• Non ci sono risultati.

Post-test analyses of LIFUS5 Test#3 experiment

N/A
N/A
Protected

Academic year: 2021

Condividi "Post-test analyses of LIFUS5 Test#3 experiment"

Copied!
5
0
0

Testo completo

(1)

ContentslistsavailableatScienceDirect

Fusion

Engineering

and

Design

j ourna l h o m e pa g e :w w w . e l s e v i e r . c o m / l o c a t e / f u s e n g d e s

Post-test

analyses

of

LIFUS5

Test#3

experiment

Marica

Eboli

a,∗

,

Alessandro

Del

Nevo

b

,

Nicola

Forgione

a

,

Maria

Teresa

Porfiri

c

aDICI,UniversityofPisa,LargoLucioLazzarino2,56122Pisa,Italy

bENEAFSN-ING-PAN,C.R.Brasimone,Camugnano,Bologna40032,Italy

cENEAFSN-FUSTEC-TEN,viaE.Fermi45,Frascati,00044,Italy

h

i

g

h

l

i

g

h

t

s

•PreliminarycodeassessmentprocessofSIMMER-IIIforfusionapplication.

•LIFUS5Test#3post-testanalysesperformed.

•Improvedknowledgeoftheexperimentandexecutionprocedures.

•RelevanceofcorrectI&BconditionsonthepredictivecapabilitiesofSIMMERcode.

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received1October2016

Receivedinrevisedform4February2017

Accepted10March2017

Availableonline22March2017

Keywords: Water Lithium–lead SIMMER Chemicalreaction WCLLbreedingblanket Safety

a

b

s

t

r

a

c

t

Theinteractionbetweenlithium-leadandwaterisamajorconcernofWaterCooledLithiumLead(WCLL) breedingblanketdesignconcept,thereforedeterministicsafetyanalysisofthein-boxLOCApostulated accidentisofprimaryimportance.Thepaperpresentsthepreliminarycodeassessmentprocessofthe modifiedversionofSIMMER-IIIcodeforfusionapplicationbymeansofLIFUS5Test#3post-test anal-yses.Aseriesofsensitivitycalculationsareperformedtoovercomeuncertaintiesinthetestdataand experimentexecution,andtoinvestigatethecapabilityofthecodeinpredictingthephenomena occur-ringduringPbLi/waterinteraction.Resultsshowagreementbetweennumericalresultsandexperimental data.Besides,differencesareobservedinthefirstsecondofthetransientduetoimperfectknowledgeof initialandboundaryconditions,andtestexecutionprocedure.

©2017TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Thesafetyissuesconnectedwiththelithium-lead/water inter-action in WCLL breedingblanket [1] is a potential hazard that shallbe considered.Therefore, the availability of qualified sys-temcodefordeterministicsafetyanalysisofin-boxLOCA(Lossof CoolantAccident)isofprimaryimportance.Themodifiedversion ofSIMMER-IIIcodeforfusionapplication,whichimplementsthe PbLi/waterchemicalreaction,hasbeendevelopedbyUniversityof PisaandENEACRBrasimone[2]andcurrentlyisundervalidation process.

Theaimofthepaperistodescribethepreliminarycode assess-ment of SIMMER-III Ver. 3FMod.0.1 code by means of LIFUS5 Test#3 post-test analyses. To address this objective, Section 2

brieflydescribestheTest#3experiment,thenthenodalizationof

∗ Correspondingauthor.

E-mailaddress:marica.eboli@for.unipi.it(M.Eboli).

thefacilityisreportedinSection3.Post-testanalysesresultsare illustratedinSection4,inwhichconsiderationsaboutthe compre-hensionofexperimentaldataarediscussed.Finally,conclusionsare reportedinthefinalsection.

2. DescriptionofLIFUS5Test#3

2.1. Facilitydescription

LIFUS5[3,4]wasdesignedandoperatedatENEACRBrasimone toexperimentallyinvestigatetheconsequenceofLOCAaccidents inliquidmetalpools.Fig.1showstheProcessand Instrumenta-tionDiagram(P&ID)ofthefacility,descriptedindetailinliterature

[3,4].ThereactionvesselS1containedamock-upofUshaped cool-ingtubes,asforeseeninpreviousdesignofWCLLBBforDEMO[5]. ThewaterinjectiondevicewasplacedinthebottomofS1belowthe tubebanksectorandhadanorificediameterof4mm.Several pres-suretransducersandthermocoupleswereplacedbothinS1andin theexpansionvesselS5tofollowthepressureandtemperature evolutionduringtheinteraction.

http://dx.doi.org/10.1016/j.fusengdes.2017.03.046

0920-3796/©2017TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(

(2)

Fig.1.P&IDofLIFUS5facility.

Table1

Test#3operatingconditions.

Parameter Test#3

PbLitemperature 330◦C

Waterinjectionpressure 155bar

Watertemperature 295◦C

Sub-cooling 50◦C

FreevolumeinS5 5l

Timeofinjection 6s

2.2. Test#3conditions

Beforetheexecutionofthetest,vacuumwasgeneratedbetween thevalveV14andthewaterinjector.Atthestartofthetest,valve V14openedandhotpressurizedwaterwasdischargedfromthe watertankS2toS1throughtheinjectionline.Thewaterinjection pressurewasfixedat155barandkeptconstantthroughaconstant pressurizationofthevesselS2.After6s,theinjectionwas inter-ruptedclosingthevalve.ThemainoperatingconditionsofTest#3 aresummarizedinTable1.

2.3. Openissues

TheexperimentalresultsdescribedinRef.[3]arenotexhaustive. Moreover,onthebasisofthereviewofavailabledocuments,the executionoftheexperimentisaffectedbyuncertaindatainrelation to:

• Layoutoftheinjectordeviceand relativepositioninrespectto theU-tubemock-up.Nogeometricaldrawingsordimensional informationwasfoundinliterature(Refs.[3,4]).

• Injectedmassofwater,becausenomassflowmeterwasinstalled intheinjectionline.Inliterature,thisvaluewasreportedas1.3kg

([3,4])butnoaccuracyisreportedaswellasnoreferenceon theprocedureusedfortheevaluation.Thisvalueisconsidered unreliable.

• Layoutoftheexpansion tubes.Nodocumentwasfoundforthe configurationoftheexpansiontubesanda3 pipeconnecting S1andS5,butonlytheexpansiontubesmaindimensionsare available(Refs.[3,4]).

3. LIFUS5nodalizationbySIMMER-III

ThenodalizationofLIFUS5bySIMMER-IIIVer.3FMod.0.1code (theversionforfusionapplicationwhichimplementsPbLi/water chemicalreaction)[1]isdevelopedin2Daxisymmetricgeometry, despitethelimitationofrepresentingtheasymmetriesofLIFUS5 facility.Itisconstitutedby5mainparts(Fig.2)representing: • thewatertankS2andtheS2-S1pipeline,

• theinjectordeviceanditsorifice,

• thereactionvesselS1,theU-tubemock-upandtwoplates divid-ingS1intofoursectors,

• theS1-S5linkwhichpreservestheflowareaoftheexpansion tubes,

• theexpansionvesselS5.

Thegeometricaldomainissubdividedinto17radialand28axial meshcells.Theoverallvolumeofthemodelisobtainedrotatingthe 2DSIMMERdomainalongtheaxisofsymmetry.Colorsdistinguish thedifferentfluids:PbLirepresentedinred,waterinblue,covergas (andthehydrogenproducedbythereaction)inwhite.Itisworth tounderlinethatthisnodalizationconsideredasfirstattemptto validatetheSIMMER-IIIcodeforfusionapplicationisthesameof pastnumericalactivities,reportedinRef.[4].

(3)

Fig.2.LIFUS5facilitynodalizationbySIMMER-III.

TheboundaryconditionsareappliedinS2covergascellsto reproducethecontinuousinflowofArgonfromthecylinder,at theconstantpressureof155bar.Theinitialconditionsofpressure andtemperatureinS1,S5,andintheinjectionline,areset coher-entlywiththedatareportedinTable1.Thereferencerunisset openingthevirtualwall,whichrepresentthevalveV14att=0s, anditismaintainedopenfor6s,coherentlywiththeexperimental specifications.Theamountofwaterinjectedisnotimposed,but cal-culatedbySIMMER-IIIaccordinglytopressuredifferencebetween theinjectorinletandthereactionvessel.

4. Analysisofpost-testcalculationresults

Three-stepanalysisispursuedasapartofthecodeassessment process.Theinitialconditionresultsattheinjectiontimeare rele-vantforthecharacterizationofthethermal-hydraulicconditionsat thebeginningoftheexperiment.Thereferencecalculation“Run0” isnotthebestcalculationbecauseitisbasedonaformer anal-ysisset-uprunningthecodewithoutthechemicalimplemented model[4].Sensitivityanalysesarecarriedouttodemonstratethe robustnessofthecalculation,tocharacterizethereasonsfor pos-siblediscrepanciesbetweenmeasuredandcalculatedtrendsthat appearinthereferencecalculation,tooptimizecoderesultsand useroptionchoices,toimprovetheunderstandingofexperimental data,andtoimprovetheknowledgeofthecodebytheuser. 4.1. Referencecalculationresults

Thepressuretransientcanbedividedintothreecharacteristic phasesofinteraction[3],alreadyrecognizedinBLAST experimen-talcampaign[6]. Twoadditionalphases (Phase0 and Phase4) arediscussedaspartofthecalculationsetup.Thenumericaland experimentalpressuretrendsarereportedinFigs.3and4,while

Fig.5showsthewatermassflowrateandthehydrogengeneration calculatedbythecode.

4.1.1. Phase0[onsetofvalveopening–0ms]:waterinjection linepressurization

AssoonasvalveV14opens,waterstartstoflowandto pressur-izethepipelineupstreamtheinjectioncap.Thedesignofthetest specifiesthatthecapshouldberupturedatthereferencepressure (i.e.155bar).Thisimpliesthatsubcooledwaterat295◦Cwillenter inS1.Duringthisphase,nomeasuredexperimentaldatumis avail-able.Therefore,accordingwiththesetupreferencecalculation,the startofthetransient(t=0s)issupposedtobethetimeofthe injec-tioncapbreaking.Thesimulationassumesthatsubcooledwaterat thedesigntestconditionsisinjecteddirectlyinthereactionvessel S1.

4.1.2. Phase1[0s–200ms]:coolantflashingandS1 pressurization

ThewaterinjectionandflashinginS1causesasuddensteep pressurization.Thecoderesultsevidenceafasterpressureincrease. Thecalculatedpressurepeakis127baroccurringatabout20ms, whereas theexperimental valueis 100barat 200ms. Different causesareidentifiedforjustifyingthesetrends.However, consid-eringthedataofTest#6[7]wherethepressurewasmeasuredin theinjectionline,themostlikelyjustificationisanearlyruptureof theinjectioncapwhichmaycausetwophaseflowconditionsatthe orificeintheexperiment,resultinginaslowerpressurization.This deviationfromthetestspecificationwillbeanalyzedinsect.4.2. Thecalculatedamountofwaterinjectedduringthisphaseis1.58g, whichresultsfromasuddenspikeofmassflowrateat0.79kg/s. 4.1.3. Phase2[200ms–800ms]:S5pressurization

Thephasestartswiththecriticalflowalmostconstantatabout 0.45kg/s.Nomeasurementisavailableforcomparison.The calcu-latedpressureinthereactionvesselslightlydecreasesandthen stabilizesatabout115–120bar,whichcorrespondsatthe satura-tiontemperatureofabout325◦C.Thesimulationcalculates this phaselongerthanintheexperiment.Thiscanbeexplainedwith alowerexpansionvolumeinS5(itisnotclearlystatedhowthe levelismeasured,anditsaccuracy)andalargersteamflow mov-ingfromS1toS5.Apressurepeakof28barisalsomeasuredin theexpansionvesselat377ms,followingasuddensteeppressure increase,whichseemsconnectedtoasortofCCFLoccurrenceinthe expansionpipe.Indeed,vaporgas,risinginthepipe,expandsinS5 becausethedifferentialpressureandasconsequenceofthedrag betweenthefluidsmaycausetheformationofaplugofPbLiacting astemporarypistonand,thus,compressingthesteamofS5,which cannotcondensebecausethelowabsolutepressure.Thisprocess inthesimulationoccursat600ms.However,SIMMER-III overes-timatestheamountofPbLitransportedinS5andtheexpansion vesselisalmostsolid,causingpressureoscillationsatthebeginning ofphase3.Thesimulationpredictsalinearhydrogengenerationof about67.7g/s,upto660mswhenthepressuresareequalizedand theinjectedwatermassflowratestartstodecrease.

4.1.4. Phase3[800ms–6500ms]:S1andS5pressuresequilibrium OnceS1andS5pressuresareequalizedintheexperiment,they increaseuptothemaximumpressureof150bar,occurringwhen thewaterinjectionisstopped.Thepressureincreaseisdrivenby thewaterinjected,whichevaporates,after3300ms,inthezone wherethechemicalreactionaffectsthemelttemperatureabove thesaturationvalue.Thesimulationpredictspressureoscillations at beginning ofthe phase 3 in S5and a fast pressure increase upto155bar,reachedat1000ms.Oncethispressureisreached, theinjectionstops.Fromthistime on,thehydrogengeneration becomesnegligible. Thecodepredictsanoverall injectedwater

(4)

0.0 20.0 40.0 60.0 80.0 100.0 120.0 140.0 160.0 180.0 200.0 0.0 2.0 4.0 6.0 8.0 10.0 Pressure [bar] Time [s]

EXP_PT4 Run0_PK[S1] Run7_PK[S1]

EXP_PT1 Run0_PK[S5] Run7_PK[S5]

Phase 3

Phase 2

Phase 1

Fig.3. Run7vsRun0:pressuretrendsPK[S1]andPK[S5]andcomparisonwithexperimentaldata(PT4inS1andPT1inS5).

0.0 20.0 40.0 60.0 80.0 100.0 120.0 140.0 160.0 180.0 200.0 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 Pressure [bar] Time [s]

EXP_PT4 Run0_PK[S1] Run7_PK[S1]

EXP_PT1 Run0_PK[S5] Run7_PK[S5]

Phase 3 Phase 2

Phase 1

Fig.4.Run7vsRun0:pressuretrendsPK[S1]andPK[S5]andcomparisonwithexperimentaldata.Zoomon0–2s.

massequalto0.367kg,whichresultmuchlowerthanthevalue reportedinthedescriptiondocument[3].

4.1.5. Phase4[6500ms–EoT]:systempressurestabilization Duringthisphasetheinjectionvalveisclosedandthe param-eters arestabilized. Thepressuresare almostconstant (slightly decreasing)intheexperimentandinthesimulation.

Finally, some considerations about the overall water mass injectedandchemicalreactionarereported:

• Watermassinjected.Literature[3]reportsthattheoverallwater massinjectedinthesystemis1.3kg.Thisvalueisunreliable. ConsideringthevolumesofS5andtheinjectionline,and assum-ingthatallthewaterevaporates,thecalculatedwaterneededto reach155barinsaturatedconditionsis0.350kg.Assumingthat thiswaterreactswithPbLiproducingH2,theoverallpressure shouldbebetween100.8barand201.5bar,dependinguponthe chemicalreactionprevailing.Itcanbeconcludedthatthe

over-allwaterinjectedinthesystemshouldbelargerthan0.262kg andlowerthan0.525kg.SIMMER-IIIcodeestimatesareasonable valuebeing0.367kg.

• Hydrogen generation. Considering the same assumption, the expectedmassofhydrogengeneratedshallbebetween20.4g and40.8g.Theresultsofthesimulationis,therefore,acceptable being31.1g.

4.2. Sensitivitycalculations

Considering the reference calculation (Run0), tens of sensi-tivity analyses were carried out to understand the reasons of discrepanciesbetweenexperimentalandnumericalresults,fully documentedin[7].

Inalltheruns,itwassupposedtoinjectsubcooledwater. Nev-ertheless,aftertherevisionofTest#6[7],thisconditionseemsto notreflecttherealexecutionoftheexperimentbecauseofanearly ruptureofthecapandtheconsequentlytwo-phaseflowinjection.

(5)

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 H2production [kg] Mass flow rate [kg/s] Time[s] Run0_M[inj] Run7_M[inj]

Run0_H2(TOT) Run7_H2(TOT)

Fig.5. Run7vsRun0:massflowrateofinjectedwater(M[inj])andcalculatedhydrogengeneration(H2TOT).

Therefore,Run7wasperformedimposinga postulatedpressure transientfromvacuumto155barattheinjectiondevice,andthe earlyinjectorbreaksat53bar.Thesensitivityresultsareshown fromFigs. 3to5.It canbenoted howthepressuretransientis moresimilartotheexperimentaltrend.Itmightbesaidthatthe SIMMER-IIIcodesimulationisaffectedbythecorrectknowledge oftheboundaryconditions.InTest#3,theseconditionsresulting fromexperimentalevidencesarenotavailableandcanbetaken onlyformtestspecifications.

5. Conclusions

Theanalysesof Test#3 experiment gave thefollowing main results:

• The capability of SIMMER-III code for fusion application in predictingphenomenaconnectedwithPbLi/waterinteraction, consideringalsothechemicalreactionandhydrogenproduction, hasbeendemonstratedwithsatisfactoryresults;

• Thepost-testanalysespermitstoimprovetheknowledgeofthe experiments,i.e.thewatermassinjectedinthesystem,the injec-tionpressuretrend,andthepressureoftheinjectioncaprupture; • Thesensitivity analysespointed out therelevance of the ini-tial and boundary conditions on the predictive capabilities of SIMMER-III code to simulate phenomena connected with lithium-lead/waterinteraction.

Futureperspectiveistocontinuethevalidationprocessofthe modified SIMMER-III code by means of the next LIFUS5/Mod3 experimentalcampaigninordertoobtainreliableandreproducible experimentaldatawithwell-knownI&Bconditions.

Acknowledgments

This work has been carried out within the framework of theEUROfusionConsortium and hasreceivedfundingfromthe Euratomresearchandtrainingprogramme2014-2018undergrant agreementNo633053.Theviewsandopinionsexpressedherein donotnecessarilyreflectthoseoftheEuropeanCommission.

References

[1]A.DelNevo,etal.,WCLLbreedingblanketdesignandintegrationforDEMO 2015:statusandperspectives,FusionEng.Des.124(2016)682–686.

[2]M.Eboli,etal.,ImplementationofthechemicalPbLi/waterreactioninthe SIMMERcode,FusionEng.Des.109–111(2016)468–473.

[3]A.Ciampichetti,etal.,WaterlargeleaksintoliquidPb-17Li:firstexperimental resultsonLIFUS5facility,FusionEng.Des.69(2003)563–567.

[4]A.Ciampichetti,etal.,Pb–16Li/waterinteraction:experimentalresultsand preliminarymodellingactivities,FusionEng.Des.88(2013)2392–2395.

[5]L.Giancarli,M.DalleDonne,W.Dietz,StatusoftheEuropeanbreedingblanket technology,FusionEng.Des.36(1997)57–74.

[6]C.Savatteri,A.Gemelli,Lithium–lead/waterinteraction.Largebreak experiments,FusionEng.Des.17(1991)343–349.

[7]M.Eboli,SafetyInvestigationofIn-boxLOCAforDEMOReactor:Experiments

Riferimenti

Documenti correlati

ONCOLOGIA MEDICA REGIONE LAZIO. 10

• Sanitari: gestione delle nuove tossicità e degli effetti collaterali a lungo termine, esiti della chirurgia e della radioterapia.

NUOVI BIOMARCATORI di MEDICINA NUCLEARE.. Le associazioni

In ottemperanza alla normativa ECM ed al principio di trasparenza delle fonti di finanziamento e dei rapporti con soggetti portatori di interessi commerciali in campo

• LBA7_PR - BRIM8: a randomized, double-blind, placebo-controlled study of adjuvant vemurafenib in patients (pts) with completely resected, BRAFV600+ melanoma at high risk

 ADJUVANT THERAPY with CHECKPOINT INHIBITORS (CA209-238 trial) AND TARGET THERAPY (BRIM8 and COMBI-AD trials)?. ….the

LBA31 STAMPEDE: Abi or Doc – directly randomised data -No difference in OSS, SSE for ADT+Abi vs ADT+Doc. - Different mechanism of action , side effect profile, treatment duration

L’analisi statistica sarà prevalentemente descrittiva delle caratteristiche clinico-biologiche della neoplasia mammaria avanzata nella popolazione in studio (età, tipo di chirurgia