ 7. If n(G) = 6, surely G⊆ G10. If n(G) = 7 and d(v2)= 4,byF14 G wegete13∈ E(G)./ Hence,G⊆ G11.

Subcase3.3.2. uv /∈ E(C4).Weassumeu= v1andv = v3.ByF3,F18 G,wededuce

(15)

If avertex v5 is inboth,then n(G)= 5, and G⊆ G2\{e15,e17} (see Fig.2), otherwise G⊆ G10.

Subcase 3.4. Only onevertex (sayv1) of C4 isadjacent to at least onevertex of H.

There arethreepossible situations:

(i) if{e13,e24}∩ E(G)=∅,thenG= G(p,0,0,0,1),wherep= n(G)− 4;

(ii) if{e13,e24}∩ E(G)={e13},byF2 G wegetn(G)≤ 7,andG⊆ G14;

(iii) if {e13,e24}∩ E(G)⊇ {e24},byF14 G wegetn(G)≤ 5,andG⊆ G10.

This completestheproof. 

Theorem 3.8. LetG bea connectedgraph with c(G)= 3 notcontaining any element of F. Then, G is either a subgraphof Gi in Fig.2 foratleast one i in{6,9,14,16} or it

is asubgraphofG(p,q,r,s,0) inFig.2with s≥ 1.

Proof. A directanalysisshows thatallgraphsG with c(G)= 3 and3≤ n(G)≤ 5 are subgraphs ofG6.

From nowonintheproof,weassumen(G)≥ 6.LetC3= v1v2v3v1be asubgraphof G, and H be the subgraph G[V (G)\V (C3)]. In viewof F15,F17  G, we getP4  H,

and by F3  G, we have K1,3  H. Hence, H = aP1∪ bP2∪ cP3. We split the proof

accordingtothenumberoftrianglescontainedinG.

Case 1. G contains exactly one triangle. Then, each copy of P1, P2 and P3 in H

intersects theneighborhoodofjustonevertexinC3(notnecessarilythesameforallof

them). Furthermore, ifc ≥ 1,themiddle point ofacopy ofP3 inH isnot adjacentto C3,sinceF14 G.

Case 1.1 c ≥ 1. We assume that v1 is adjacent to an end-pointof acopy of P3 in H. ByF16  G, v2 and v3 can only be adjacent to isolated points of H. In any case

max{d(v2),d(v3)}≤ 3,otherwiseF6⊆ G.Hence4≤ d(v2)+ d(v3)≤ 6. Subcase 1.1.1 d(v2)+ d(v3)= 4.Clearly,G isoftypeG(a,b,c,1,0).

Subcase 1.1.2. d(v2)+ d(v3)= 5.SinceF7,F16 G,thenb= 0.Moreover,byF9 G,

at mostoneP1inH isadjacenttov1.ThisimpliesthatG⊆ G6.

Subcase 1.1.3. d(v2)+ d(v3) = 6. Necessarily d(v1) = 3, otherwise F12 would be a

subgraph ofG.Inthis case,too,G⊆ G6. Subcase 1.2. H = aP1.

Subcase1.2.1. AllverticesofC3areadjacenttoH.ByF4 G,wehave3≤ Δ(G)≤ 4,

andifΔ(G)= 4,thereisatmostonevertexinC3ofdegree4,sinceF3 G.Thisproves

that6≤ n(G)≤ 7,andG⊆ G6.

Subcase 1.2.2. Exactly two vertices of C3 are adjacent to H. Now, F2  G ⇒ 3

Δ(G) ≤ 5. Recalling that F3  G, it is easy to see that G is isomorphic to a (not

necessarily proper) subgraph ofthe graphG obtainedˆ by attaching 3 pendantvertices to v1 andonependantvertexto v2.Hence,G⊆ ˆG⊆ G14.

(16)

Subcase 1.2.3. Only one vertex of C3 is adjacent to H. Clearly, G = G(n(G)−

3,0,0,1,0).

Subcase 1.3. H = bP2. Suppose that at least two vertices of C3 are adjacent to H.

SinceF15 G,then2≤ b≤ 3 andG⊆ G16.IfonlyonevertexofC3,sayv1,isadjacent

toH,thenG= G(0,b,0,1,0),whereb= (n(G)− 3)/2.

Subcase1.4. H = aP1∪bP2witha≥ 1 andb≥ 1.SinceF15 G,atmosttwovertices

ofC3areadjacentto copiesofP2inH.

Subcase 1.4.1. Two vertices(say,v1 and v2)ofC3 areadjacentto copiesof P2 inH.

SinceF15 G,thenb= 2,andtheisolatedverticesofH arependantatv3.ByF7 G,

itfollowsthata= 1.Thus,G⊆ G16.

Subcase 1.4.2. Only onevertex (say, v1) of C3 is adjacent to acopy of P2 in H. If

allvertices ofC3 areadjacent toP1’sinH,byF3,F4,F8  G wegeta= 3 andb = 1.

Thereby, G⊆ G6. Suppose now thatexactlytwo vertices u and v ofC3 havependant

neighbors. If u = v1, then a ≤ 3, b = 1 and v has exactly onependant vertex, since F2,F3  G; hence, G ⊆ G14. If u = v2 and v = v3, by F8  G and F3  G we

respectivelygetb= 1 anda≤ 3;hence,G⊆ G6.Finally,suppose thatjustonevertexu

ofC3 haspendant neighbors.Ifu= v1, G= G(a,b,0,1,0).Ifu= v1,then b≤ 2,since F5  G. For b = 2, the condition F3  G implies a = 1, and G ∼= G9\{e12,e15}. For b= 1,byF6 G wehavea≤ 2.Hence,G⊆ G6.

Case 2. G contains at least two triangles. Since c(G) = 3 and F3,F14  G, the

followingthree restrictionshold:alltrianglesinG areedge-disjoint;thereisvertex,say

v1,commontoalltriangles;apartfrom v1, thevertices ofthetriangleshavenecessarily

degree2.Hence,G isoftypeG(p,q,r,s,0). Thisfinishestheproof. 

Theorem 3.9.Let G bea treenot containing any element of F. Then, G is a subgraph ofGi inFig.2foratleastone i in {6,14} or itisasubgraphof G(p,q,r,0,0).

Proof. SinceP9isaforbiddensubgraph,weget0≤ diam(G)≤ 7.Thecasediam(G)≤ 1

is entirely trivial, and if diam(G) = 2, G is the star K1,n(G)−1 = G(n(G)− 1,0,0,0).

Now,weseparately considertreesoffixeddiameterfrom3 to7.

Case 1. diam(G) = 3. We assume that v1v2v3v4 is a copy of the path P4 in G.

Clearly,only v2 andv3 canbe adjacent to H = G[V (G)\ V (P4)]. Moreover H = aP1.

Ifd¯(3):= min{d(v2),d(v3)}= 2,wehaveG= G(n(G)− 3,1,0,0,0);otherwised¯(3)= 3,

since F1  G. In the latter case, 3 ≤ max{d(v2),d(v3)} ≤ 4 since F2 is a forbidden

subgraph. Thus,G⊆ G14⊆ G14, where G14 is thegraphobtainedbyG14 inFig.2by

removingv6,e12ande14.

Case 2. diam(G) = 4. We set H = G[V (G)\ V (P5)], where P5 = v1v2v3v4v5 ⊆ G.

TherestrictiononthediameterimpliesthatH = aP1∪ bP2,andd(v1)= d(v5)= 1. Subcase 2.1. b ≥ 1. From diam(G) = 4, we deduce that v3 is the only vertex in V (P5) adjacent to a copy P2 in H. By F3,F4  G, we have 4 ≤ d(v2)+ d(v4) ≤ 5.

(17)

G= G(a,b+ 2,0,0,0).Ifinsteadd(v2)+ d(v4)= 5,byF4,F5 G wededucea= 1 and b= 1.Hence,G⊆ G6.

Subcase 2.2. b = 0. The hypothesis F3  G implies d¯(4) := min{d(v2),d(v4)} = 2.

Therefore, if d(v3) = 2, then G = G(a+ 1,0,1,0,0). Suppose now d(v3) ≥ 3. Since F4 is forbidden, the degree of v2 and v4 is at most 3. Now, if d(v2)+ d(v4) = 4 we

have G = G(a,2,0,0,0) with a > 0;if instead d(v2)+ d(v4) = 5, by F2  G we have

3≤ d(v3)≤ 4.Thus,G⊆ G14⊆ G14,whereG14 isthegraphobtainedbyG14inFig.2,

byremovinge12 ande14.

Case 3. diam(G)= 5.We setH = G[V (G)\ V (P6)],where P6 = v1v2v3v4v5v6⊆ G.

The restriction on the diameter implies that H = aP1∪ bP2 and d(v1) = d(v6) = 1.

Moreover, sinceF6 isaforbiddensubgraph, wehave4≤ d(v2)+ d(v5)≤ 5.

Subcase3.1. b≥ 1.Fromdiam(G)= 5 andF8 G,itfollowsthatthecopiesofP2inH

arealladjacenttothesamevertexv∈ {v3,v4}.SinceF3,F7andF8areforbiddengraphs,

everypossibleisolatedvertexofH isadjacenttov aswell.Hence,G= G(a,b+ 1,1,0,0).

Subcase 3.2. b = 0 and d(v2)+ d(v5) = 4. If all isolated vertices of H areadjacent

to thesamev∈ {v3,v4},then G= G(a,1,1,0,0).Ifv3 andv4 areboth adjacentto H,

then a= 2 fromF4 G.Hence,G⊆ G6.

Subcase 3.3. b = 0 and d(v2)+ d(v5) = 5. Let d(v2) = 3. Since F9 is a forbidden

subgraph, 2≤ d(v3)≤ 3.Thus, 1≤ a≤ 2 andG⊆ G6.

Case 4. diam(G)= 6.WesetH = G[V (G)\ V (P7)],whereP7= v1v2v3v4v5v6v7⊆ G.

As in previouscases, therestriction onthe diameterimplies thattheend-points of P7

arependantinG,andonlyv4 canpossiblybe adjacenttoacopyofP3inH.Moreover, d(v2)= d(v6)= 2,sinceF10 G.

Subcase 4.1. c≥ 1. Asexplained above,surelyv4 isadjacent to atleast onecopyof P3 in H. Wealready know thatv1 and v7 are pendant. From F3,F7  G, we deduce

thatnovertexofP7 isadjacenttoH apartfromv4.Thus, G= G(a,b,c+ 2,0,0). Subcase 4.2. b≥ 1 and c = 0.Being F10 and F11 forbidden subgraphs. Onlyv4 can

be adjacentto acopyofP2 inH.Furthermore, noothervertices inP7 canadjacentto H,forF3 andF8being forbiddensubgraphs.Thus,G= G(a,b,0,2,0).

Subcase 4.3. b= 0,c= 0 andd(v3)+ d(v5)= 4.ClearlyG= G(a,0,2,0,0).

Subcase 4.4. b= 0,c= 0 andd(v3)+ d(v5)= 5.FromF6,F12 G,wegeta= 1,and G= G6 ⊆ G6,whereG6 isthegraphobtainedfrom G6bydeletinge13,e16 ande2,6.

Case 5. diam(G)= 7.SinceF10andF13areforbiddensubgraphs,noedgesappearin G apartfrom thosebelongingtoacopyofP8.Inotherwords, G= P8⊆ G6.

This finishestheproof. 

4. ProofofTheorem 2.9

Proposition 4.1belowshows thatit isnotrestrictive to assumes· t= 0 in order to find outpossible yet-to-discoverQ-cospectral matesofthegraphsG(p,q,r,s,t)’s.

(18)

Proposition4.1. ApartfromG(3,0,0,0,0) andG(0,2,1,0,0),allgraphsoftypeG(p,q,r, s,t) withs· t= 0 aredetermined bytheir Q-spectrum.

Proof. Let k beapositive integer. Graphsof typeG(p,q,r,k,0) andG(p,q,r,0,k) are

specialkindof butterfly-likegraphs.Notlongagoit hasbeen proventhatsuch graphs are all determined by their Q-spectrum (see [17]). Consider now the graphs of type

G(p,q,r,0,0). If 0 ≤ p+ q + r ≤ 2, we are dealing with paths (of order h for h {1,. . . ,6}),whichare knownto be DQS (see [10, Proposition7]). Ifp+ q + r≥ 4 the graphG(p,q,r,0,0) isastarliketreedeterminedbyitsQ-spectrumbyresultsin[3] and [20]. Finally, if p+ q + r = 3, the graphwe are considering is aT -shape tree. By[19, Theorem 3] wededucethatG(3,0,0,0,0)∼= K1,3andG(0,2,1,0,0) aretheonlyT -shape

treessatisfyingPropertyA andadmittingQ-cospectral mates. 

For sake of completeness we recall that C3∪ K1 is the only Q-cospectral mate of G(3,0,0,0,0).The graphG(0,2,1,0,0),denoted byT (2,2,3) in [19], also hasjustone

Q-cospectralmate,namelyP2∪ (G9− v2).

Let Th(G) = n



i=1

κh

i(G), (h ≥ 0) be the h-th spectral moment for the Q-spectrum

of agraphG with n vertices. Thefollowing lemma onthe first four spectral moments iswell-known tothe experts.Initsstatement, nG(C3) denotesthenumberof triangles

containedinG.

Lemma 4.2. [6, Corollary 4.3] Let G be a graph with n vertices, m edges and D(G) = diag(d1,. . . ,dn). Then, T0(G) = n, T1(G) = n  i=1 di= 2m, T2(G) = 2m + n  i=1 d2 i, T3(G) = 6nG(C3) + 3 n  i=1 d2 i + n  i=1 d3 i.

FromLemma4.2itisnothardtoobtainthefollowingresult. Proposition4.3. [25] Let H beagraph Q-cospectralto G.Then:

(i) G and H havethesame numberof verticesandthesame numberof edges;

(ii) n  i=1 (di(G)− 2)2= n  i=1 (di(H)− 2)2,where n=|V (G)|=|V (H)|; (iii) 6nG(C3)+ n  i=1 d3 i(G) = 6nH(C3)+ n  i=1 d3 i(H).

Wenow recall two important resultsconcerning the first two largest Q-eigenvalues.

Intheir statementand for the rest of thepaper, d1(G)= Δ(G) and d2(G) denotethe

(19)

Lemma 4.4. [5,Section5] Let G be a non-emptygraph of order n≥ 2. Then, κ1(G) d1(G)+ 1,andtheequalityholds ifandonly ifG is thestarK1,n−1.

Lemma4.5. [12,Corollary2.6] LetG beagraphofordern.Then,κ1(G)≤ d1(G)+d2(G), where theequalityholdsif andonlyif G iseither K1,n−1 orany regulargraph.

Thefollowing propositionisadirectconsequenceofLemmas 4.4and4.5.

Proposition 4.6.LetΔ= p+ q + r + 2s+ 2t be themaximum vertexdegree ofthegraph G(p,q,r,s,t).Wehave

Δ + 1≤ κ1(G(p, q, r, s, t))≤ Δ + 2. (6)

The firstequalityin (6) holds ifandonly if(q,r,s,t)= (0,0,0,0) and p> 1.

Corollary 4.7. If G = G(p,q,r,s,t) and G = G(p,q,r,s,t) are Q-cospectral, then

Δ(G)= Δ(G).

Proof. Suppose that G and G are Q-cospectral. By Lemma 4.3(i) it follows that

|V (G)| = |V (G)| := n. If n ≤ 4 then s· t = s · t = 0. Hence, Proposition 4.1, or simply adirectinspection,shows thatG∼= G.If n> 4, assume bycontradiction that Δ(G)= Δ(G).Inthiscase,by(6) κ1(G) andκ1(G) wouldlieindisjointrealintervals,

againstQ-cospectrality. 

Proposition 4.8. IfG= G(p,q,r,s,t) andG= G(p,q,r,s,t) are Q-cospectral,then

p− p = 1

2(q− q

) = r− r, s= s and t = t. (7)

Proof. Let n andm betheorder and thesize ofagiven graphG= G(p,q,r,s,t). The following fivefunctionsaredefinedontheset of5-tuplesofnon-negativeintegers.

θi(x1, x2, x3, x4, x5) = ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ x1+ 2x2+ 3x3+ 2x4+ 3x5 if i = 1; x1+ 2x2+ 3x3+ 3x4+ 4x5 if i = 2; x1+ x2+ x3+ 2x4+ 2x5 if i = 3; x1+ x2+ x3 if i = 4; x1+ 9x2+ 17x3+ 22x4+ 24x5 if i = 5.

We observe that, for 1 ≤ i ≤ 5, θi(x1,x2,x3,x4,x5) = θi(p,q,r,s,t) whenever

G(x1,x2,x3,x4,x5) andG(p,q,r,s,t) areQ-cospectral.ThisfollowsfromProposition4.3

(20)

θ1(p, q, r, s, t) = n− 1, θ2(p, q, r, s, t) = m, θ3(p, q, r, s, t) = Δ(G), θ4(p, q, r, s, t) = n i=2 (di(G)− 2)2, θ5(p, q, r, s, t) = 6nG(C3) + n i=2 di(G)3.

Every linear combination of θis assumes as well the same value when computed on the5-tuples(p,q,r,s,t) and(p,q,r,s,t) correspondingto Q-cospectral graphs.This happens,inparticular, forthefunctions

1

65+ 7θ4− 8θ1) and θ2+ 1

6(2θ1− 7θ4− θ5),

which are the projection on the 4-th and on the 5-th component respectively. Hence,

s= s andt= t.Usingsuchtwoequalities,theremainingonesin(7) areeasilydeduced fromθi(p,q,r,s,t)= θi(p,q,r,s,t) fori= 2,3. 

Proposition 4.9. Every graph G which˜ is Q-cospectral to a fixed G = G(p,q,r,s,t) is necessarilyconnected.

Proof. BecauseofProposition4.1,itisnotrestrictivetoassumes> 0.Thismeansthat

G isnotbipartite. LetG be˜ Q-cospectral to afixed G= G(p,q,r,s,t). The connected componentsof G,˜ say H˜1,. . . ,H˜l,are all non-bipartite,since theQ-spectrum not only

determinestheorderandthesizeofthegraph,butalsothenumberofitsbipartite com-ponents,whichis,infact,equaltothemultiplicityoftheeigenvalue0 [6,Corollary 2.2].

Withoutloss ofgenerality,wesetκ1( ˜G)= κ1( ˜H1).Hence,byTheorem 2.6weget κ2( ˜G) = max{κ2( ˜H1), κ1( ˜Hi)| 2 ≤ i ≤ l)} = κ2(G)≤ 2 +

2 < 4.

Recallthattheconnectedgraphswithκ1< 4 arenecessarilypaths(see[6]).Therefore,if

existing,eachH˜ifor2≤ i≤ l shouldbeapathand,hence,bipartite.Fromtheargument

above,wegetl = 1 asclaimed. 

Proposition 4.10.Apart from G(0,0,0,1,1), a graph G= G(p,q,r,s,t) with at most 9

verticesands· t= 0 isDQS.

Proof. As recalled in Section 2, G(0,0,0,1,1) and G5\{e16,e36} in Fig. 2 are

non-isomorphic and Q-cospectral. There are only six other graphs with at most 9 vertices ands· t= 0;namely: H1 = G(3,0,0,1,1),H2 = G(1,2,0,1,1) andH3= G(0,0,3,1,1)

of order 9; H4 = G(2,0,0,1,1) and H5 = G(0,1,0,1,1) of order 8; and finally H6 = G(1,0,0,1,1) of order 7. Among K5,G1,. . . ,G16 (see Fig. 2), only the last one

hasninevertices, andadirectcomputationshows thatthere arenoQ-cospectral pairs intheset{G16,H1, H2,H3}.ItfollowsthatH1,H2andH3(andG16aswell)areDQS. Apriori,H4 andH5,whicharenotQ-cospectral,couldhaveQ-cospectralmatesamong

(21)

theGi’swith8 verticesandthesubgraphsofG16oforder8.Adirectanalysisshowsthat

their spectra are pairwise different. The procedure to infer thatH6 is DQS is similar:

we focusourattentionontheGi’soforder7 and,byProposition4.9,ontheconnected

subgraphswithsevenverticesoftheGi’s.ItturnsoutthatnoneofthemisQ-cospectral

to H6. 

Once again, letn denotetheorderof G= G(p,q,r,s,t). Weare nowready tofinish the proof of Theorem 2.9. Its statement surely holds for every n when s· t = 0 (see Proposition4.1)orwhenn≤ 9 withoutnorestrictionsons andt (seeProposition4.10). Therefore, we now assume n> 9 and s· t = 0. LetG be agraph Q-cospectral to G.

By Proposition 4.3, |V (G)| > 9. ByTheorem 2.6, G = G(p,q,r,s,t) for suitable non-negative integers p,q,r,s,t. Without loss of generality we can assume p ≥ p.

Applying Proposition4.8, weget G = G(p+ k,q− 2k,r + k,s,t) forsomek≥ 0. The proof willbeoveroncewe showthatk isnecessarily0.Since q− 2k ≥ 0,thecaseq = 0

is trivial.Hence,wehavejustto considerthe casesi) p,q,r > 0;ii)p= 0 and q,r > 0;

iii)r = 0 andp,q > 0;iv)p= r = 0 andq > 0.Lookingatthedefinitionofthefunction

f (x1,x2,x3,x4,x5;κ) intheunknownκ asgiveninEquations (1)–(5),weget

f (p, q, r, s, t; 1) = ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 2p for p, q, r, s, t > 0; 2(q + s + 4t− 1) for p = 0 and q, r, s, t > 0; −2p for q = 0 and p, r, s, t > 0; 2p for r = 0 and p, q, s, t > 0; 2(q + s + 4t− 1) for p = r = 0 and q, s, t > 0. (8)

Inallsuchcasesf (p,q,r,s,t;1)= 0.Therefore,themultiplicityof 1 intheQ-spectrum

of G(p,q,r,s,t) forq,s,t> 0 is givenby

mQG(p,q,r,s,t)(1) =

p + s− 1 if p > 0;

s if p = 0.

This means that the only non-trivial cases of Q-cospectrality possibly occur between

G(0,q,r,s,t) andG(1,q− 2,r + 1,s,t), whereq,s,t> 0.

FromEquations (1)–(5) weseethatforallx2> 0,andforallx1,x3> 0 whenx2= 0,

thefunctionintheunknown κ

Θ(x1, x2, x3; κ) =

1

(κ− 1)s− 3)s−1ϕ(G(x1, x2, x3, s, t; κ)), where s, t > 0,

is well-definedinκ= 1.Using (8),weget

(22)

ThismeansthattheQ-polynomialsofϕ(G(0,q,r,s,t);κ) andϕ(G(1,q− 2,r + 1,s,t);κ)

arenotthesame.Hence,theproofofTheorem2.9 isover. Declarationofcompetinginterest

Theauthorsdeclarenocompetinginterests. Acknowledgements

Theauthorsaregratefultotheanonymousrefereesforanumberofhelpfulcomments andsuggestions,whichhaveimprovedtheresultspresentation.Thefirsttwoauthorswere supportedfor this researchby theNational NaturalScience Foundation ofChina (No.

11971274). Thethird author wassupported byINDAM-GNSAGA, and by theproject

NRF(SouthAfrica)withthegrantITAL170904261537,Ref.No.113144. References

[1]E.Andrade,G.Dahl,L.Leal,M.Robbiano,NewboundsforthesignlessLaplacianspread,Linear AlgebraAppl.566(2019)98–120.

[2]M. Aouchiche, P.Hansen, C.Lucas,On theextremalvaluesof thesecond largestQ-eigenvalue,

LinearAlgebraAppl.435(2011)2591–2606.

[3]C.J.Bu,J.Zhou,Starliketreeswhosemaximumdegreeexceed4aredeterminedbytheirQ-spectra, LinearAlgebraAppl.436(2012)143–171.

[4]D.Cvetković,NewtheoremsforsignlessLaplacianeigenvalues,Bull.Cl.Sci.Math.Nat.Sci.Math. 33(2008)131–146.

[5]D. Cvetković, P. Rowlinson, S.Simić, Eigenvaluebounds for thesignless Laplacian, Publ.Inst. Math.(Belgr.)81 (95)(2007)11–27.

[6]D.Cvetković,P.Rowlinson,S.K.Simić,SignlessLaplacianoffinitegraphs,LinearAlgebraAppl. 423(2007)155–171.

[7]D.Cvetković,S.K.Simić,TowardsaspectraltheoryofgraphsbasedonsignlessLaplacian,I,Publ. Inst.Math.(Belgr.)(N.S.)85 (99)(2009)19–33.

[8]D.Cvetković,S.K.Simić,TowardsaspectraltheoryofgraphsbasedonsignlessLaplacian,II,Linear AlgebraAppl.432(2010)2257–2272.

[9]D. Cvetković, S.K.Simić, Towards a spectral theoryof graphsbased on signless Laplacian, III, Appl.Anal.DiscreteMath.4(2010)156–166.

[10]E.R. van Dam, W.H.Haemers, Which graphsare determined by their spectra?,LinearAlgebra Appl.373(2003)241–272.

[11]E.R.vanDam,W.H.Haemers,Developmentsonspectralcharacterizationsofgraphs,DiscreteMath. 309(2009)576–586.

[12]K.Ch.Das,OnconjecturesinvolvingsecondlargestsignlessLaplacianeigenvalueofgraphs,Linear AlgebraAppl.432(2010)3018–3029.

[13]R.Diestel,GraphTheory,5thedition,GraduateTextsinMathematics,vol. 173,Springer-Verlag, Heidelberg,2016.

[14]Y.-Z.Fan,Y. Wang,Y.-H. Bao,J.-C.Wan, M.Li,Z. Zhu,Eigenvectorsof Laplacianorsignless Laplacianofhypergraphsassociatedwithzeroeigenvalue,LinearAlgebraAppl.579(2019)244–261. [15]L.Gumbrell,J.McKee,Aclassificationofall1-Salemgraphs,LMSJ.Comput.Math.17 (1)(2014)

582–594.

[16]H.Q.Liu, M. Lu, Boundson the independencenumber andsignless Laplacian index of graphs, LinearAlgebraAppl.539(2018)44–59.

[17]M.Liu,Y.Zhu,H.Shan,K.C.Das,Thespectralcharacterizationofbutterfly-likegraphs,Linear AlgebraAppl.513(2017)55–68.

[18]B.Ning,X.Peng,TheRandićindexandsignlessLaplacianspectralradiusofgraphs,DiscreteMath. 342(2019)643–653.

(23)

[19]G.R. Omidi, On a signless Laplacian spectralcharacterization of T -shape trees,Linear Algebra Appl.431(2009)1607–1615.

[20]G.R.Omidi,E.Vatandoost,Starliketreeswithmaximumdegree4aredeterminedbytheirsignless Laplacianspectra,Electron.J.LinearAlgebra20(2010)274–290.

[21]J.Park,Y.Sano,OnQ-integral graphswithedge-degrees atmostsix,LinearAlgebraAppl.577 (2019)384–411.

[22]J.F.Wang,F.Belardo,AnoteonthesignlessLaplacianeigenvaluesofgraphs,LinearAlgebraAppl. 435(2011)2585–2590.

[23]J.F.Wang, F.Belardo,Q.X.Huang,B.Borovićanin,OnthetwolargestQ-eigenvaluesofgraphs, DiscreteMath.310(2010)2858–2866.

[24]J.F.Wang,Q.X.Huang,OngraphswithexactlythreeQ-eigenvaluesatleasttwo,LinearAlgebra Appl.438(2013)2861–2879.

[25]J.F.Wang,Q.X.Huang,F.Belardo,E.M.LiMarzi,Onthespectralcharacterizationsof∞-graphs, DiscreteMath.310(2010)1845–1855.

[26]W.G.Xi,W.So,L.Wang,The(distance)signlessLaplacianspectralradiusofdigraphswithgiven arcconnectivity,LinearAlgebraAppl.581(2019)85–111.

[27]L.Zhao,OntheQ-eigenvaluesandthestructures ofgraphs, MasterThesis(inChinese,English abstract),QinghaiNormalUniversity,2015.

Riferimenti

Documenti correlati

In an ongoing work with Bruno Benedetti and Barbara Bolognese, we are trying to leave the world of subspace arrangements. For example, if X is a linear space then its degree

HyCoT is applied to the Adige River Basin (northeast of Italy) for streamflow analysis, using a distributed hydrological model coupled with the HYPERstream

05/feb/2014 - L'opera fa parte della quarta esposizione Spirito Olimpico Italiano, “Icone Olimpiche”, promossa da Renata Freccero in occasione dei Giochi

Consequently, with this study, we examine whether or not female presence on corporate boards, in a sample of Italian companies, exerts some influence on the level of

I Persii Satirar(um) A(nno) 146[3] (con 1463 cancellato)&#34;; nel secondo &#34;47 Sop(ra) la porta&#34;; nel terzo la segnatura attuale; nel quarto, bordato di rosso, la

Such a procedure relies on solving the coarsest partition pair problem (i.e. computing the maximum simulation preorder) proceeding by rank.. The notion of rank, introduced in

Ciascuna delle due onde interagisce con il bersaglio situato in campo lontano, e scattera un'onda il cui stato di polarizzazione può essere espresso